# Note on Conditional Distributions 

Bernd Pape
Department of Mathematics and Statistics
University of Vaasa
e-mail: bepa@uwasa.fi
url: www.uwasa.fi/~bepa/

Consider coin-tossing with a fair coin, so head and tail are up with equal probability $1 / 2$. Suppose you win $1 \$$ each time head is up, and loose $1 \$$ each time tail is up, and you toss the coin twice.

Collecting the possible outcomes of the experiment, we may then write for the sample space $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$, where $\omega_{1}=\{1,1\}$, $\omega_{2}=\{1,-1\}, \omega_{3}=\{-1,1\}$, and $\omega_{4}=\{-1,-1\}$.

The collection of sets $\left\{\left\{\omega_{1}\right\},\left\{\omega_{2}\right\},\left\{\omega_{3}\right\},\left\{\omega_{4}\right\}\right\}$ is called partition of the sample space, because $\left\{\omega_{1}\right\} \cup\left\{\omega_{2}\right\} \cup\left\{\omega_{3}\right\} \cup\left\{\omega_{4}\right\}=\Omega$ and $\left\{\omega_{i}\right\} \cap\left\{\omega_{j}\right\}=\emptyset$ for all $i \neq j$.

Let us now introduce the random variables $X_{1}$ and $X_{2}$ to denote the number of dollars earned in the first, respectively second, toss. The probability distributions of these two random variables are:

| $x_{1}$ | 1 | -1 |
| :---: | :---: | :---: | :---: | :---: |
| $P\left(X_{1}=x_{1}\right)$ | $1 / 2$ | $1 / 2$ |, \(\left.\begin{gathered}x_{2} <br>

P\left(X_{2}=x_{2}\right)\end{gathered} \right\rvert\, 1 / 2 \quad 1 / 2\).
such that we obtain for the expected value of both random variables

$$
E\left(X_{1}\right)=E\left(X_{2}\right)=\frac{1}{2} \cdot 1+\frac{1}{2} \cdot(-1)=0
$$

Let us now consider a new random variable $X:=X_{1}+X_{2}$ which represents the total amount of dollars made after the game. Obviously, $X$ may take the values $1+1=2$, $1-1=(-1)+1=0$, and $-1-1=-2$. Our goal is to find the (unconditional) probability distribution of $X$. As an intermediate step, we may write down the probability distributions of $X$ conditional upon that the first toss was head (tail) up:

$$
\begin{array}{c|cc}
x & 2 & 0 \\
\hline P\left(X=x \mid X_{1}=1\right) & 1 / 2 & 1 / 2 \\
x & 0 & -2 \\
\hline P\left(X=x \mid X_{1}=-1\right) & 1 / 2 & 1 / 2
\end{array}
$$

which implies for the expected value of $X$ conditional on the first toin coss

$$
\mathrm{E}\left(X \mid X_{1}=1\right)=\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 0=1
$$

and

$$
\mathrm{E}\left(X \mid X_{1}=-1\right)=\frac{1}{2} \cdot 0+\frac{1}{2} \cdot(-2)=-1
$$

We may summarize the two probability distribtutions of the total gain for head (tail) up in the first toss as the conditional distribution of $X$ given $X_{1}\left(\right.$ for short $\left.X \mid X_{1}\right)$ :

$$
\begin{array}{c|cc}
x \mid X_{1} & X_{1}+1 & X_{1}-1 \\
\hline P\left(X=x \mid X_{1}\right) & 1 / 2 & 1 / 2
\end{array}
$$

The conditional expectation of $X$ given $X_{1}$ is then similar to the unconditional expectation:

$$
\mathrm{E}\left(X \mid X_{1}\right)=\frac{1}{2}\left(X_{1}+1\right)+\frac{1}{2}\left(X_{1}-1\right)=X_{1} .
$$

Note that the conditional expectation, unlike the unconditional expectation, is a random variable instead of just a number.

We may now proceed in our original project to find the unconditional probability distribution of $X$. Note for that purpose, that the
events $\{X=2\},\{X=0\}$ and $\{X=-2\}$ may be partitioned as follows:
$\{X=2\}=\{1,1\}=\omega_{1}, \quad\{X=-2\}=\{-1,-1\}=\omega_{4}$, and $\{X=0\}=\{1,-1\} \cup\{-1,1\}=\omega_{2} \cup \omega_{3}$.

Now the law of total probability states that we may calculate the unconditional probability of an event $\omega$ as a weigthed sum of its conditional probabilities over any of its partions $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ as*

$$
P(\omega)=\sum_{i=1}^{n} P\left(\omega \mid \omega_{i}\right) P\left(\omega_{i}\right)
$$

This implies in our case:

$$
\begin{aligned}
P(X=2) & =P\left(X=2 \mid X_{1}=1\right) \cdot P\left(X_{1}=1\right)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}, \\
P(X=-2) & =P\left(X=-2 \mid X_{1}=-1\right) \cdot P\left(X_{1}=-1\right)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}, \\
P(X=0) & =P\left(X=0 \mid X_{1}=1\right) \cdot P\left(X_{1}=1\right) \\
& +P\left(X=0 \mid X_{1}=-1\right) \cdot P\left(X_{1}=-1\right) \\
& =\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2} .
\end{aligned}
$$

*for continious random variables the law of total probability reads $f(x)=\int_{-\infty}^{\infty} f(x \mid y) d y$.

The unconditional expectation of $X$ becomes

$$
E(X)=\frac{1}{4} \cdot 2+\frac{1}{2} \cdot 0+\frac{1}{4} \cdot(-2)=0
$$

Note that this coincides with the unconditional expectation of $\mathrm{E}\left(X \mid X_{1}\right)$ :

$$
\mathrm{E}\left[\mathrm{E}\left(X \mid X_{1}\right)\right]=\mathrm{E}\left(X_{1}\right)=0=\mathrm{E}(X) .
$$

Consider now $n$ coin tosses with associated random variables $X_{1}, \ldots, X_{n}$ and the total gain again associated with $X$. It is then convenient to collect the outcomes of the first $i$ tosses in the information set $\mathcal{F}_{i}=\left\{X_{1}, \ldots, X_{i}\right\}$. It turns out that also in this general case

$$
\mathrm{E}\left[\mathrm{E}\left(X \mid \mathcal{F}_{i}\right)\right]=\mathrm{E}(X) \quad \text { for all } i=1, \ldots, n
$$

known as the law of iterated expectations.

