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Abstract 
 
This article investigates the delta hedging performance of the skewness and kurtosis adjusted Black-Scholes 
model of Corrado and Su (1996) and Brown and Robinson (2002). The empirical tests in the FTSE 100 index 
option market show that the more sophisticated skewness and kurtosis adjusted model performs worse than the 
simplistic Black-Scholes model in terms of delta hedging. The hedging errors produced by the skewness and 
kurtosis adjusted model are consistently larger than the Black-Scholes hedging errors, regardless of the 
moneyness and maturity of the options and the length of the hedging horizon. 
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1. INTRODUCTION 

 
The Black-Scholes (1973) model assumes the asset price dynamics to be described by a geometric 

Brownian motion, and thus, implies constant volatility and Gaussian log-returns. However, both the assumptions 
of constant volatility and Gaussian returns are obviously violated in financial markets. It has been recognized for 
a long time that asset return distributions tend to be leptokurtic. More recently, a vast literature has documented 
volatility to be time-varying. In addition, there seems to be a tendency for changes in stock prices to be 
negatively correlated with changes in volatility, due to which stock return distributions tend to be negatively 
skewed.  

Given the possible misspecifications of the Black-Scholes model, a substantial literature has devoted to the 
development of option pricing models which account for the observed empirical violations, such as the volatility 
smile. The Black-Scholes constant volatility assumption is relaxed in stochastic volatility models such as Hull 
and White (1987) and Heston (1993a), in deterministic volatility models by Dupire (1994), Derman and Kani 
(1994), and Rubinstein (1994), and in ARCH models of Engle and Mustafa (1992), Duan (1995), and Heston 
and Nandi (2000). The assumption of lognormal terminal price distribution is relaxed, e.g., in skewness and 
kurtosis adjusted models of Jarrow and Rudd (1982), and Corrado and Su (1996), log-gamma model of Heston 
(1993b), lognormal mixture model by Melick and Thomas (1997), and hyberbolic model of Eberlein et al. 
(1998).  

This article focuses on the delta hedging performance of the skewness and kurtosis adjusted Black-Scholes 
model of Corrado and Su (1996) and Brown and Robinson (2002). Despite the intensive empirical research on 
different option pricing models, surprisingly little is known about the hedging performance beyond the Black-
Scholes model. Previous studies on hedging performance have focused on different time-varying volatility 
option pricing models. The hedging performance of stochastic volatility option pricing models is investigated, 
e.g., in Bakshi et al. (1997, 2000), Nandi (1998), and Lim and Guo (2000) whereas Dumas et al. (1998), Engle 
and Rosenberg (2000), Coleman et al. (2001), and Lim and Zhi (2002) examine option hedging under 
deterministic volatility models. A bit surprisingly, previous studies indicate that although time-varying volatility 
option pricing models clearly outperform the Black-Scholes model in terms of pricing [see e.g., Bakshi et al. 
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(1997)], such models do not necessarily improve the hedging performance. Apparently, the hedging 
performance of option pricing models which relax the normality assumption has not been investigated. This 
article aims to fill this void by examining the delta hedging performance of the skewness and kurtosis adjusted 
Black-Scholes model.  

The remainder of the article is organized as follows. The skewness and kurtosis adjusted Black-Scholes 
model is presented in Section 2. In section 3, the FTSE 100 index option data used in the empirical analysis are 
described. Section 4 presents the methodology applied in the article. Empirical findings are reported in Section 
5. Finally, concluding remarks are offered in Section 6.  

 

2. SKEWNESS AND KURTOSIS ADJUSTED BLACK-SCHOLES MODEL  
 

Corrado and Su (1996) and Brown and Robinson (2002) use a Gram-Charlier series expansion of the 
standard normal density function to derive an expanded Black-Scholes option pricing formula with explicit 
adjustment terms for nonnormal skewness and kurtosis. The skewness and kurtosis adjusted price of a call 
option is  
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and )(⋅N  denotes the cumulative standard normal distribution function, )(⋅n  is the standard normal density 
function, S is the price of the underlying asset, K is the strike price of the option, σ  is the volatility of the 
underlying asset, r is the risk-free interest rate, T is the time to maturity of the option, and µ 3 and µ 4 denote the 
standardized coefficients of skewness and kurtosis, respectively. The first two terms of equation (1) constitute 
the Black-Scholes (1973) option pricing formula whereas the additional terms 33Qµ  and 44 )3( Q−µ  measure 
the effects of nonnormal skewness and kurtosis on the option price, respectively. 

The skewness and kurtosis adjusted Black-Scholes model in equation (1) is particularly convenient from a 
hedging point of view since it yields closed-form solutions for the hedge ratios. By definition, the delta is 
obtained by taking the first partial derivative of c with respect to S. Thus, the skewness and kurtosis adjusted 
delta can be written as 
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The skewness and kurtosis adjusted delta in equation (2) consists of the Black-Scholes delta, N(d), and two 

additional terms, 33qµ  and 44 )3( q−µ , which measure the effects of nonnormal skewness and kurtosis, 
respectively. Figure 1 illustrates the impact of skewness and kurtosis on the delta of an at-the-money call option. 
It can be noted that the delta is a decreasing function of both skewness and kurtosis.  

 
Figure 1. Impact of Skewness and Kurtosis on the Delta 
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Notes: The figure plots the ratio of skewness and kurtosis adjusted delta (SKABS) to Black-Scholes delta (BS) of an at-the-
money call option for different levels of skewness and kurtosis. 

 

3. DATA 

 
The data used in this article contain settlement prices of the European-style FTSE 100 index options traded 

at the London International Financial Futures and Options Exchange (LIFFE). The sample period extends from 
January 2, 2001 to December 28, 2001. The settlement prices for the FTSE 100 index options and the closing 
prices for the underlying implied index futures are obtained from the LIFFE. The risk-free rate needed for the 
calculation of the deltas and for the delta hedging experiment is proxied by the three-month LIBOR (London 
Interbank Offered Rate) rate.  

Two exclusionary criteria are applied to the complete FTSE 100 index option sample to construct the 
sample used in the empirical analysis. First, options with fewer than 5 or more than 120 trading days to maturity 
are eliminated. This choice avoids any expiration-related unusual price fluctuations and minimizes the liquidity 
problems often affecting the prices of long-term options. Second, options with moneyness greater than 1.10 or 
less than 0.90 are eliminated. Moneyness is defined as the ratio of futures price to strike price for call options 
and strike price to futures price for put options. The moneyness criterion is applied because deep out-of-the-
money and in-the-money options tend to be thinly traded.   

The final sample contains 35 180 settlement prices on options with 5 to 120 trading days to maturity and 
moneyness between 0.90 and 1.10. This sample is considered to be a representative sample of the most actively 
traded index option contracts. The sample is partitioned into three moneyness and two time to maturity 
categories. An  option is said to be out-of-the-money (OTM) if the moneyness ratio is less than 0.97, at-the-
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money (ATM) if the ratio is larger than 0.97 and less than 1.03, and in-the-money (ITM) if the ratio is greater 
than 1.03. An option is said to be short-term if it has less than 40 trading days to expiration and long-term 
otherwise.  

 
4. METHODOLOGY 
 

A central issue in the empirical testing of option pricing models is the estimation of the unobservable model 
parameters. Following the standard approach of simultaneous equations, the vector of model parameters, Φ, is 
estimated by minimizing the sum of squared deviations between the observed market prices and theoretical 
option prices  
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where N is the number of option price observations on a given day for a given maturity class, c and ĉ  are the 
observed and theoretical option prices, respectively, and { }σ=Φ  for the Black-Scholes model and 

{ }43,, µµσ=Φ  for the skewness and kurtosis adjusted model.  
The delta hedging performance of the Black-Scholes and skewness and kurtosis adjusted models is 

investigated by constructing a self-financed delta-hedged portfolio with one unit short position in an option, δ  
units of the underlying asset, and B units of a risk-free bond. The value of the portfolio Π  at time t is  
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At the beginning of the hedging horizon 0000 ScB δ−= , and thus, 00 =Π . The delta hedging performance 

of the two deltas is examined in one day and one week hedging horizons using daily rebalancing of the hedge 
portfolio. At each hedge-revision time t the hedge parameter is recomputed and the position in the bond is 
adjusted to 
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The delta hedging error ε from hedge-revision time t-1 to t is calculated as  
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and the total hedging error during the hedging horizon τ is given as TΠ , the value of the portfolio at the end of 
the hedging horizon  
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Two commonly used error statistics, mean absolute hedging error (MAHE) and root mean squared hedging 
error (RMSHE) are used to analyze the delta hedging performance of the models. To avoid any distributional 
assumptions about the error statistics, bootstrapping is used to test whether the hedging errors from the two 
models are statistically significantly different.  
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5. EMPIRICAL RESULTS 

 
Table 1 presents the summary statistics of the model parameter estimates. The estimated parameters of the 

skewness and kurtosis adjusted model indicate that the return distribution of the FTSE 100 index is fat-tailed 
and negatively skewed with mean skewness and kurtosis estimates of –0.14 and 3.82, respectively. Interestingly, 
the implied volatility estimates under the skewness and kurtosis adjusted model tend to be higher than the 
Black-Scholes implied volatilities. 

 

Table 1. Summary Statistics of the Estimated Model Parameters 

Notes: The table reports the summary statistics of the model parameter estimates. The model parameters are estimated by 
minimizing the sum of squared deviations between the observed market prices and theoretical option prices. The parameters 
σ, µ 3, and µ 4 represent volatility, skewness, and kurtosis, respectively. BS and SKABS denote the Black-Scholes and 
skewness and kurtosis adjusted option pricing models, respectively.  
 

The ratio of skewness and kurtosis adjusted delta to Black-Scholes delta for different level of moneyness is 
presented in Figure 2. The ratio seems to vary with moneyness, being below one for OTM options and above 
one for ITM options, and thus, indicates that the skewness and kurtosis adjusted delta is smaller than the Black-
Scholes delta for OTM calls and ITM puts but larger for ITM calls and OTM puts. For ATM options the 
difference in deltas is almost negligible. Similar delta structure for stochastic volatility models is documented in 
Bakshi et al. (2000).  

 

Figure 2. The Ratio of Skewness and Kurtosis Adjusted Delta to Black-Scholes Delta 
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Notes: The figure plots the average ratio of skewness and kurtosis adjusted delta (SKABS) to Black-Scholes delta (BS) for 
different levels of moneyness. The deltas are calculated using the model parameter estimates summarized in Table I. 

  BS                                       SKABS 
  σ σ µ3 µ4 
Mean 20.18 20.86 -0.14 3.82 
Median 18.88 19.27 -0.11 3.84 
Minimum 12.72 12.99 -1.27 0.17 
Maximum 46.02 47.42 0.82 5.63 
Std. Dev. 4.73 5.42 0.38 0.60 
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The results of the delta hedging experiment for the one day hedging horizon are reported in Table 2. The 
reported numbers are mean absolute hedging errors (MAHE), root mean squared hedging errors (RMSHE), and 
the mean difference between the error statistics of the two models. The results in Table 2 indicate that the 
skewness and kurtosis adjusted model performs worse than the Black-Scholes model in terms of delta hedging. 
The hedging errors produced by the skewness and kurtosis adjusted model are consistently larger than the 
Black-Scholes hedging errors, regardless of the moneyness and maturity of the options. The difference in 
hedging performance appears to be most distinct for long-term ATM options. All differences reported in Table 2 
are statistically significant at the 1 % level.  

 

Table 2. Hedging Errors for One Day Hedging Horizon 

  MAHE RMSHE 
Moneyness 

Time to 
Maturity BS SKABS Difference BS SKABS Difference

Full Sample All 4.45 4.73 -0.27* 7.46 8.02 -0.55*
  Short 4.49 4.71 -0.22* 8.06 8.51 -0.46*
  Long 4.42 4.74 -0.32* 6.84 7.51 -0.67*
OTM All 4.12 4.35 -0.23* 6.87 7.35 -0.48*
  Short 3.91 4.09 -0.17* 7.12 7.47 -0.35*
  Long 4.32 4.61 -0.28* 6.62 7.23 -0.62*
ATM All 5.13 5.49 -0.36* 8.66 9.32 -0.66*
  Short 5.61 5.93 -0.32* 9.82 10.42 -0.59*
  Long 4.66 5.05 -0.39* 7.35 8.11 -0.75*
ITM All 4.18 4.41 -0.23* 6.82 7.34 -0.52*
  Short 4.04 4.21 -0.17* 7.08 7.48 -0.40*
  Long 4.30 4.59 -0.29* 6.57 7.20 -0.63*

Notes: The reported numbers for each maturity-moneyness category are (i) the mean absolute hedging error (MAHE), (ii) the 
root mean squared hedging error (RMSHE), and (iii) the mean difference between the errors of the two models. BS and 
SKABS denote the Black-Scholes delta and skewness and kurtosis adjusted delta, respectively. * significant at the 0.01 level 
and ” significant at the 0.05 level. 
 

Table 3. Hedging Errors for One Week Hedging Horizon 

  MAHE RMSHE 
Moneyness 

Time to 
 Maturity BS SKABS Difference BS SKABS Difference

Full Sample All 13.67 14.12 -0.45* 20.56 21.34 -0.78*
  Short 12.71 13.12 -0.41* 21.37 22.12 -0.75*
  Long 14.59 15.08 -0.49* 19.77 20.58 -0.81*
OTM All 11.74 12.05 -0.31* 17.28 17.73 -0.45*
  Short 10.03 10.31 -0.28" 16.69 16.99                  -0.31
  Long 13.39 13.72 -0.33* 17.83 18.41 -0.58*
ATM All 18.33 19.08 -0.75* 27.64 28.95 -1.31*
  Short 19.19 19.86 -0.67* 30.93 32.30 -1.37*
  Long 17.56 18.38 -0.82* 24.28 25.54 -1.26*
ITM All 11.88 12.23 -0.36* 16.49 16.97 -0.48*
  Short 10.38 10.72 -0.34* 15.64 16.05                 -0.41 
  Long 13.33 13.70 -0.37* 17.27 17.81 -0.54*

Notes: The reported numbers for each maturity-moneyness category are (i) the mean absolute hedging error (MAHE), (ii) the 
root mean squared hedging error (RMSHE), and (iii) the mean difference between the errors of the two models. BS and 
SKABS denote the Black-Scholes delta and skewness and kurtosis adjusted delta, respectively. * significant at the 0.01 level 
and ” significant at the 0.05 level. 
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Table 3 presents the hedging results for the one week hedging horizon. The results seem very similar to the 
results for the one day hedging horizon. Again, the error statistics clearly indicate that delta hedging under the 
Black-Scholes models is more effective than under the skewness and kurtosis adjusted model. Regardless of the 
moneyness and maturity of the options, both error statistics are lower for the Black-Scholes delta. Most of the 
differences reported in Table III are highly statistically significant, with the only exceptions being short-term 
OTM and ITM options. 

 
6. CONCLUSIONS 

 
This article has investigated the delta hedging performance of the skewness and kurtosis adjusted Black-

Scholes model of Corrado and Su (1996) and Brown and Robinson (2002). The empirical tests in the FTSE 100 
index option market show that the more sophisticated skewness and kurtosis adjusted model performs worse 
than the simplistic Black-Scholes model in terms of delta hedging. The hedging errors produced by the 
skewness and kurtosis adjusted model are consistently larger than the Black-Scholes hedging errors, regardless 
of the moneyness and maturity of the options and the length of the hedging horizon. At the first sight, these 
results may seem rather surprising. The results are, however, consistent with the empirical tests on the hedging 
performance of time-varying volatility models [see e.g., Bakshi et al. (1997), Dumas et al. (1998), Nandi (1998), 
Lim and Guo (2000)], and thus, provide further support for the view that a good option pricing model is not 
necessarily a good model for hedging. A potential explanation might be that, although the Black-Scholes delta is 
likely to be biased, the estimation error in the delta is relatively small due to the simplicity of the model.  
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