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Johdanto

Tdma on luentokirjanen Vaasan yliopiston kurssille Lineaarialgebra I syksylle 2022. Kurssi on 2 opinto-
pisteen laajuinen sisdltden noin 20 tuntia (a 45 min) luentoja ja 8 tuntia (a 45 min) harjoituksia. Luen-
tokirjasen jokainen luku vastaa noin 2 tuntia (eli 1 h 30 min) luentoja. Mahdollisesti aivan kaikkea
kirjasen tekstid ei ehditd kdyméaan lapi luennoilla. Opiskelijoita kannustetaankin lukemaan luen-
toja vastaava teksti kirjasesta ennen luentoja ja esittdd kysymyksid, jos jokin asia on esitetty
epaselvisti.

Olemme kayttdneet “juoksevaa numerointia”: harjoitustehtévia, esimerkkejd yms. ei ole numeroitu
erikseen. Siten esimerkiksi harjoitustehtdvain 2.12 johdatteleva esimerkki on 2.11.

Tama luentokirjanen tarkastelee lIdhinné vain tason tapausta; toisin sanoen tarkastelemme kahden
muuttujan yhtilopareja eli (2 x 2)-matriiseja. Karkeasti otten kurssin ydin on tarkastella (abstraktia)
yhtéloparia

{ Apxy + Apx, = by
Anxy + Apx, = b,
ja etsid kaikki sen ratkaisut x,;,x, tai osoittaa ettd ratkaisuja ei ole olemassa. Osoittautuu, ettd rat-
kaisuja on olemassa tasan yksi pari x;, x,, jos determinantti

D = ApAyp—ApAn # 0.
Talloin yksikéasitteinen ratkaisu on itse asiassa

{xl = %(Azzbl_Alzbz)
X, = 5(=Ayb;+A;b,)

Jos taas determinantti D = 0, niin ratkaisuja x;, x, joko ei ole ollenkaan tai sitten niitd on direton
maara (joskaan kaikki tason pisteet x,, x, eivét ole juuri koskaan ratkaisuja).

Luentokirjasen jokaisen luvun lopussa on tihtiosio, joka ei kuulu varsinaisiin oppimistavoitteisiin.
Tahtiosiot tarkastelevat yleistd (m x n)-tapausta

Allxl + A12X2 + - + Alnxn = bl
A21X1 + A22X2 + et + Aznxn == b2
Amlxl + Am2x2 + - + Amnxn = bm

ja ne antavat vihjeen siitd, mitd opiskellaan jatkokurssilla Lineaarialgebra II.

Vaasassa 2. joulukuuta 2022
T.S.



Luku 1

Yhtalopari

Yhtéloparin ratkaisu piirtamalla

Kahden muuttujan x; ja x, yleinen lineaarinen yhtéilépari on muotoa

(1.1 {Allxl + Apx, = by

Agpxy + Apxy = by

Yhtéloparin (1.1) ratkaisu on sellainen tason piste (x;,x,), joka toteuttaa molemmat yhtalot sa-
manaikaisesti. Koska molemmat yhtélot maérittelevéat suoran tasoon, on ratkaisu (jos sellainen on,
ja jos se on yksikasitteinen) yhtdléiden méaiardamien suorien leikkauspiste. Jos yhtdloparin molem-
mat yhtdlot kuvaavat saman suoran, on ratkaisu kaikki ko. suoralla olevat pisteet. Jos yhtdloparin
madradmat suorat ovat yhdensuuntaisia, mutta eivit kuvaa samaa suoraa, niin ratkaisuja ei ole.

1.2 Esimerkki
Ratkaisemme piirtdmalla yhtaloparit

(1.3 { 6x; + 2x, = 10°
ja

(1.5) {83(1 + 2x, = 4

4X1 + Xz =0 ’

Alla olevasta piirroksesta ndemme, ettd yhtéloparin (1.3) ratkaisu on (x;,x,) = (0.5,3,5), yhtélo-
parin (1.4) ratkaisu on koko suora (t,5t —2), missd t on vapaa parametri, ja yhtéloparilla (1.5) ei
ole ratkaisuja.
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Yhtéloparien (1.3) (vasemmalla), (1.4) (keskelld) ja (1.5) (oikealla) ratkaisut.

1.6 Harjoitustehtiva

Ratkaise seuraavat yhtiloparit piirtamalla:

@)

(i)

1.7 Harjoitustehtiva

Mairaa mitd yhtalopareja seuravat kuvat kuvaavat.

—4x1 + 3x2
6x; + 2x,

4x,
6x; + 2x,
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Yhtéloparin ratkaisu alkeisrivioperaatioilla

1.8 Esimerkki
Haluamme ratkaista yhtiloparin

(1.9) {4x1 + 2x, = 1

SX]_ - 4XZ 6 ’

Eliminoimme muuttujan x; jilkimmaisesta yhtilosta, jolloin saamme muuttujan x, ratkaistuksi.
Eliminointi onnistuu vihentdmalla ensimmainen yhtélo 5/4 kertaa jalkimmaisesta yhtalosta puolit-
tain. Nimittdin tdlloin jilkimma&inen yhtilo saa muodon

5 5
S5x;—4x,——=-(4x;+2x,) = 6—--1
1 2 4 ( 1 2) 4
le — 4‘X2 - 5X1 - 2.500.)(2 = 4.750
—6.500x, = 4.750

x, = —0.7308.

Sijoittamalla tdma uusi jalkimméainen yhtdlo paikalleen yhtidlopariin 1.9 saamme yhtédl6parin

4x; + 2x, = 1
(1.10) { X, = —0.7308
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Nyt vahentdmaélla vastavuoroisesti jalkimmadinen yhtdlo 2 kertaa ensimmaisestd yhtdlosta puo-
littain yhtéloparissa (1.10) saamme

4x, = 2.4616

x; = 0.6154.
Olemme loyténeet ratkaisun
X4 = 0.6154
(1.11) { x, = —0.7308

1.12
Esimerkissd 1.8 kdytimme seuraavia huomiota:

(i) Yhtélon saa kertoa puolittain nollasta poikkeavalla luvulla.
(ii)) Yhtéloon saa lisatd puolittain toisen yhtalon.

Naitd huomioita kutsutaan alkeisrivioperaatioiksi.

1.13 Esimerkki
Haluamme ratkaista yhtdloparin

= 1
(1.14) {4x1 + 2x,

8x;, + 4x, = 3 °

Eliminoimme muuttujan x; jilkimmaisestd yhtdlosta vihentdmaélla ensimmaisen yhtédlon 2 ker-
taa jalkimmaisesta yhtdlostd. Saamme yhtaloparin

4X1 + 2X2 =1
0 = 1°

Koska 0 =1 on absurdia, niemme ettd yhtaloparilla (1.14) ei ole ratkaisua.

1.15 Esimerkki
Haluamme ratkaista yhtdloparin

4x; + 2x, = 1
Ll {12)(1 + 6x, ’

I
w



1.17

1.18
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Eliminoimme muuttujan x; jalkimmaisestd yhtdlosta vahentdmalld ensimmaisen yhtélon 3 ker-
taa jalkimmaisestd yhtdlostd. Saamme yhtédloparin

4x;, + 2x, = 1
0 =20

Koska 0 = 0 aina, niin toinen yhtdlo elimioitui taydellisesti. Tulkinta on, etta kaikki pisteet suoralla
4x, + 2x, = 1 ovat yhtdloparin ratkaisuja. Toisin sanoen yhtdléparin molemmat yhtélot maarasivat
saman suoran.

Harjoitustehtiva
Ratkaise harjoitustehtdvan 1.6 yhtaloparit alkeisrivioperaatioilla.

Esimerkki
Haluamme ratkaista yhtaloparin

x; + ax, = 1

missd a on jokin kiinnitetty, mutta mielivaltainen parametri.

Vahentdmalla ensimmadinen yhtélo 4 kertaa jalkimmaisestd yhtdlosta eliminoituu x; jalkimmai-
sestd yhtdlostd ja saamme yhtédloparin

x; + ax, = 1
(—4a—2)x, = —4 °

Muuttuja x, ratkeaa jalkimmaisesta yhtdlostd periaatteessa helposti:

v = —4
2 —4a-2
2
Xy = .
2a+1

Ainoa ongelma tissa on, ettd emme saa jakaa nollalla. Siten joudumme olettamaan, ettd a # —1/2.
Olemme siis saaneet yhtdloparin, jossa x, on ratkaistu jalkimmaisessd yhtdlossa:
+ ax, = 1

(1.20) { X1 )

X2 = 3

Nyt pitdd eliminoida muuttuja x, ensimmaisestad yhtdlostd. Tama tapahtuu vihentdmalla jalkim-
madinen yhtilo a kertaa puolittain ensimmaisestd yhtdlostd. Saamme ratkaisun

2a
X1 = =55
(1.21) { X, = )

2a+1



1.22

1.23
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joka pétee, jos a # —1/2. Jos a =—1/2, niin alkuperidinen yhtélopari (1.19) on muotoa

X1 - %XZ = 1
4X1 — 2x2 = 0

Kertomalla ensimmaéinen yhtilo 4:114 saamme yhtaloparin

mistd ndemme ettd tapauksessa a = —1/2 yhtéloparilla (1.18) ei ole ratkaisua.

Harjoitustehtidva
Ratkaise yhtélopari
x; + 6x, = b
{4x1 — 2x, = 1

kayttamalla alkeisrivioperaatioita.

Tassa yhtdloparissa siis x; ja x, ovat muuttujia, joiden suhteen se on ratkaistava ja b on kiinni-
tetty, mutta mielivaltainen parametri.

Harjoitustehtdva
Milld parametrien a ja b arvoilla seuraavalla yhtiloparilla on (i) yksikésitteinen ratkaisu, (ii) daret-
tomasti ratkaisuja ja (iii) ei yhtdan ratkaisua

Il
S}

Yhtaloryhman ratkaisu alkeisrivioperaatioilla*

Yleinen lineaarinen n:n muuttujan ja m:n yhtilon yhtdléryhma on muotoa

Allxl + A12X2 + - + Alnxn - bl
Alel + A22X2 + ct + Aznxn - b2
Am1x1 + Am2X2 + - + Amnxn - bm

Jos tdlla yhtdloryhmalla on yksikasitteinen ratkaisu, niin se voidaan 16ytaa alkeisrivioperaatioilla pe-
riaatteessa seuraavasti:



Luku 1 Yhtilopari 9

(i) Eliminoidaan muuttuja x; yhtaloistd 2,...,m lisdédmalla yhtdlo 1 sopivasti kerrottuna niihin.
Esimerkiksi yhtélosta 2 saadaan x; eliminoitua vihentdmalla siitd puolittain yhtdlo 1 kerrottuna
vakiolla A,; /A1 .

(i) Toistetaan kohta (i) muuttujille x,,...,x,_;, jolloin kaikki muuttujat x;,...,x; on eliminoitu
yhtaloista j+1,...,m kaikilla j =2,..., m—1.
(iii) On saatu porrasmuotoinen yhtaloryhma

Bllxl + B12X2 + - + Blnxn - Cl
B22X2 + ct + anxn == C2
anxn = Cm

Tasta ratkeaa x, = c,,/B,,, ja yleisesti yhtdloryhmé ratkeaa esimerkiksi takaisinsijoittamalla
muuttujat x,,X,_q,...,Xy yhtdloihin (m—1),...,1.

Mikali ylla kuvattu algoritmi toimii moitteettomasti, 16ytda se yhtdloryhmén yksikésitteisen rat-
kaisun. Muussa tapauksessa on syyta epdilld, ettd yhtdloryhmalld ei ole ratkaisua tai ratkaisuja on
adrettoman paljon. Jos n # m, niin tyypillisesti yhtdloryhmalla ei ole yksikésitteistd ratkaisua. Jos
muuttujia on liikaa (n > m), niin tyypillisesti ratkasiuja on darettomasti, koska pelivaraa on liikaa.
Vastaavasti jos muuttujia on liian vdhdn (n < m), niin tyypillisesti ratkaisuja ei ole, koska on liikaa
rajoitteita.
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Vektorit 1ahinna tasossa

Karteesinen muoto ja napamuoto

Samaistamme tason pisteet (x;,Xx,) tason vektorin x = (x;, x,) kanssa, joka alkaa origosta ja paét-
tyy pisteeseen (x;, x,). Tatd tason pisteen esitysmuotoa kutsutaan karteesiseksi ja téllaista vektoria
kutsutaan myos nimelld paikkavektori.

2.1 Huomautus
Kaytamme vektoreille lihavoitua merkintda x. Joissakin insinoorikirjoissa kiytetddn sen sijaan nuo-

0 9 o es = o o o 0Q o Mo =
limerkintdda x* tai vAhemman rumaa viivamerkintaa x.

Kahden vektorin x = (x;, x,) ja y = (¥;, y,) summa on vektori
x+y = (x;+y1, X3+ Y2)

Summassa siis lasketaan yhteen komponenteittain.
Vektori x kerrottuna skalaarilla (eli luvulla) ¢ on vektori

tx = (txq,tx,y).

Skalaarilla kerrottaessa siis venytetian tai typistetddn komponenteittain samalla luvulla.

2.2 Esimerkki
Jos x=(1,0) ja y=(2,2), niin
x—0.5y = (1,0)+(—0.5)-(2,2)
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Tason koordinaattivektorit ovat
e;=(1,0) ja e =(01).
Jokainen vektori x = (x;, x,) voidaan esittda koordinaattivektorien avulla summana

(2.3) X = X;€;+Xxye,.

2.4 Huomautus
Joissakin toisissa kirjoissa koordinaattivektoreille kdytetddn toisin merkint6jd. Insinodripuolella on

e — =
suosittua merkitd i , i tai i koordinaattivektorille e; ja j , j tai j koordinaattivektorille e,.

2.5 Esimerkki
Olkoon x = (4,2) ja y = (—1,3). Laskemme vektorin z = 5x — 2y. Kayttdmalla koordinaattiesitysta
(2.3) voimme laskea
Z = 5x—2y
= 5 '(461 +2e2)_2'(_e1 +3e2)
= 2061 aF 1062 aF 261 — 662
= 22e; +4e,,

eli z=(22,4).

2.6 Harjoitustehtava
Olkoot x=(1,—1), y=(1,2) ja z= (0, 3). Laske

(1) 2x+y-—z,
(i) x—3y+2z.

Voit halutessasi kdyttaa koordinaatiesitysta (2.3).

Vektorit v; ja v, ovat lineaarisesti riippuvia, jos toinen voidaan esittda toisen avulla. Tasossa tima
tarkoittaa sitd, ettd vektorit ovat samalla suoralla. Toisin sanoen v, = tv;, missd t on jokin skalaari.
Vektorit v, ja v, ovat lineaarisesti riippumattomia, jos toista ei voi esittda toisen avulla. Lineaarisesti
riippumattomat vektorit virittdvét koko tason, mika tarkoittaa sitd ettd jokainen tason piste x voidaan
esittdd niiden avulla:

(2.7) X = aqV;+ayvy.

Lineaarisesti riippumattomia vektoreita kutsutaan myds vapaiksi ja kaavaa (2.7) kutsutaan vektorin
x esitykseksi kannassa (v;,V,)
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2.8 Esimerkki
Olkoon v; = (0,—1) ja v, = (—1,1). Haluamme l0ytaa esityksen (2.7) yleiselle tason pisteelle
X = (X 1> xz) .
Yleiselle vektoriparille (v;,v,) vektoriyhtdlo (2.7) tarkoittaa yhtaloparia

5

{a1V11 + AV = X,
A1Vip + AyVyy = Xy

missé a, ja a, ovat muuttujia, joiden suhteen yhtédlopari on ratkaistava. Vektorit v; ja v, on annettu,
ja vektori x on mielivaltainen, mutta kiinnitetty parametri.

Tarkastelemme siis yhtiloparia

— a = X
{ —a; t a = X
Vaihtamalla yhtiloiden jarjestysta ja kertomalla uusi jalkimmainen yhtdlo —1:114 saamme yhtélopa-
rin
—a; + a; = X,
{ a = —X

Vahentdmalla jalkimmainen yhtdlo ensimmaisestd yhtédlosta saamme yhtdloparin

612 = —X1
Tasta ndemmekin jo ratkaisun
dy = —(x;+x3)
Cl2 - _Xl ?

eli kannassa (v;,v,) vektorin x = (x,x,) esitys on

Vektori x voidaan karteesisen muodon x = (x, x,) lisdksi esittdd myos napamuodossa eli napa-
koordinaatistossa x = (r, 6), missd r on vektorin x pituus eli normi ja 6 on vektorin x virittimin
origon kautta kulkevan suoran ja x;-akselin vilinen kulma. Valitsemme kulman mitaksi radiaanit ja
tarkastelemme vain positiivisia kulmia. Toisin sanoen 6 € [0, 27).

Vektorin x normin r, jolle kiytdmme my06s merkintéa ||x||, saamme tarkastelemalla suorakulmais-
ta kolmiota, jonka kérjet ovat pisteet (0,0), (x;,0) ja (x;,x,). Talloin kateettien pituudet ovat x; ja
X,, ja hypotenuusan pituus on vektorin pituus. Siten Pythagoraan lauseen nojalla

IxIl = /x}+x3.

Jos vektorin pituus on yksi, kutsumme sita yksikkovektoriksi. Karteesisesta muodosta x = (x;, x5)
saadaan vektorin x suuntainen yksikkovektori jakamalla se pituudellaan:

X

I1x]|

A
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Napamuodosta x = (r, 6) vektorin x suuntaisen yksikkévektorin rakentaminen on helppoa:

%X = (1,6).

2.9 Esimerkki
Vektorin x = (2,4) normi on

Il = v2+a

ek

= 4/22.5
= 245
~ 4.4721.

Vektorin x = (2,4) suuntainen yksikkovektori on

. X
X = —

Il

24

245
(2 4

- (2728)

(L i)
V5 V5
~ (0.44721,0.89443).

Etsimme nyt napamuodon (r, 0) karteesisesta muodosta (x;, x,). Tieddmme jo, ettad

ro= x| = y/xI+x3.

Suoraan tangentin madritelmésta seuraa, etta

Siten

Xo
0 = arctan—,
X1

jos x; # 0. Jos taas x; = 0, niin kulma on joko 7t/2 tai 37t/4 riippuen siitd onko x, posiviivinen vai
negatiivinen.
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2.10 Huomautus
Koska haluamme ettd kulmat 6 ovat vélilla [0, 27r) tulee funktiosta arctan valita mahdollisesti jokin
muu kuin padhaara. Kaytdnnossa tdima hoituu helpoiten vahentdmalla (tai pikemminkin lisidmalla)
saatu negatiivinen kulma 6 = arctan x,/x; koko kehdn kulmasta 27. Tissé on siis kyse siitd, etta
kulma ei ole yksikasitteinen, vaan kaikki kulmat 6 + k2w, k € Z, esittavat samaa kulmaa 6.

Kédantien karteesinen muoto (x;, x,) saadaan napamuodosta (r, ) tarkastelemalla suorakulmais-
ta kolmiotamme, joka karjet ovat pisteet (0,0), (x;,0) ja (x;,x,). Talléin kolmion hypotenuusan pi-
tuus on r, joten sinin ja kosinin méaritelmasta seuraa, etta

x, = rcos6,
x, = rsinf.
2.11 Esimerkki
(i) Olkoon x = (2,—4). Etsimme sen napamuodon x = (r, 6). Vektorin x normi on

ro= |

Vektorin x kulma on

6 = arctan—
2
~ —1.1071,
minki saamme vélille [0, 27t) vdhentdmalla se koko kehidn kulmasta 27:

0 ~ 2n—1.1071
= 5.1761.

Olemme loytdneet napaesityksen

X ~ (4.4721,5.1761).

(ii) Olkoon x = (3,7/4). Etsimme sen karteesisen muodon x = (x;, x,). Ensimmaéinen koordi-
naatti on

X, = rcos6
s

= 3cos—

4

A~ 2.1213.
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Toinen koordinaatti on
X, = rsinf
. T
= 3sin—
4

2.1213.

2

Olemme loytaneet karteesisen esityksen

x ~ (2.1213,2.1213).

2.12 Harjoitustehtava
(i) Olkoon x = (1,2.5). Etsi x:n napaesitys.
(ii) Olkoon x = (4,1.4). Etsi x:n karteesinen esitys.

Kahden vektorin x = (x;, x,) ja y = (y;,Y,) vélinen pistetulo on

(2.13) X'y = XY +X5),.

2.14 Huomautus
Rakkaalla lapsella on monta nimed ja symbolia. Pistetuloa kutsutaan myo0s sisdtuloksi, skalaaritu-
loksi ja projektiotuloksi. Sille kdytetd4n myos merkinndn x -y lisdksi merkint6ja (x,y), (x|y), (x,y),

(xly),jax'y.

2.15 Huomautus
Pistetulo on symmetrinen ja bilineaarinen. Symmetrisyys tarkoittaa sitd, etta

X'y = y-X

Bilineaarisuus tarkoittaa sitéd, ettd pistetulo on lineaarinen sekd x:n ettd y:n suhteen. Esimerkiksi
lineaarisuus x:n suhteen tarkoittaa sitd, ettd kaikilla skalaareilla a, ja a, seké vektoreilla x; ja x,
sekd y patee

(1% +aX,)y = a;(X;-y) +ay(x;-y).
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2.16 Huomautus
Pistetulon yhteys normiin on ilmeinen:

Ix|? = x-x
Kidntien péitee niin sanotusta suunnikassadnnosta
2xI1? +2llyll? = llx+yll*+ [Ix—yll*

seuraavat polarisaatioidentiteetit:
xy = —(Ix+yl*—lx—yl*)

(Il + 1yl = llx = y1I?)..

Nl—= N[

Pistetulo x - y maarda vektorien x ja y valisen kulman. TAmaé ei ole ihan ilmiselvda pistetulon
karteesesta méaaritelmista (2.13). Napamuotoinen méaritelméa kuitenkin paljastaa totuuden. Olkoot
x = (ry, Oy) ja y = (ry, 6,) . Télléin

X'y = X1)1+tX),
= 14C08 6, rycos 6 + rysin O 1y sin 6
= Tyly (cos 0y cos 6, + sin 6, sin 9y) .
Nyt muistamme tutun trigonometrisen kaavan
cos(a—pB) = cosacosf + sinasinpf.
Tama antaa meille napamuotoisen sisdtulon maaritelméan
(2.17) X'y = ryry cos(6y—6,).

Napamuotoinen sisdtulon maaritelméa (2.17) antaa meille seuraavan kosinilauseen:

2.18
Pistetulo maarittaad vektorien x ja y valisen kulman 6 kosinilauseen kautta:

(2.19) cosf = x-¥,

missd X ja ¥ ovat x:n ja y:n suuntaiset yksikkovektorit: X = x/||x|| ja y =y/||yll.
Yksi seuraus tésta on se, ettd vektorit X ja y ovat kohtisuoria jos ja vain jos

xy = 0.
Toinen seuraus on se, ettd vektorit X ja y ovat yhdensuuntaisia jos ja vain jos

xy = |yl
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2.20 Harjoitustehtava
Olkoon x = (1,3) ja y =(2,a). Miki tulee parametrin a olla, jotta vektorit x ja y olisivat

(i) yhdensuuntaisia,
(i) kohtisuoria?

Suorat ja vektorit: parametrimuoto ja normaalivektorimuoto

Jos suora kulkee origon 0 = (0,0) ja pisteen p = (p;,p,) kautta, voidaan se esittdd muodossa tp,
missd t on vapaa parametri. Yleinen suoran parametrimuoto on

(2.21) tp+b,

missd t on vapaa parametri, p on suoran suuntavektorija b = (b,, b,) on siirtovektori. Kaava (2.21)
tarkoittaa sitd, ettd kun t kay lapi kaikki luvut, niin kaava (2.21) piirtdé tasoon suoran kuvaajan.

2.22 Huomautus
Esityksessd (2.21) ei ole mitdan yksikasitteistd. Esimerkiksi

esittdvat samaa suoraa, jonka kulmakerroinmuoto on

Xy = Xx;+2.

Kulmakerroinmuotoa
X, = kx;+p

vastaa esimerkiksi parametrimuoto
t(1,k) + (0, ).

Normaalimuotoa
(2.23) a;x;+a,x, = b

vastaavan parametrimuodon saamme vaikkapa kayttdmalla apuna kulmakerroinmuotoa:

alxl + a2x2 - b
a2x2 - _a1X1 + b
a, b
X2 - ——Xl + —.
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Erds normaalimuotoa (2.23) vastaava parametrimuoto on siis

t(]-:_al/aZ) + (0’ b/aZ)'
Nopeuttamalla parametrin t “juoksuvauhdin” a,-kertaiseksi, saamme parametrimuodon

t(ay,—a;) + (0,b/ay).

Jos suora kulkee pisteiden p = (p;,p,) ja @ = (q;,95), niin kaikki pisteet x pisteiden p ja q
valisella suoran patkalla voidaan kirjoittaa muodossa x = tp+ (1 —t)q, missa t kuuluu vilille [0, 1].
Tasta laajentamalla ndemme ettd pisteiden p ja q kautta kulkevalla suoralla on parametriesitys

(2.24) tp+(1—1t)q,

missa t on vapaa parametri.

Kutsuimme esitystd (2.23) suoran normaalimuodoksi. Merkitsemme a = (a,,a,). Talléin huo-
maamme, ettd (2.23) voidaan kirjoittaa sisdtulon avulla

a-x = b.

Jos b = 0 (ja siten suora kulkee origon kautta), niin esitys (2.23) saa muodon a - x = 0, mika tar-
kottaa, ettd a ja x ovat kohtisuoria. Toinen tapa sanoa tdmé on, ettd a on x:n normaali. Nimitys
normaalimuoto juontuu tasta.

Huomautus: Seuraava tarina on vahin hankala, mutta alla oleva kuva selventinee tarinaa.

............................................................. p/HPH
SO SO SO SO VAR g tp+a
P B L S
P=@-D | plpl=@AE AR

Etsimme sitten niin sanotun normaalivektorimuodon, kun suora ei kulje origon kautta. Tarkoitus
on esittdd suora niin, ettd sen suuntavektori p on annetun vektorin a kohtisuora ja suora kulkee
pisteen a = (a,, a,) kautta. Talloin vektori a maéraa suoran yksikasitteisesti. Erityisesti talloin ||al| on
suoran etdisyys origosta. Lihdemme liikkeelle parametrimuodosta (2.21). Jos p ja b ovat kohtisuoria,
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eli p-b =0, olemme 16ytaneet normaalivektorin: a = b. Oletamme sitten, ettd p-b # 0. Muuttamalla
“kulkuvauhtia” t, voimme olettaa ettd p on yksikkovektori, eli ||p|| = 1. TAma helpottaa merkint6ja
hieman jatkossa. Tarkoituksenamme on siis 16ytda sellainen suoran (2.21) piste a = t,p + b, ettd
a-p = 0. Saamme siis parametrille t, yhtdlon

(top+b)-p = O.

Tasta t, ratkeaa suoraviivaisesti:

(ttp+b)-p = 0
top-p+b-p
tO + b ¢ p
to - _b * P.
Ylla kaytimme hyvéksi ensiksi sisdtulon bilinearisuutta, ja toiseksi sita ettd p on yksikkovektori, jolloin

p-p = ||pll* = 1. Nyt suoraa (2.21) vastaava normaalivektori a saadaan sijoittamalla saatu t, = —b-p
suoran parametrimuotoon (2.21):

a = top+b
= (-b-pp+b
Nain saatua vektoria a kutsumme suoran normaalivektoriksi ja esitysmuotoa tp + a suoran nor-

maalivektorimuodoksi.

2.25 Esimerkki
Olkoon suora annettu normaalimuodolla

(2.26) x;+x, = 1.

Etsimme sen normaalivektorimuodon. Heti aluksi huomaamme (piirréa kuva), ettd erds paramet-
rimuoto tp + b suorallemme saadaan asettamalla p = (1,—1) ja b = (0,1). Suuntavektori p
saadaan yksikkévektoriksi jakamalla se pituudellaan ||p|| = +/2. Olkoon siis uusi suuntavektori

p=(1/v2,—1/+/2). Tallsin
a = (-b-p)p+b
= (=(0,1)-(1/¥2,-1/v2))p+b

1
= —p+b
75P

1
= E(1/«/5,—1/\/§)+(0,1)

= (1/2,—1/2)+(0,1)
= (1/2,1/2).
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2.27 Harjoitustehtava
Etsi seuraavien suorien jokin parametriesitys ja normaalivektorimuoto:

(i) Xl :8X2_3,
(ii) le_BXZ:7.

Vektorit korkeammissa avaruuksissa*

Yleinen n-ulotteinen vektori on muotoa x = (x1, X, ..., X, ). Yleisten vektorien x = (x, x5,...,X,) ja
y=(01,Y3---,Y,) Summa maardtadn pisteittdin eli komponenteittain:

X+y = (x1+y, X9+ Yy, ooy Xy + Vo)
Skalaarilla t kerrottu vektori on komponenteittain venytys tai typistys
tx = (txq, txy, ... ,tx,)

Vektorit v;,Vv,,...,V,, ovat lineaarisesti riippumattomia eli vapaita, jos mikdan niista ei ole min-
kdan muiden lineaarikombinaatio. Eli ei voi olla esimerkiksi niin, etta

v, = 2v;—0.3v, + 10vg.

Jos vektorit vy,Vv,,...,V,, ovat lineaarisesti riippumattomia, niin jokainen niistd méarittelee uuden
suunnan, jossa n-ulotteisessa avaruudessa voi kulkea. Yleisessd n-ulotteisessa avaruudessa voi olla
korkeintaan n lineaarisesti riippumatonta vektoria.

Vektorin x = (xy, X,,...,X,) normi saadaan kayttdmalla Pythagoraan lausetta (n — 1) kertaa pe-
rakkain:

x| = \/xf+x§+~--+x§.
Vektorien x = (xq, X5,...,%,) jay=(¥1, Y5 -..,Y,) pistetulo on

X'y = )1 TXY+ Xy Yn

Pistetulo on symmetrinen ja bilineaarinen. Kosinikaava pétee. Lisiksi kaava ||x||> = x - X pitee.

Napamuodot ovat vihelidisid n-ulotteisessa avaruudessa. Niitd on syytd vélttida jos vain mahdol-
lista.

Kaikki osion “Suorat ja vektorit: parametrimuoto ja normaalivektorimuoto” tulokset patevit n-
ulotteisessa avaruudessa luonnollisella tavalla yleistéden.



Luku 3

Matriisilaskentaa lahinna tasossa

Matriisit ja niiden perusoperaatiot

Matriisi on lukuja taulukossa'. Tarkastelemme ldhinni ainoastaan (2 x 2)-matriiseja, eli matriiseja,
jotka ovat muotoa

Ay, A
A = 11 12 ]
[ Ay Ay

Tavallisesti tulkitsemme ettéd vektorit x = (x;,x,) ovat (2 x 1)-matriiseja eli pystyvektoreita

x
X = .
[ X2 :|
Matriisin transpoosi saadaan, kun sen rivit ja sarakkeet vaihdetaan paittdin. Merkitsemme trans-
poosioperaatiota yldindeksilld .

Jos x on pystyvektori, niin x' = [x; x,] on (1 x 2)-matriisi eli vaakavektori. Tarpeen vaatiessa
saatamme tulkita vektorin x = (x;, x,) my0s vaakavektoreiksi.

3.1 Esimerkki
Jos

1 2
A = [30 40]’

niin

1 30
T _
b _[2 40]‘

!ja musiikki on paineaaltoja ilmassa.
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Matriisit ovat samanmuotoisia, jos niilld on yhtd monta rivii ja saraketta. Kaikki (2 x 2)-matriisit
ovat samanmuotoisia keskendan. Samoin kaikki pystyvektorit ovat keskenddn samanmuotoisia ja kaik-
ki vaakavektorit ovat keskendédn samanmuotoisia. Sen sijaan (2 x 2)-matriisit, pystyvektorit ja vaaka-
vektorit ovat toisiinsa nihden erimuotoisia.

Samanmuotoisten matriisien summa maédaritellddn alkioittain: jos

A A B B
A = 11 12:| ia B = |: 11 12 i|}
[Azl Ay | ) By, By,

niin

A+B |:A11+Bll A12+BIZ ]

A1+ By Axp+ By
Vastaavasti, jos x =[x; x,] ja y=[y; ¥,] ovat vaakavektoreita, niin
x+y = [x;+y1x+),]

Jos x on vaakavektori ja y on pystyvektori, niin x +y ei ole mééritelty, koska x ja y eivit ole
samanmuotoisia. Samoin, jos A on (2 x 2)-matriisi ja x on joko pysty- tai vaakavektori, niin A+ X ei
ole madritelty.?

Matriisin kertominen skalaarilla maéritelldan alkioittain samaan tapaan kuin vektoreilla: jos

A, A
A = 11 12 ]
[ Ay Ay

ja A on skalaari, niin

AA = [Mll M12i|.

Ay AAg,

3.2 Harjoitustehtava

Olkoot

Laske

(i) A+ 2B,
(i) 33AT —7B.

Matriisin riveille ja sarakkeille kiytimme pallonotaatiota. Matriisin

Ay A
A = 11 12 ]
[ Ay Ay

2Joskus on tosin luonnollista laajentaa méaritelmid “ilmeiselld tavalla”, miti se sitten ikini tarkoittaakaan.
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i:s rivi on vaakavektori

ja sen j:s sarake on pystyvektori

3.3 Huomautus
Pallonotaation voi tulkita niin, ettad pallo tarkoittaa “vapaana juoksevaa otusta”. Esimerkiksi A,; tar-
koittaa sitd, ettd sarake i on kiinnitetty ja rivi “juoksee vapaana”. Toinen tapa tulkita pallonotaatio
on lukea pallo sanalla “kaikki” (rivit tai sarakkeet).

3.4 Huomautus
Kayttamalla lohkomatriisimerkintéa ja transpooseja havaitsemme, etti esimerkiksi

A = [A, A,] = [A], AT

Matriisitulo méaritelldan hieman kinkkisesti: Jos A ja B ovat molemmat (2 x 2)-matriiseja, niin
AB on (2 x 2)-matriisi C, jonka alkiot ovat

(3.5) C - Ai. * B.'

ij j*
Toisin sanoen tulomatriisin C = AB alkio C;; on matriisin A i:nnen rivin ja matriisin B j:nnen sarak-
keen pistetulo. Vield toisin sanoen C = AB on matriisi jonka alkiot ovat

2
Cij - ZAikBkj‘
k=1

3.6 Huomautus
Jos haluamme pitda tiukasti kiinni tulkinnasta, ettd vektorit ovat nimenomaan pystyvektoreita, niin
silloin kaava (3.5) on formaalisti vaarin ja se pitdad korvata kaavalla
(3.7) C; = A" -B

1] 1K) oj'

Kaava (3.7) eroaa kaavasta (3.5) ainoastaan siten, ettd A;, on vaakavektori ja Al.T. on pystyvektori.

Yleisemmin, jos matriisilla A on yhtd monta saraketta kuin matriisilla B on riveja, niin tulomat-
riisin C = AB alkio C;; on matriisin A i:nnen rivin A;, ja matriisin B j:nnen sarakkeen B,; vélinen
pistetulo. Formaalisti siis samoin kuten kaavassa (3.5).



Luku 3 Matriisilaskentaa ldhinné tasossa

24

3.8 Esimerkki
Olkoot

S

. 3 8
Ja B_[64

Talloin C = AB on (2 x 2)-matriisi ja se lasketaan seuraavasti:

Ch =

Siispa

oo |

Aje - By

(A11,A12) - (B11,By;)
(0,2)-(3,6)
0-3+2-6

12,

A" B,y

(A11’A12) : (3121 BZZ)
(0,2)-(8,4)
0-8+2-4

8,

Aze* Boy

(A21,A2) - (B11,By1)
(7,1)-(3,6)
7-3+1-6

27,

AZ. : B02

(AZI!AZZ) . (B12> BZZ)
(7,1)-(8,4)
7-8+1-4

60.

12 8
27 60 |°

I



Luku 3 Matriisilaskentaa ldhinné tasossa 25

3.9
Matriisitulo on siitad ikéva, ettd se ei ole vaihdannainen: yleisesti ottaen

AB # BA.
Muuten matriiseilla voi laskea kuten luvuilla:

(i) (AB)C=A(BC),
(i) (A+B)C=AC+BC,
(iii) C(A+B)= CA + CB.

3.10 Harjoitustehtava
Olkoot A ja B kuten esimerkissa 3.8. Laske BA.

Vektorien vilinen matriisitulo voidaan méaéritella formaalisti samalla tavalla kuin matriisien. Tal-
16in osoittautuu, ettd jos x = [x; x,]" ja y=[y; ¥,]' ovat pystyvektoreja, niin Xy ei ole méiritelty
eikd x"y' ole méadritelty, mutta

X X X
o= | 3o = [

ja
T, _ Y1 _ _
X'y = [x; x;] [ ¥, ] = X1Y1t+tXy, = X-Yy.

Jos A on (2 x 2)-matriisi, niin XA ei ole maaritelty, koska x:114 on yksi sarake ja A:lla on kaksi
rivid. Samasta syystd, mutta rivit ja sarakkeet ki4ntien, tulo Ax' ei ole mééritelty. Sen sijaan

A, A
x'A = [x, Xz][All A12:| = [Apx;+Ayx, ApXxy+Ayx,]
21 22
ja
A A X Apx; +A X
(3.11) Ax = [ 1 42 ][ 1] — [ 11%X1 12 2].
Ay Ay Xy Ay x, +AyX,

3.12 Huomautus
Kaava (3.11) liittyy yhtdlopareihin. Nimittdin sen nojalla yhtalopari

{A11x1 + Apx, = b
Apxy + Apx, = by

voidaan Kkirjoittaa matriisein ja vektorein kompaktisti muodossa

Ax =b.
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Kaanteismatriisi ja determinantti

Olkoon 0 (nolla) vektori tai matriisi, jonka alkiot ovat nollia.

3.13 Huomautus
Jos haluamme olla tarkkoja, niin meilld on erilaisia nollia:

0 0 0 .
02><2 = |:O 0:|: 02><1 = |:O:| Ja 01x2 = [0 0]

Jatkossa kuitenkin kdytimme merkintdd O ndille kaikille ja oletamme ettd asiayhteydesta kay sel-
vaksi, mitd nollaa tarkoitamme.

Matriisinolla O toimii matriisien yhteenlaskun tapaan kuten skalaarinolla O toimii skalaarien yh-
teenlaskussa: A+ 0 = A = 0 + A kaikilla matriiseilla A.

Skalaariykkostd 1 vastaa matriisipuolella identiteettimatriisi

18t

Nimittédin talloin Al = IA = A kaikilla (2 x 2)-matriiseilla A.

Matriisilla jakaminen on kinkkisti. Haluamme maéérittda sellaisen kdéinteismatriisin A™', etti
A7'A =1 (jolloin myos automaattisesti AA~' = I). TAm4 vastaa skalaarijakolaskua, missd a 'a =1,
eli a=! = 1/a. Skalaaripuolella tieddmme, etti nollalla ei saa jakaa. Matriisipuolella on enemmain
rajoituksia.

Yritdimme seuraavaksi kddntdd (2 x 2)-matriiseja

An Ap ]
A = .
[ Ay Ap

Yksi tapa yrittda kaantaa (2 x 2)-matriisi on tarkastella laajennettua (2 x 4)-lohkomatriisia [A I] ja
yrittdd muuttaa tdmé alkeisrivioperaatioilla laajennetuksi lohkomatriisiksi [I B]. Jos tdssd onnistu-
taan, niin siloin B = A™'. Menetelmé perustuu seuraavaan ajattelutapaan: Matriisin A kiddntdminen
tarkoittaa lineaarisen yhtialoryhméan

ratkaisemista, missd y on mielivaltainen. Taméan yhtaléryhmén yleinen ratkaisu y:n funktiona on
(3.15) A_ly = X

Huomaamalla, ettd x = Ix ja y = ly, ja kirjoittamalla yhtdloryhma (3.14) niin ettd muuttujat x ja y
vastaavat sarakkeita, saamme laajennetun lohkomatriisin [A I]. Jos tdmé laajennettu lohkomatriisi
saadaan alkeisrivioperaatioilla muotoon [I B], niin se vastaa yhtdloryhmaéa (3.15). Toisin sanoen B =
Al
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Alkeisrivioperaatiot ovat samat, kuin yhtdloparien tapauksessa:

(i) Rivin saa kertoa (puolittain) nollasta poikkeavalla luvulla.
(i) Rivin saa lisdta (puolittain) toiseen riviin.

Esimerkki
Haluamme kaantiaa matriisin

Laajennettu lohkomatriisi kddntdmista varten on

wn - [2939]

Vahentamalla ensimmainen rivi toisesta rivista saamme

2010M201
2 4 01 0 4 —1

0
1

Jakamalla sitten ensimmainen rivi 2:1la ja toinen rivi 4:114 saamme

20 107 [1O0 307
04 —1 1 04 -1 1

Tasta paattelemme, etta

1
_ = 0
A 1 == |: % 1 ] o
T4 7
Esimerkki
Haluamme kidntda matriisin
2 3
A = .
2 3
Laajennettu lohkomatriisi kddntdmistd varten on

wn-[2230)

Vahentamalla ensimmainen rivi toisesta rivista saamme

2310M231
23 01 0 0 —1

10
01

0
1

|

I

ENTSTNI

2= O

Toiselta riviltd eliminoitui liikaa alkioita. Tistd eteenpdin emme voi jatkaa. Tama antaa ymmartaa,

ettd matriisi A ei ole kdantyva.
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3.18 Esimerkki
Haluamme kaantiaa matriisin

4 2
a=l52]
8 a
missd a on mielivaltainen, mutta kiinnitetty parametri.
Laajennettu lohkomatriisi kddntdmistd varten on

wn-[2239)

Viahentamalla ensimmainen rivi 2 kertaa toisesta rivista saamme
4 2 1 0 4 2 1 0
s .
8 a 0 1 0 a—4 —2 1

Vahentdmalla toinen rivi 2/(a —4) kertaa ensimmaisesta rivistd saamme

4 2 a 2
4 2 101 [4 0 1+2% —= 4 0 4 —=%
0 a—4 —2 1|

0 a—4 -2 1 0 a—4 —2 1
Jakamalla toinen rivi luvulla a — 4 ja sitten ensimmainen rivi luvulla 4 saamme

a 2 a a 1
[4 Om—m]w[“om—]m[lomgé— ]
1 01 —% 1
Siten, jos a # 4, niin

0 a—4 -2 01 —=%
. a 1 1 a _1
A — 4a—1 2a—8 — |: 4 2 :|
[—a% %4} a—4l 2 1

a—4
Jos taas a =4, niin matriisi A ei ole kdantyva. Perustelu tille tulee myohemmin.

Q
=N
N
[\
1
[oe]

il
S
|H

Q
~

o)}

3.19 Esimerkki
Haluamme kaantiaa matriisin

a 0
A = .
b 1
missd a ja b ovat mielivaltaisia, mutta kiinnitettyja parametreja
Laajennettu lohkomatriisi kdantdmista varten on

- [3009]
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Jakamalla ensimmadinen rivi a:1l1a ja vihentdmalla nédin saatu rivi b kertaa toisesta rivistd saamme

a010] [10;0]  [10 2¢O
b 10 1 b 101 01 -2 1/

Nédemme, ettd, jos a # 0, niin

SR E R

Jos a = 0, niin osoittautuu, ettd A ei ole kdantyva.

Qo |~

Yleisen (2 x 2)-matriisin voi kddntaa periaatteessa seuraavasti. Laajennettu lohkomatriisi on

Al — [AH A, 1 0]_

Ay Ay 01

Aluksi vihenndmme ensimmaisen rivin toisesta rivisti niin monta kertaa ettd saamme nollan toisen
rivin ensimmaiseksi alkioksi. Seuraavaksi vihenndmme toisen rivin ensimmaisesta rivista niin monta
kertaa, ettd saamme ensimmadisen rivin toisen alkion nollaksi. Lopuksi kerromme rivit sopivilla va-

kioilla. Merkitsemalla nokkelasti

D = Aj1Ay—ApAy.

ja jattdmalla kiusallisen rasittavat vélivaiheet viliin, saamme

Ay A, 101 o [1o 2 o
Ay Ay 01 01 - =

Tastd luemme, ettd yleinen ratkaisu (2 x 2)-matriisin A kddnteismatriisille on

1 A, —A
(3.20) Al = —[ 22 12 ]
D| Ay Apy

Lukua
D = det(A) = A Ay —ApAsy

kutsutaan matriisin A determinantiksi. Edellinen (sivuutettu) pyorittely antaa oikean lopputulok-
sen, jos ja vain jos det(A) # 0. Lisdksi, pienelld piirroksella ndemme, ettd |det(A)| on matriisin A
rivivektorien (tai yhtad hyvin sarakevektorien) virittdmén suunnikkaan pinta-ala.
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3.21
Seuraavat ovat yhtapitavia:

(i) Matriisi A on kaantyva.

(ii) det(A) #0.

(iii) Matriisin A sarakevektorit A,; ja A,, ovat lineaarisesti riippumattomia.

(iv) Eiole olemassa sellaista lukua A, ettd A,; = AA,,.

(v) Matriisi AT on kidntyva.

(vi) det(AT)#0.

(vii) Matriisin A rivievektorit A;, ja A,, ovat lineaarisesti riippumattomia.
(viii) Ei ole olemassa sellaista lukua A, ettd A;, = AA,,.

3.22 Huomautus
Kuten tunnettua rakkaalla lapsella on monta nimed. Kéaantyvélle matriisille on my6s nimet sddnnol-
linen, epédsingulaarinen ja ei-degeneroitunut.

3.23 Harjoitustehtava
Kaanna, mikali mahdollista, matriisit

@)

(i)

3.24 Harjoitustehtava
Méairaa vapaat parametrit a ja b siten, ettd matriisi A on kiaantyva

a= 2]



Luku 3 Matriisilaskentaa ldhinné tasossa 31

Keradmme tdhan loppuun vield matriisien transpoosien ja determinanttien seka tulojen ja kdanta-
misen laskusdantoja:

3.25 Huomautus
Transpoosi toteuttaa seuraavat laskusaannot:

(D) (AT)T =A,

(i) (A+B)T=AT+BT,
(iii) (AB)" =B'TAT,
(iv) (AT =@N",
V) (AA)T =2AT.

Determinantti toteuttaa seuraavat laskusaannot:

(i) det(AT) = det(A),

(i) det(A™!) =det(A)™!,
(iii) det(AB) = det(A)det(B),
(iv) det(AA) = A%det(A).

Tulolle patee valitettavasti yleisesti AB # BA, mutta onneksi
(i) (AB)C=A(BC),
(i) (A+B)C=AC+BC,

(iii) C(A+B)=CA+CB.

Tulon kdanteismatriisille pitee kaava

(AB) ! =B AL

3.26 Harjoitustehtiva
Olkoot a ja b mielivaltaisia parametreja seka

a 27 . ~[3 0
A‘[04]JaB_[1b]'

Laske (AB)™!, silloin kun se on olemassa.
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Matriisit korkeammissa avaruuksissa*

Yleisesti matriisi A on lukuja taulukossa, (m x n)-matriisissa on m rivid ja n saraketta. Esimerkiksi
(7 x 4)-matriisi on muotoa

Kaikki edella esitetty, paitsi kdédntdminen ja determinantti, toimii ilmeiselld tavalla (m x n)-
matriiseille. Esimerkiksi matriisitulo mééaritellddn (n x p)-matriisille A ja (p x m)-matriisille B
asettamalla C = AB on se matriisi, jolle

Cij = Ai.'B.j,

tai yhta hyvin

p
Cj = ZAikBkj'
k=1

Tamaé on formaalisti sama kuin tason mééritelmé (3.5).

Matriisin kddntdminen on takkuista: Jotta matriisi olisi kddnntyvéa, on sen oltava neilomatriis, eli
muotoa n X n. Nelidmatriisin A kiéinteismatriisi médritelld4n toki helposti. Se on se matriisi A,
joka toteuttaa A"'A =1, missi I on (n x n)-identiteettimatriisi, eli matriisi, jossa on ykkoset lévisté-
jalla ja nollat muualla. Kédanteismatriisin voi myos yrittdd 16ytdd muuntamalla laajennetun (n x 2n)-
lohkomatriisin [A I] alkeisrivioperaatioilla laajennetuksi lohkomatriisiksi [I B], jolloin A™! = B. TAma
onnistuu tdsmaélleen silloin, kun matriisin A determinantti ei ole nolla.

Yleisen matriisin determinantin laskeminen, jopa sen esittiminen, (n x n)-tapauksessa on vaikeaa.
Esitdimme sen tdssi vain ja ainoastaan peloittelutarkoituksessa:

det(A) = > g0(u,fose- o) Arj Ay, An,

J15J25+5Jn

missd summa kay yli kaikki lukujen {1,2,...,n} permutaatiot, ja sgn on 1 tai -1 sen mukaan onko
permutaatio parillinen vai pariton. Intuitiivisesti determinantti kuvaa (etumerkkia vaille) matriisin A
sarakevektorien (tai yhtd hyvin rivivektorien) virittiman n-ulotteisen hypersuunnikassdrmion “tila-
vuutta”.
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Matriisit ja lineaarikuvaukset

Tahan asti olemme katsoneet matriiseja algebrallisesti: ne ovat olleet vain tiettyja otuksia, joita las-
ketaan jollain tietylla tavalla. Tassd luvusssa esitdimme matriiseille tulkinnan, eli katsantokannan, li-
neaarisina funktioina, eli kuvauksina. Lyhtyesti timédn luvun samoma on seuraava: jos ajattelemme
muotoa Ax muuttujan x funktiona, on tdmé funktio lineaarinen; ja kdantéen jos f(x) on lineaarinen
funktio, niin se on véilttdméattd muotoa f(x) = Ax jollekin matriisille A.

Funktioalgebraa

Funktio eli kuvaus f joukolta X joukkoon Y on sdadnto, joka liittda jokaiseen joukon X alkioon tés-
mélleen yhden joukon Y alkion. Talle kdytetdan usein merkintdd f: X — Y. Joukkoa X kutsutaan
funktion f ldhto- tai maarittelyjoukoksi ja joukkoa Y kutsutaan funktion f maali- tai arvojou-
koksi. Méérittelyjoukon X alkioita x kutsutaan usein funktion argumenteiksi. Maalijoukon Y niita
alkioita, joille y = f(x) jollakin x kutsutaan usein funktion kuviksi, kuva-alkioiksi tai kuvapisteik-
si. Niitd maarittelyjoukon X pisteitd x, joille y = f(x) kutsutaan kuvapisteen y alkukuviksi tai
alkupisteiksi.

Funktio f: X —» Y on

(i) injektio jos jokaisella kuvalla y = f(x) on korkeintaan yksi alkukuva,
(ii) surjektio jos jokaisella kuvajoukon Y alkoilla y on jokin alkukuva x joukossa X,
(iii) bijektio jos se on sekd injektio etta surjektio.

Bijektion f:X — Y kéinteisfunktio on funktio f~!: Y — X, jolle x = f !(y) tismalleen silloin
kun y = f(x). Jos f ei ole bijektio, niin sille ei ole kdanteisfunktiota. Jos taas f on bijektio, niin sen
kaanteisfunktion kainteisfunktio on se itse: (f™1)'=f.

Reaalilukusuoralle kiytdmme merkintd4 R. Reaalitaso on R2.

Vektoriarvoisille funktioille f: R — R? tai f: R> —» R? kidytidmme tarvittaessa komponenttimerkin-
tad f= (f,, f,) tai pystyvektorimerkintdd f=[f, f,]'.

Jatkossa olemme kiinnostuneita lihinna funktioista suoralta R tasolle R?, tasolta R? suoralle R
ja tasolta R? itselleen.
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4.2

4.3

4.4

Luku 4 Matriisit ja lineaarikuvaukset 34

Esimerkki
Olkoon funktio f: R? — R annettu kaavalla

fx) = f([xl xz]T)
= f(x1>x2)

= xl +42X2.

Talloin f on surjektio, silld jokaisella kuvajoukon pisteelld y € R on alkukuva. Esimerkiksi x =
[y 0]" kelpaa alkukuvaksi f(x) = y. Funktio f ei ole kuitenkaan bijektio, silld se ei ole injetio.
Esimerkiksi pisteen y = 0 alkukuvia ovat sekd x =[0 0]" ja x =[—42 1]', silld sekd £(0,0) =0
ettd f(—42,1) = 0. Funktiolla f: R? — R ei ole kiénteisfunktiota, koska se ei ole bijektio.

Huomautus

Funktio f: X — Y on bijektio tdsmalleen silloin, kun yhtél6lla y = f(x) on jokaiselle maalijoukon
Y alkiolle y tédsmélleen yksi ratkaisu x ldhtojoukossa X . Jos f ei ole injektio, niin siitd voi yrittda
tehda bijektion rajoittamalla laht6joukkoa X . Vastaavasti jos f ei ole surjektio, siitd voi yrittdd tehda
bijektion rajoittamalla maalijoukkoa Y .

Esimerkki
Olkoon f=[f; f,]": R — R? annettu kaavalla

_ f1(x) _ X
= | 25] =[]
TAllsin funktio f: R — R? ei ole surjektio, silli esimerkiksi pisteelld y = [1 2]T ei ole alkukuvaa.
Funktio f: R — R? on kuitenkin injektio, silli jos f(x;) =y ja f(x,) =y, niin x; = x, = y;

Esimerkki
Olkoon R reaalilukusuora, R, sen ei-negatiiviset pisteet ja R’ sen aidosti positiiviset pisteet.

(i) Funktio f: R — R, joka on annettu kaavalla f(x) = x? ei ole injektio, silli esimerkiksi pisteet
—2 ja 2 kuvautuvat molemmat pisteeksi 4. Se ei ole myoskédédn surjektio, silld esimerkiksi
pisteelld —1 ei ole alkukuvaa. Funktio f: R — R, on surjektio. Funktio f: R, — R, on
bijektio ja sen kdénteisfunktio f ': R, » R, on f!(x) = /x.

(ii) Funktio f: R — R, joka on annettu kaavalla f(x) = e* on injektio, silld se on aidosti kasvava.
Se ei ole kuitenkaan surjektio, silld esimerkiksi pisteellé O ei ole alkukuvaa. Funktio f : R — R
on bijektio ja sen kadnteisfunktio f™: Rt - R on f'(x) =Inx.
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4.5 Esimerkki
(i) Olkoon f:R?— R annettu kaavalla

fx) = x}+x2.

Toisin sanoen f(x) on vektorin X normin nelio. Talloin f selvastikdédn ei ole injektio eika
surjektio. Rajoittuma f : R*> —» R, on surjektio, muttei injektio.

(i) Olkoon f: R — R? annettu kaavalla

f(x) ] [ —x ]
f(x) = = < |-
(x) [ fo(x) €
Talloin f on injektio, silld sen komponentit ovat molemmat injektioita, mutta f ei ole surjektio,
silld esimerkiksi pisteelld [0 0]" ei ole alkukuvaa.

4.6 Esimerkki
Olkoon polar funktio, joka kuvaa karteesiset koordinaatit napakoordinaateiksi. Funktion polar
maérittelyjoukko on taso R? ja sen arvojoukko on R, x [0,27), missd R, tarkoittaa ei-negatiivisia
reaalilukuja ja [0,27) tarkoittaa reaalilukuja 6, joille 0 < 6 < 27, ja tulomerkintd R, x [0,27)
tarkoittaa joukkoa, joka koostuu pareista (r,0) = (r,0), missa r € R, ja 6 €[0,2m).

Funktion polar = [polar; polar,]": R> = R, x [0,27) kaava on

x
polar(x) = ( ||x||, arctan=2 ),
X1
missa funktiosta arctan pitda valita sopiva haara.
Funktion polar kiinteisfunktio polar ' tulee kaavasta

[ polar *(r, ) ] _ [ rcos@ ]

—1
L ) polar,'(r, 0) rsin@

Jos g: X —» Y ja f:Y — Z, niin yhdistetty funktio f o g: X — Z on funktio, joka maaraytyy
kaavasta (f o g)(x) = f(g(x)). Jos f ja g ovat molemmat bijektioita, niin f o g on myo0s bijektio ja

(fog) =g lof ™

4.7 Huomautus
f og eiole go f, eikd ananaspizza ole pizza-ananas. Sen sijaan f o f~! = f ! o f, kuten Valtais-
tuinpelistd saadaan Noituri, ja paivastoin.
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Yhdistetty kuvaus (vasemmalla) ja kddnteiskuvaus (oikealla).

4.8 Harjoitustehtava
(i) Olkoon f: R?> — R? annettu kaavalla

w = [ 7] =[]

(ii) Olkoon f:R? >R, g: R*> > R? ja h: R — R? annettu kaavoilla

Onko f bijektio?

f®=x, gX=[2x+x; %] ja h(x)=[x 3x]

Onko yhtélolla (f o goh)(x) = y ratkaisu kaikilla y?

Suorien ja tasojen vélisille funktioille f, g, h, jne. (emme nyt kdyta lihavoitua merkintda) voidaan
madritelld summa ja skalaarilla kertominen pisteittdin luonnollisella tavalla:

(f+8)x) = f(x)+gx),
(Af)x) = Af(x).
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Jos tulkitsemme yhdistetyn funktion muodostamisen funktiotuloksi, niin saamme funktioille saman
kaltaisen algebran kuin matriiseillekin. Nolla-alkoita vastaa nollafunktio f(x) = 0 kaikilla x, ykko-
salkiota vastaa identiteettifunktio Id(x) = x kaikilla x ja kdanteisalkioita vastaa kadnteisfunktio

.

4.9 Huomautus
Funktiotulolle patee valitettavasti yleisesti f o g # g o f, mutta onneksi

(i) (fog)loh=fo(goh),
() (fog)'=glof ™

4.10 Harjoitustehtava
Perustele Huomautus 4.9.

Matriisialgebra lineaaristen funktioiden algebrana

Funktio f on lineaarinen, jos
4.11) f(tx+sy) = tf(x) + sf(y)

kaikilla vektoterilla x ja y seka kaikilla skalaareilla t ja s.

4.12 Huomautus
Jos f ja g ovat lineaarisia, niin silloin myds fog, gof, f ' ja g' (silloin kun ne ovat olemassa)
ovat lineaarisia. Jos taas olisimme maaritelleet funktiotulon pisteittéin, eli (f g)(x) = f(x)g(x), niin
f g eiolisi yleensé lineaarinen vaikka f ja g olisivatkin. Lisdksi on epédselvdd mité tulo f(x)g(x)
tarkoittaa vektorien tapauksessa. Néistd syistd emme maaritelleet funktiotuloa pisteittain.

Olkoon f: R — R linaarinen. Silloin maéritelmaésta (4.11) seuraa, ettd

fl) = f(Dx.

Erityisesti ndiemme téstd, ettd kaikki lineaarikuvaukset f : R — R ovat muotoa
flx) = flx) = c-x

jollekin luvulle c.
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Olkoon f : R? — R lineaarinen. Kiyttamélld koordinaattivektoriesitysti x = x;e; + x,€, madritel-
massa (4.11) ndemme, ettd

f&) = f(x;e;+x,e)
= x1f(e;) +x,f(ey).

Merkitsemilld ¢ =[f(e;) f(e,)]" ndemme ettd kaikki lineaarikuvaukset f : R> — R ovat pistetuloja

f®) = £0) = ex = ¢'x

jollekin vektorille ¢ € R2.

Jos f=[f, f,]": R? — R? on vektoriarvoinen funktio, niin se on lineaarinen jos ja vain jos sen
komponenttikuvaukset ovat molemmat lineaarisia. Taman nédkee koordinaattivektoriesitystd kaytta-
vasta pyorittelystd (se luetaan seka ylhaalt alas ettéd alhaalta ylos)

f(x) = f(x,e; +xye,)
= xyf(e;) + x,f(e,)

= | e e 2 |

_ [ x1f1(e)) + x5f1(ey) :|
| x1fo(e1) +x5f5(e,)

_ [ [Aile) file]-x ]
B [f2(e}) fz(ez)]T-X
_ [ f1(%) ]
_fz(X) '

Samalla tavalla niemme, ettd funktio f: R — R? on lineaarinen jos ja vain jos se on muotoa

f(x) = £i(x) = ex = [:i]

jollekin vektorille ¢ € R?. Nimittiin lineaarisuuden mééritelmésti (4.11) seuraa, ettd
f(x) = xf(1)

15 ]
]

[ f1(x) }
folx) |
Tastd ndemme, ettd ¢ = [f,(1) f,(1)]".
Palaamme lopuksi vield lineaarisiin funktioihin f: R? — R?. Koordinaattivektoriesityksesti (katso
edelld)

[f1(eq) fl(ez)]T'X ]
[f2(e;) fz(ez)]T X

(4.13) f(x) = [
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paattelemme, ettd nelja lukua, f;(e;), fi(e,), fo(e;) ja f,(e,) maédrdavat taysin lineaarikuvauksen f.
Huomaamme sitten, ettd vektori

fi(e;) }
fle;) =
) = | fe)
kertoo, mihin koordinaattivektori e; kuvautuu. Samalla tavalla vektori

- (3]

kertoo, mihin koordinaattivektori e, kuvautuu. Jos taas tieddmme, mihin koordinaattivektorit kuvau-
tuvat, tieddmme koko kuvauksen, silli lineaarisuudesta (4.11) seuraa ettd

f(x) = f(x;e; +xze;)
= x;f(e;) + x,f(e,).

Nyt jippo on maééritelld matriisi
A = [fle)) f(e)]
Talloin, suoraan matriisitulon maaritelmasta seuraa, etta
f(x) = Ax.

Edella esitetysta seuraa kurssimme yksi keskeisimmistd huomioista:

Funktio f: R? — R? on lineaarinen jos ja vain jos se on muotoa
f(x) = f,(x) = Ax

jollekin (2 x 2)-matriisille A. Matriisin A sarakkeet kertovat mihin koordinaattivektorit e, = [1 0]"
ja e, =[01]" kuvautuvat.

Funktio f = f, on bijektio jos ja vain jos sitd vastaava matriisi A on kdantyva ja kdédnteiskuvaus
tulee kaavasta

f'x) = fuu(x) = A'x

Jos f, ja fg ovat kaksi lineaarikuvausta tasojen vélilla, niin niiden yhdistetyt kuvaukset on line-
aarikuvauksia, jotka maaraytyvat matriisitulon avulla kaavoilla

(faofp)(x) = ABx,
(fsofy)(x) = BAx
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4.15 Harjoitustehtava
Olkoot lineaariset funktiot f: R? — R? ja g: R? — R? annettu kaavoilla

fx) = [g (1)]x ja gx) = [3 _1])(

(i) Laske yhdistetyt kuvaukset fo g ja g o f. Toisin sanoen laske ko. lineaarikuvauksia vastaavat
matriisit.

(ii) Laske kiinteiskuvaukset (fo g)™! ja (go f)!. Toisin sanoen laske ko. lineaarikuvauksia vas-
taavat matriisit.

4.16 Harjoitustehtiva
Olkoot lineaariset funktiot f: R? — R? ja g: R? — R? annettu kaavoilla

I e N

missd a ja b ovat mielivaltaisia parametreja.

(i) Milla parametrien a ja b arvoilla f ja g ovat bijektioita?
(ii) Laske kaénteiskuvaukset (fo g)™! ja (gof)™!, silloin kun ne ovat olemassa. Laskeminen tar-
koittaa ko. lineaarikuvauksia vastaavien matriisien laskemista.

Esitimme lopuksi muutamia matriiseja eli lineaarikuvauksia, joilla on selked tulkinta. Huomau-
tamme, ettd kdytannossa ldhes kaikki matriisit saadaan yhdistelemalla alla olevia esimerkkimatriiseja
matriisitulon avulla.

4.17 Esimerkki
(i) Matriisi

2 0
0 3
on venytys, joka venyttdd x,-akselia 2:n verran ja x,-akselia 3:n verran.

(ii) Matriisi
-1 0

on peilaus x,-akselin suhteen ja matriisi

on peilaus x; -akselin suhteen.
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(iii)) Matriisi
1 0
0 0

on tason projektio x; -akselille ja matriisi

on tason projektio x,-akselille.
(iv) Matriisi

cos® —sinf
sin 6 cos 6

on tason 6 -radiaanin kierto vastapdivadn ja matriisi

cos(—0) —sin(—0)
[ sin(—0) cos(—0) ]

on tason 6 -radiaanin kierto myotapaivaan.

Matriisit ja lineaarikuvaukset korkeammissa avaruuksissa*

Olkooon R™ niin sanottu n-ulotteinen euklidinen avaruus, eli vektoreiden x = [x; x, --- x,]' joukko.

Kaikki edella esitetty laajenee luonnollisella ja ilmeisella tavalla lineaarikuvauksille f: R™ — R".
Lineaarikuvausta f vastaa (n x m)-matriisi A, jonka sarakkeet kertovat mihin koordinaattivektorit
e, e,,...,e, kuvautuvat. Yhdistetty kuvaus saadaan matriisitulolla ja kdanteiskuvaus kaanteismatrii-
silla. Erityisesti ainoastaan lineaarikuvauksilla avaruudelta itselleen voi olla kidadnteiskuvaus. Lineaa-
rikuvaus on bijektio tismalleen silloin, kun sitd vastaavan matriisin determinantti ei ole nolla.
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Yhtalopari matriisein

Ratkaisu matriisimerkinnoin

Palaamme yhtéloparin

(5.1) {Allxl + Apx, = by

Apx; + Apx, = by

ratkaisemiseen. Toki osaamme ratkaista yhtoparin (5.1) jo koulutiedoilla. Siten olemme kiertdneet
ympyran. Toivottavasti olemme kuitenkin oppineet jotakin kierroksen aikana.

Matriisimerkinn6in voimme kirjoittaa yhtéloparin (5.1) kompaktissa muodossa matriisiyhtdlona

(5.2) Ax = b,

A Ay ] [ X1 ] . [ b, ]
A = , X = a b = .
[ Ay Agy Xy ) b,

Jos matriisi A on kdantyva, niin yhtalon (5.2) ratkaisu on

missa

(5.3) x = A7'b

Jos kuitenkin tarkoitus on ainoastaan ratkaista x yhtalosta (5.2), niin kaavaa (5.3) ei yleensd kannata
kayttaa, silla:

(i) Kianteismatriisin A~! laskeminen on raskasta.
(i) Yhtélolla (5.2) saattaa olla ratkaisu, vaikka matriisi A ei olisikaan kaadntyva.

Kaytannossa yhtélo (5.2), eli yhtdlopari (5.1), kannattaa ratkaista muuttamalla laajennettu lohko-
matriisi [A b] alkeisrivioperaatioilla laajennetuksi lohkomatriisiksi [I b’]. Tall6in ratkaisu on x =b’.
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5.4 Esimerkki
Ratkaisemme yhtdloparin

X 1 X 2 = 2
4x, + x, = 4 °
Tata yhtdloparia vastaava laajennettu lohkomatriisi on

wo = 371 7]

Koska
det(A) = 1-1—(-1)-4 = 5 # 0,

niin yhtdloparillamme on yksikasitteinen ratkaisu.
Vahentamalla ensimmainen rivi 4 kertaa toisesta rivista saamme

[411 _i i] ™ [(1) 1—4-(—_13 4—4-3] B [(1) _; —i]‘

Lisddmalla toinen rivi 1/5 kertaa ensimmaiseen riviin saamme

e e B FE!

Lopuksi kertomalla toinen yhtélo luvulla 1/5 saamme lopullisen muodon

BRI RItE

Tasta luemme, etta ratkaisu on
Xl = 6/5
XZ = _4/5 ’

5.5 Harjoitustehtava
Ratkaise yhtéloparit

@)

(i)
4x, + x, = 20 °
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Esimerkki

Ratkaisemme yhtédloparin

{

X1
4x,

missd b=[b; b,]" on mielivaltainen parametri.

X, = b
+ x, = by’

Tata yhtdloparia vastaava laajennettu lohkomatriisi on

Koska

ab] = |

det(A) =

1 —1 b
4 1 b, |’

1-1—(=1)-4 = 5 # 0,

niin yhtéloparillamme on yksikésitteinen ratkaisu.

Vahentamalla ensimmainen rivi 4 kertaa toisesta rivistda saamme
4 1 b,

Lisadmalla toinen rivi 1/5 kertaa ensimmaéiseen riviin saamme

|

1
0

—1

1 b1 [1 -1

—1

b,

]

1 0 b;/5+b,/5
O 5 _4b1+b2 )

Lopuksi kertomalla toinen rivi luvulla 1/5 saamme lopullisen muodon

|

1 0 by/5+b,/5

0 5

_4b1 + bz

Tastd luemme, ettd ratkaisu on

Huomautus

|

|

1 0 (1/5)b,+(1/5)b,
0 1 —(4/5)b, +(1/5)b,

(1/5)by +(1/5)b,
—(4/5)b; +(1/5)b, ~

Esimerkissa 5.6 tulimme itse asiassa kaantaneeksi matriisin

A

|

1 -1
4 1 |

Nimittdin b:n yleistd muotoa olevasta ratkaisusta

(1/5)by +(1/5)b,
—(4/5)b; +(1/5)b,

bz - 4b1

]

]
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niemme etta

SN

5.8 Harjoitustehtava
Ratkaise yhtalopari

4x, + 2x, = by’
kun
@D [by by]"=[-1 2],
(i) [by by]"=[-3 0]"

Ratkaisujen lukumaéara ja determinantti

Edellisessa osiossa kaikki yhtalot (eli yhtdloparit) Ax = b olivat sellaisia, ettd det(A) # 0. Tama takasi,
ettd ratkaisu oli yksikésitteinen: x = A~'b, vaikka emme vilttimiitti laskeneetkaan kiénteismatriisia
A™'. Tarkastelemme nyt yhtélopareja, joissa det(A) = 0.

Aloitamme esimerkeilla.

5.9 Esimerkki
Yhtilolla Ox = b on ratkaisu tdsmalldlleen silloin, kun b = 0. Ratkaisu on kaikkea muuta kuin
yksikasitteinen: jokainen x on ratkaisu.

5.10 Huomautus
Koska 0-matriisi ei ole kovin mielenkiintoinen, emme késittele sitd endd, ja oletammekin aina, ettad
matriisimme eivit ole nollamatriiseja.

5.11 Esimerkki
Olkoon

v = Lo



5.12

5.13
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T4lléin A on tason projektio x, -suoralle: Ax = [x; 0]'. Siispa yhtilslld Ax = b on ratkaisu tdsmal-
leen silloin, kun b, = 0. Tall6in ratkaisuja on darettomaésti. Nimittain kaikki suoralla (b;,a), a € R,
olevat pisteet ovat ratkaisuja.

Esimerkki
Haluamme ratkaista yhtdloparin

2x; + x5, = 0
4x, + 2x, = 3~

Tata yhtdloparia vastaava matriisiyhtalé on

missa b=[0 3]" ja
2 1
A = [4 2].
Koska

det(A) = 2-2—1-4 = 0,

niin ikavyyksia voi olla tiedossa!
Yritimme joka tapauksessa ratkaista yhtdloparin. Laajennettu lohkomatriisi on

oo = [311]

Eliminoimme X, -termin toisesta yhtilostd vahentdmalla ensimmaisen yhtdlon 2 kertaa toisesta yh-

talosta. Saamme
2 1 0 - 2 1 0 . 2 1 0
4 2 3 0 2—2-1 3—2-0 o 0 0 3 [

Tama tarkoittaa, ettd yhtdloparimme on ekvivalentti seuraavan yhtéloparin kanssa:

2X1 aF x2 = O
Oxl + OX2 = 3 ’

Tastd ndemme, ettd ratkaisuja ei voi olla olemassa.

Esimerkki
Haluamme ratkaista yhtiloparin

2x; + x, = 10
4x;, + 2x, = 20 °
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Taté yhtédloparia vastaava matriisiyhtdlo on

missid b=[10 20]" ja
2 1
A = [4 : ]
Koska

det(A) = 2-2—1-4 = 0,

niin ikdvyyksia voi olla tiedossa!
Yritimme joka tapauksessa ratkaista yhtdloparin. Laajennettu lohkomatriisi on

- [212]

Eliminoimme Xx; -termin toisesta yhtilostd vihentdmalld ensimmadisen yhtédlon 2 kertaa toisesta yh-
talostd. Saamme

2 1 10 - 2 1 10 _ 2 1 10
4 2 20 0 2—2-1 20—2-10 - 0 0 0]

Tama tarkoittaa, ettid yhtaloparimme on ekvivalentti seuraavan yhtiloparin kanssa:

2x; + x, = 10
OXl + OXZ = O ’

Tastd ndemme, ettd ratkaisuja on darettomaésti. Nimittdin kaikki tason pisteet, jotka ovat muotoa
(x1,x5) = (x1,5—(1/2)x1), x; € R, ovat ratkaisuja.

Harjoitustehtiva
Tarkastelemme yhtéloparia
2x;, + ax, = 5
{4x1 + 2x, = 10’

missd a on vapaa parametri. Milld a:n arvoilla yhtiloparilla on yksikisitteinen ratkaisu?

Yritdme nyt selvittdd yleisen kuvan. Tarkastelemme yhtdl6d Ax = b, missd det(A) = 0. Koska
det(A) = 0, niin matriisin A sarakkeet tai yhtd hyvin rivit ovat lineaarisesti riippuvia. Kdytimme
rivitulkintaa. Matriisi A on siis muotoa

-
_ T _ a; Aaq _ a, a,
A =laz] = [ a, Aa, ] B [ Aa; Aa, }’
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missd a=[a; a,]" on jokin vektorija A on jokin skalaari.
Yhtdlod Ax = b vastaava laajennettu lohkomatriisi on siis muotoa

a a, b

Ab] = ! 2

[AD] [ Aa, Aa, b,
Vahentamalla ensimmainen rivi A kertaa toisesta rivistd saamme ekvivalentin muodon

a, a, b a; a, b,
Aal Aaz bz 0 O b2 - Abl )

Tastd ndemme valittomasti, ettd ratkaisu on olemassa tdsmaélleen silloin, kun b:n koordinaatit toteut-
tavat yhtalon
(5 . 1 5) b2 - A«bl .

Tarkastelemme sitten ratkaisujen lukuméaéraa. Oletamme, ettd ratkaisuja on olemassa. Toisin sa-
noen kaava (5.15) patee. Tama tarkoittaa sitd, ettd tarkastelemme yhtiloa

a; X1 _ b,
Aa; Aa, x, | | Aby
Edellisen nojalla tieddmme, ettd tima yhtdlo on ekvivalentti seuraavan yhtdlon kanssa:
a; a X1 b,
0 O X, 0
Mutta tdima ndenndinen yhtélopari pelkistyy pelkaksi yhtaloksi
(5.16) a;x; +ayx, = by.

Tastd ndemme, ettd ratkaisujoukko on suora. Erityisesti ratkaisuja on darettoméan paljon.

5.17 Harjoitustehtava

5.18

Tarkastelemme yhtéloparia

2x; + ax, = 5

misséd a ja b ovat vapaita parametreja. Etsi yhtdloparin kaikki ratkaisut.

Yhtéloparilla Ax = b on yksikasitteinen ratkaisu jokaisella b jos ja vain jos det(A) # 0. Ratkaisu
on tilléin x = A™'b, joskaan kdédnteismatriisia A™! ei tarvitse valttimaétti ratkaista eksplisiittisesti,
vaan ratkaisu voidaan saada muuttamalla laajennettu lohkomatriisi [A b] alkeisrivioperaatioilla
laajennetuksi lohkomatriisiksi [I b’]. Télloin ratkaisu on x =b’.

Jos det(A) = 0, niin yhtéloparilla Ax = b ei ole ratkaisua, jos b ei kuulu matriisin A ensimmaéisen

(tai yhta hyvin toisen) sarakkeen virittimalle suoralle. Jos taas b kuuluu ko. suoralle, on ratkaisuja
darettOman monta.
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Yhtidloryhmat ja matriisit*

Kaikki edelld esitetty yleistyy luonnollisella tavalla n:n muuttujan ja n:n yhtilon lineaarisille yhta-
l6ryhmille Ax = b. Jos muuttujia ja yhtdloita on eri maara, voidaan lisatd nolla-yhtéloita tai nolla-
muuttujia niin, ettd niitd on sen jilkeen sama méara.

Jos det(A) # 0, on ratkaisu yksikésitteinen x = A~'b. Jos taas det(A) = 0, niin ratkaisu on olem-
massa jos ja vain jos b kuuluu matriisin A sarakkeiden virittdméaan aliavaruuteen. Tall6in ratkaisuja
on myo0s ddrettOman paljon.

Kaytannon kannalta keskeinen ongelma on, ettd matriisin determinantin laskeminen on vihelidis-
td. Yleensd kannattaakin erikseen “ndhd&” onko se nolla vai ei tarkastelemalla matriisin sarakkeiden
lineaarista riippuvuutta.

Ratkaisemme esimerkin vuoksi 4 muuttujan ja 4 yhtédlon lineaarisen yhtaléryhmén

2x; + X, + x;, = 2

dx; — X, + 2x, = 1

4x, + 2x3 = 4
— 4x; + 2x, = 2

Nyt siis x = [x; x, x3 x,]7, b=[2142] ja

2 1 01
4 -1 0 2
A 4 0 20
0O 0 —4 2

Voidaan itse asiassa laskea, ettd det(A) = 24, mutta timé& on vihelidista. Sen sijaan yritimme ratkaista
yhtidléryhman laajennetuilla kohkomatriiseilla. Tarkoitus on siis muuttaa alkeisrivioperaatioilla [A b]
muotoon [I b’], missd I on (4 x 4)-identiteettimatriisi

1000
o100
I'= 10010

0001

Aloitamme vaannon. Eliminoimme aluksi muuttujan x; riveiltd 2 ja 3 (rivilld 4 se ei esiinny):

2 1 01 2 2 1 01 2
4 -1 0 2 1 0 -3 0 0 -3
[Abl = {4 o 204 ™ |4 0 20 4
0 0 —4 2 2 0 0 —4 2 2

"2 1 0 1 2

L |0o-3 0o o-3

0 -2 2 -2 0

0 0 -4 2 2

Eliminoimme sitten muuttujan x, riveiltd 1 ja 3 (rivilld 4 se ei esiinny):

2 1 0 1 2 2 0 0 1 1 2 0 0 1 1
0O -3 0 0 -3 0 -3 0 0 -3 0 -3 0 0 -3
> ~
0O -2 2 -2 0 O -2 2 -2 0 o 0 2 -2 2
o 0 -4 2 2 o 0 -4 2 2 o 0 -4 2 2
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Eliminoimme sitten muuttujan x5 rivilta 4 (riveilla 1 ja 2 se ei esiinny):

2 0 0 1 1 2 00 1 1
0 -3 0 0 -3 - 0 30 0 -3
o 0 2 -2 2 0O 02 -2 2
o 0 —4 2 2 0O 00 -2 6

2 00 1 1 2 00 O 4 2 00 O 4
0 3 0 0 =3 0 -3 0 0 —3 0 3 0 0 -3
~> ~
0 0 2 —2 2 0 0 2 —2 2 0 0 2 0 —4
0 0O 0 —2 6 0 0 0 —2 6 0 0O 0 —2 6

Lopuksi kerromme jokaisen rivin sitd vastaavan muuttujan kertoimen kéénteisluvulla. Ndin saamme
ratkaistun laajennetun lohkomatriisin

2 00 0 4 1 0 0 O 2
0 -3 0 0 -3 01 0O 1 ,
0o 02 0-4| > ]loo010 — | = U]
0 0 0 -2 6 0 001 -3
Tastd luemme ratkaisun
2
_ 1
= | 22
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ale

Yhtidloryhmien ratkaisu Cramerin saannolla*

Esitimme vield yhden joidenkin suosiman tavan ratkaista yhtdloryhmia
Ax = b,

kun A on kédantyva (n x n)-matriisi. TAama tapa kantaa nimed Cramerin sdant6. Kaikessa yksinker-
taisuudessaan sen mukaan ratkaisu on x = [x; x, --- x,]', missi

det(A;_p)

(5.19) x; Jerla)

ja matriisi A;_,;, saadaan matriisista A korvaamalla sen i. sarake pystyvektorilla b.

Kaava (5.19) on toki elegantti ja helppo muistaakin, mutta determinanttien laskeminen on tyolas-
td. Jos A on (3 x 3)-matriisi, niin determinantin laskeminen on vield kohtalaisen inhimillistd. Nimit-
tain

det(A) == A].]. det(A_l) _A12 det(A_z) +A13 det(A_3),

missd A_; on (2 x 2)-alimatriisi, joka on saatu matriisista A poistamalla sen ensimmaéinen rivi ja j.
sarake.

Emme perustele Cramerin séadntoa téssa. Tyydymme laskemaan yhden (3 x 3)-esimerkin.

5.20 Esimerkki
Ratkaisemme Cramerin sadnnolla yhtaloryhméan

102][x 6
054 X2 == 7
21 3 || x 0

Aloitamme laskemalla A:n determinantin;

det(A) = 1det(A_;)—O0det(A_,)+2det(A_;)
= 5.3—4-1 — 0 + 2-(0-1—5-2)
= 11—-20
= —9.

Laskemme sitten determinantit A,;_,; kaikille i =1,2,3:

2
det(A;_,) = det 4
3

- asel[3 3] 0w ([ 2 e((3 3]

= 6:(5:3—4-1) — 0 + 2-(7-1—5-0)
= 80.

— (@B o)
— U1 O
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det(A2—>b)

det(A3—>b)

det

an((7 4 ]eoe([ 8 3 ]e2ee([ 23]

7-3—4-0 — 6-(0-3—4-2) + 2-(0-0—7-2)
41.

o J N O =
w DN

6
7

0
4
3

| I

det

= U1 O

106

05 7

210
5 7 0 7 05

1det([1 OD—Odet([z OD+6det([2 1D

5-:0-7-1 — 0 + 6-(0-1—5-2)

—67.

Olemme siis saaneet ratkaisun

x, = 80/(—9) = —8.8889,
x, = 41/(=9) = —4.5556,
x; = —67/(=9) = 7.4444.

Lopuksi annamme vauhdikkaan todistuksen Cramerin sdannolle. Yksityiskohtien pohtimisen ja-
tdmme kiinnostuneen lukijan oman harrastuneisuuden varaan.

1—X

= det(A'ALy)

= det(A D det(A,_;)
det (Ai—>b)
det(A)



Luku 6

Kompleksitaso

Kompleksilukujen karteesinen muoto

Erds tapa ymmartdad kompleksiluvut on tulkita ne tason pisteiksi. Kdytimme tdssi luvussa edellisista
luvuista poiketen tason pisteille merkintda z = (x, y). Formaalisti kirjoitamme my0s

(6.1) z = Xx+Yi,

missd i = +/—1 on imaginaéariyksikko, eli yhtilon

“positiivinen” ratkaisu.

6.2 Huomautus
Formaalisti yhtél6lla i> = —1 on ainakin kaksi ratkaisua: +i. Nimittdin, jos i* = —1, niin myoskin
(—i)? =(-1)22 =i =-1.

Kaava (6.1) on kompleksiluvun karteesinen muoto. Myohemmin opimme ns. polaari- eli napa-
muodon, joka liittyy yllattden kompleksiseen eksponenttifunktioon.

Kompleksitaso koostuu pisteistd z = x + yi, missd x ja y ovat reaalilukuja. Lukua x kutsutaan
kompleksiluvun z reaaliosaksi ja lukua y kutsutaan kompleksiluvun z imagindariosaksi. Joskus kéy-
tetddn myo6s merkintoja x = R(z) = Re(z) ja y = 3(z) = Im(z). Siispd voimme kirjoittaa karteesisen
muodon (6.1) myos muodoissa

z = R(z)+3(z)
= Re(z) +Im(z)i.
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o z:q;+y1 ........

=144 3.1i

Kompleksiluku z = x+yi = 1.5—2.0i (vasen kuva) ja kompleksiluku z = x+yi =1.4+3.1i

(oikea kuva).

Kompleksilukujen z; = x; + y;i ja 2z, = x,+y,i yhteenlasku toimii tismaélleen samalla tavalla kuin
vastaavien tason pisteiden, eli vektorien, yhteenlasku:

6.3 Esimerkki
Olkoon

Talloin

21+ 2,

21+ 2,

(x;+x5, y1+Y2)
(1 +x3) + (y1 + ¥o)i.

3+ 2i,
—2—3i.

3+2i+ (—2)—4i
3_
1—i.

2+(2—3)i
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Esimerkin 6.3 kompleksilukujen yhteenlaskua karteesisessa muodossa. Sama summa on
laskettu (tai pikemminkin piirretty) molemmin péin: z = z; +2, (vasen puoli) ja 2 = z,+2;
(oikea puoli).

Kompleksitason vektorin eli kompleksiluvun z = (x, y) normille kiytetddn kompleksilaskennassa
nimed moduuli ja sitd merkitddn (ehkd hieman harhaanjohtavasti) tavallisilla yksinkertaisilla itsei-
sarvomerkeilla:

lz| = +/x2+y2

6.4 Esimerkki
(i) Olkoon
z = —3+2L
Talloin
ol = V(=3 +2?
— Vo4
= 13
= 3.6056.
Olkoon
z = 2+42i
Talloin

|z| = /22422
= V8
= 2.8284.
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Esimerkin 6.4 kompleksiluvut ja niiden moduulit. Vasemmalla z = —3 + 2i ja oikealla
z =2+ 2i.

Reaalitason vektoreita ei voi kertoa keskendan. Pistetulo eli sisidtulo ei ole varsinaista kertomista,
silld siind kaksi vektoria kuvautuu reaaliluvuksi. Kompleksilukuja sen sijaan voidaan kertoa keske-
ndin niin ettd tulokseksi saadaan kompleksiluku. Kertolasku méaaraytyy formaalisti tavallisen kerto-
ja yhteenlaskun osittelulaista seké kaavasta i* = —1:

212, = (X1 + y11)(x3 + ¥,1)
_ . . .2
= XXyt XYl YiXal+ Y1)l

= (XX —Y1Y2) + (x1Y5 + y1X,)i.

6.5 Esimerkki
(i) Olkoon
z, = —1.540.5i,
2, = 1+2i.
Talloin

%1%, = (—1.5+0.51)(1 + 2i)
= —1.5x1—1.5x%x2i4+0.5i x1+4+0.5i x 2i
= —1.5-3i+0.51—1
= —2.5-—2.5i
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(i) Olkoon

z1 = 3,
ZZ —_— _i
Tall6in
%1%, = 3 x(—i)
= —3i

Esimerkin 6.5 kompleksiluvut ja niiden kertolaskut karteesisessa koordinaatistossa. Va-
semmalla (i) ja oikealla (ii). Kuvasta nédkee (tai pikemmikin ei née), ettd kmpleksilukujen
tulo on vaikeammin hahmotettava operaatio kuin kompleksilukujen summa.

Kompleksiluvun z = x + yi liittoluku eli konjugaatti on z* = x — yi. Liitoluvun ottaminen tar-
koittaa siis peilausta reaaliakselin (eli x-akselin) suhteen. Erityisesti kompleksiluku z on reaalinen,

eli z = x + 0i, jos ja vain jos z = z*.

6.6 Huomautus
Liittoluvulle z* kaytetddn joskus myos merkintdi z.
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6.7 Esimerkki
Olkoon

Talloin

Olkoon sitten

Talloin

Zl = -3 + 2i.

z;=—3—2i
Z, = %
= —3-—2i.

2 = —3—(=2)i
—3+2i

Kompleksilukujen liittolukuja: z, = 27, ja sama toisin péin.
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Kompleksiluvun moduuli, eli vastaavan kompleksitason vektorin pituus voidaan esittaa liittoluvun
avulla:

(6.8) Iz]> = zz*.

Kaavan (6.8) nikee suoralla laskulla. Nimittain

*

22" = (x+yi)(x—yi)
= x*—xyi+xyi—y??

= x*+y%

Kompleksilukujen jakolasku voidaan nyt méaaritella kikkailemalla liittolukujen avulla

*

(6.9) = = 2

23 2925 |2,]2 .

6.10 Harjoitustehtiva
Osoita ettd kikkaileva méaéritelma (6.9) on jarkeva. Toisin sanoen, jos 2, ei ole kompleksitason O-
vektori, niin
_#

2
on olemassa ja se on yhtdlon
= iy

ratkaisu muuttujan z suhteen. Kédyta perustelussasi ainoastaan edelli esitettyja karteesisia muotoja
ja maaritelmia.

Kompleksilukujen potenssit ja juuret méaaritellddn samaan tapaan kuin reaalilukujenkin:

ja z'/" on yhtilon

“positiivinen” ratkaisu kompleksiluvun w suhteen. Kaytdnnossa kompleksilukujen potensseja ja juuria
ei kuitenkaan kannata laskea karteesista muotoa z = x + yi kayttden (eikd oikeastaan tuloja tai
osamadridkain), vaan kayttdmalla napaesitystd ja De Moivren kaavaa, joita kisittelemme seuraavassa
osiossa.
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6.11 Esimerkki

Olkoon
1 i 1 .
z = —+—i
V2 V2
Talloin
2?2 = gz
- (AL)(L L))
V2 2 I\v2 V2
1 1 1 1
= —+-it i+ =i
2 2 2 2
1 . 1
= —41——-
2 2
= i
6.12 Harjoitustehtava
Olkoon gz kuten esimerkissa 6.11:
1 n 1 .
z = —+—i
V2 V2

(i) Laske z",kunn=1,2,3,4,5,6,7,8.
(ii) Ratkaise (w:n suhteen) yhtilo z =w", kun n=1,2,3,4,5,6,7,8.

6.13 Esimerkki
Olkoon z; =1—i ja z, = —2i. Laskemme

(i) Zl _22,

() 222,
(iii) 225,

(iv) 2,/2,.
(i) Tama on suoraviivaista:

21_22 = 1_i_(_2i)
= 1—i+4+2i
= 1+i.
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(i) Laskemme ensin

22 = (=2i)(=2i)
= 4i?

Siten

z17; = (1—i)(-4)
= —4+4i

(iii) Koska z; = 2i, niin
z25 = (1—i)(2i)
2i — 2i?
= 2+42i.

(iv) Koska z; = 2i ja

|ZZ|2 = 2222
= (—2i)(2i)
= 4,

niin

2y ZIZ;

3 |2, |2
(1—1)(2i)
—
2i — 2i?

4
= 0.5+0.5i

6.14 Harjoitustehtiva
Olkoon z; =3—7i ja 2, =1+1i. Laske

(i) 2, +32,,
(i) 22323,
(i) 2,2,
(iv) 0.5z/z,.
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Kompleksilukujen napamuoto

Tason vektori on karteesiessa muodossa (x, y) ja napamuodossa (r,6), missd r on vektorin normi
eli pituus ja 6 on vektorin ja vaaka-akselin vélinen kulma radiaaneissa. Kompleksitasossa timéa napa-
muoto voidaan esittdad ndppéarasti kompleksisen eksponenttifunktion avulla.

Olkoon z = x + yi. Kompleksinen eksponenttifunktio on
(6.15) e = exp(z) = e*(cosy+isiny).

Maééritelma (6.15) ei varmaankaan ole ilmiselva. Jos tarkastelemme reaalilukua 2 = x + 0i, niin
kaava (6.15) kylla antaa perinteisen eksponenttifunktion. Siten méaaritelma ainakin laajentaa perin-
teisen reaalisen eksponenttifunktion kompleksitasoon. Mutta miksi juuri tdmé laajennus? Ja miten
trigonometriset funktiot liittyvét asiaan?

Reaalianalyysin puolelta tieddmme, etta

n
e’ = lim (1+£).
n— 00 n

Voisimmeko ymmartda tdmin raja-arvon kompleksiselle luvulle z ja maaritelld eksponenttifunktion
tatd kautta? Itse asiassa voisimme ja saisimme tulokseksi kaavan (6.15). Emme perustele tata talla
kurssilla.

Reaalianalyysin puolelta tiedimme my0s, ettd
o0
X
!
= K
Voisimmeko maaritelld kompleksisen eksponenttifunktion timéan sarjan avulla. Itse asiassa voisimme
ja saisimme tulokseksi kaavan (6.15). Perustelemme téitd hieman ja samalla ndemme (joskin hdma-

résti) miten trigonometriset funktiot astuvat kuvaan. Lahdemme liikkeelle sinin ja kosinin esityksista
Taylorin sarjoina (kehitettyind pisteen y, = 0 ympdrille):

oo

cosy = » (-1 v
kz(; i)Y

2k+1

siny = Z( (2k+1)'

Siispa

N 2 . y2k+1
cosy +isiny = Z(_ )k[(zk)' (2k+1)!]

2 3 4 5
= 1+iy — 2 —iX + L4 -
TR TR TR

iO 0 1,1 22,2 :34,3 4,4 :5,,5
S S ANNE S/ S ASNE WA S ANNE S A
o 1t 21 31 4 ' 5l

_ i ()"
£kl
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Olemme perustelleet niin sanotun Eulerin kaavan
(6.16) e” = cosy-+isiny.

Kayttamalla edellisid laskuja ja reaalisen eksponenttifunktion sarjakehitelmia saamme

ef = ety

= e¥ely

X

= e*(cosy+isiny)

Kayttamalla Cauchyn kertokaavaa

(=0 k=0 n=0 j=0
ja binomikaavaa
(1
G = (e
k=0
takaperin saamme
e = ex+iy
= eXelV

Olemme siis perustelleet, ettd

v4 X
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Lopuksi huomautamme viela, ettd kuten reaalipuolella my6s kompleksipuolella ekpsonenttifunktio
voidaan maéritella yksikésitteisesti fuktiona, jolle exp(0) = 1 ja exp’(z) = exp(z). Emme kuitenkaa
kasitettele télla kurssilla kompleksista derivointia.

6.17 Huomautus
Sijoittamalla Eulerin kaavaan (6.16) y = m saamme matematiikan kauneimman kaavan:

e +1 = 0.

6.18
Kompleksinen eksponenttifuktio toimii reaalisen eksponenttifunktion tavoin siind mielessa, etta sille
péatee kaavat

2 2112 — %1 a%2
() e e“le*2,
(i) (ef)"=e™,

({ii) e*/e2 =en 772,

Toisin kuin reaalinen eksponenttifunktio, kompleksinen eksponenttifunktio ei ole “positiivinen”, ei
injektio, eika kasvava. Itse asiassa jokainen kompleksiluku z voidaan esittda darettéméan monella eri
kompleksiluvulla w muodossa z = e". Erityisesti kompleksinen eksponenttifuktio on jaksollinen:

ez — ez+2ﬂ:n1

kaikilla kokonaisluvuilla n.

Kompleksilukujen napamuoto seuraa nyt Eulerin kaavasta (6.16). Kyseinen kaava nimittdin sanoo,
ettd parametrisoitu kiyra e'°, 6 € [0,27), piirtid kompleksitasoon yksikkéympyrin (vastapdivdin).
Siten jokainen kompleksiluku z = x + yi voidaan esittid napamuodossa

z = re’
missa
r o= |z| = Vx2+y?
on kompleksiluvun z moduuli ja
6 = arg(z)

on kompleksiluvun z argumentti, eli positiivisen reaaliakselin (positiivinen x-akseli) ja kompleksi-
lukua z vastaavan vektorin vilinen kulma (vastapdivdan kierrettynd). Argumentti 6 ei ole yksikasit-
teinen. Jos haluamme, ettd 0 € [0,27), voimme laskea sen kaavalla

arctan %, josx>0jay=>0,

arctan¥ 4+ 27, josx >0jay <O,
6 =< arctan* +m, josx <O,

5 josx=0jay >0,

3

R josx=0jay <0,

|
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Jos x,y = 0 molemmat, niin kulma 6 ei ole maéritelty. Jos haluamme ettd 6 € (—m, ], voimme
laskea sen kaavalla

arctan, jos x >0,
arctan + 7, josx <0Ojay >0,
6 =1{ arctanz—m, josx <Ojay <0,
5 josx=0jay>0,
-5 josx=0jay <0,

Edelleen, jos x, y = 0 molemmat, ei kulma 6 ole maéritelty.

Napamuodosta z = re'’ saadaan karteesinen muoto z = x + yi vaikkapa kiyttamalld kaavoja

x = rcosH,

y = rsinf.

6.19 Huomautus

6.20

Kertaamme vield karteesisen muodon ja napamuodon yhteyden kun valitsemme kulmaksi 6 €
(—m, m]. Paastdkseen kompleksiluvun z karteesisesta muodosta, 2 = x + yi, sen napamuotoon,
on léydettiva positiivinen luku r ja kulma 6 niin, ettd z = re®'. Tassd r = |z| = 4/x2 + y2 ja kulma
0 saadaan ratkaisemalla yhtalo

x+yi=z=re% =r(cos(0)+isin(0) = r cos(0) + ir sin(6).
Kulma 0 toteuttaa siis seuraavat yhtélot:
x=rcosf ja y=rsin6

Toisin sanoen, on loydettdva 6 niin, etta

X . .
cosf =— ja sm9=z
r r
Tama kulma 6 € (—mt, ] 16ydetddn esimerkiksi seuraavasti seuraavasti:

 Jos y >0, niin 6 = arccos >.

* Jos y <0, niin 6 = —arccos .

Esimerkki
Etsimme karteesisessa muodossa annetun kompleksiluvun z = 2—5i napamuodon. Moduulin saam-

me suoraan Pytharogaan kaavasta: r = +/22 452 = ¢/29 = 5.3852. Argumentin laskemiseksi tar-
kastelemme normalisoitua, ykkosen pituista, kompleksilukua

2 5

=2

V29 V29
= 0.37139—0.92848i.
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Huomaamme, etti tdma vektori sojottaa yksikkotason neljinteen neljainnekseen. Siten (eras) vaihe-

kulma, eli argumentti, voidaan laskea esimerkiksi kaavasta
—cosf = ——.

Siten

0 2
= —arccos ——
V29
= —1.1903.
Olemme siis saaneet karteesisesta muodosta z = 2 —5i (erddn) napamuodon

2 = 5.3852¢ 11904

Etsimme sitten napamuodossa annetun kompleksiluvun z = 5e!*/* karteesisen muodon. Vaihe-
kulma 7/4 on tunnetusti sama kuin 45°. Siten kompleksiluvun z reaali- ja imagindariosat ovat

samat, mistd pdddymme (reaaliseen) yhtaloon
5 = +2x2,
jonka ratkaisu on

52
2
= 3.5355.

Olemme siis saaneet napamuodosta z = 5e!™/4 karteesisen muodon

z = 3.5355+ 3.5355i.

Harjoitustehtdva
Esitd seuraavat karteesisessa muodossa annetut kompleksiluvut napamuodossa:

(1 3+i,
(i) -—2i,

ja esitd seuraavat napamuodossa annetut kompleksiluvut karteesisessa muodossa:

(iii) 3el™/2,
(IV) 4ei 317.3.

Kompleksiluvun karteesinen muoto z = x + yi sopii mainiosti summien laskemiseen, silla reaali-
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ja kompleksiosta vain lasketaan erikseen yhteen:

z21+2, = (X;+X5, y1+Y2)
= (X1+x2)+(J’1+J/2)i-

Tulojen laskemiseen karteesinen muoto sopii sitten hieman huonommin, koska pitda kayttaa osittelu-
lakia ja kaavaa i* = —1:

212, = (1 + y11)(x; + yai)
X1+ X1 Y0 + Y1 X1+ Y1 Y10
= (X1x3 = y1Y2) + (X712 + Y1 X)i.
Komplekisluvun napamuoto z = rel sopii mainioisti kompleksilukujen kertomiseen. Nimittdin

2,2, = rere®

= rr,el®t0)

Tasta kaavasta ndemme myo6s kompleksilukujen kertolaskun geometrisen tulinnan: kompleksilukuja
kerrottaessa moduulit r; ja r, kerrotaan keskendén ja argumentit 6, ja 6, lasketaan yhteen. Tar-
kastelaessd kompleksilukuja kompleksitason vektoreina tdma tarkoittaa sitd, ettd vektorien pituudet
kerrotaan keskendén ja vektoreita kierretddan vastapdivadn niiden vaihekulmien summan verran.

Lopuksi huomaamme, ettd kompleksilukujen potenssit voidaan laskea helposti napamuodosta:
(6.22) g" = e

Kaavaa (6.22) kutsutaan De Moivren kaavaksi ja se toimii kaikilla kokonaisluvuilla n. Valitettavasti se
ei toimi murtopotensseille (eli rationaaliluvuille) n/m saati reaalisille tai kompleksisille potensseille.
Yleisessa tapauksessa, jos haluamme laskea 2", niin se tulee kirjoittaa muodossa

(6.23) g = eVl

missa log on kompleksinen logaritmifunktio, joka on kompleksisen eksponenttifunktion kddnteiskunk-
tio. Koska kompleksinen eksponenttifunktio on jaksollinen, on kompleksinen logaritmifunktio moniar-
voinen. Siten kaavassa (6.23) pitda valita jokin, tilanteesta riippuva, logaritmifunktion haara.

6.24 Harjoitustehtiva
Olkoon 2z, = 1—1i ja 2, = 2i. Esitd z7/z}

(i) napamudossa,
(i) karteesisessa muodossa.

Esitdimme lopuksi timéan luvun keskeiset havainnot lyhyesti:
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6.25
Kompleksiluvut voidaan esittdd kompleksitason vektoreina karteesisessa muodossa

z = Xx+Yyi

missd x on kompleksiluvun z reaaliosa ja y on kompleksiluvun z imagindariosa. Kompleksiluvut
lasketaan yhteen laskemalla reaali- ja kompleksiosat yhteen erikseen.

Kompleksinen eksponenttifunktio on

v4

e = e*(cosy+isiny).

Jokainen nollasta poikkeava kompleksiluku voidaan esittdd napamuodossa

z = re,
missd r = |z| on kompleksiluvun z moduuli, eli sitd vastaavan kompleksitason vektorin pituus,
ja 6 on kompleksiluvun z argumentti, eli sitd vastaavan kompleksitason vektorin ja positiivisen
reaaliakselin vilinen kulma.

Kompleksista lineaarialgebraa*

Aiemmissa luvuissa olemme kisitelleet vektoreita ja matriiseja, joiden alkiot ovat reaalilukuja. Mi-
kaan ei estd kasittelemésta vektoreita, joiden alkiot ovat kompleksilukuja ja muuttamaan skalaarit
(eli aiemmmin reaaliluvut) kompleksiluvuiksi. Periaatteessa kaikki toimii kuten aiemminkin, mutta
uutena piirteend tulee mukaan kompleksikonjugaatit eli liittoluvut. Esimerkiksi kahden kaksiulottei-
sen kompleksivektorin

z_[211:|_[X11+J’11i] . _[221]_[X21+}’21i]
1= = . ja z,= = )
21 X3+ Yiol 29 Xgg t Yool
vélinen pistetulo eli sisdtulo on

7] z*

Zl'Zz - 149

—_ * k

= %1%y T 21525

= (xyy + Y1111 — ¥oui) + (15 + ¥121) (X5 — ¥2oi)

= X11X91 — X117 Y211+ Xo1 Y111+ Y11Y21 + X10X0n — X192V 201 + X Y101+ Y12 Y00

= X11X1 + X19X9 + Y11 Y01 + Y12 Y2 + (X21Y11 — X11 Y01 + X022 Y12 — X12Y02)i

Vastaavasti reaalipuolen ortogonaalinen matriisi, siis matriisi joka kuvaa ortonormaalin kannan orto-
normaalille kannalle, eli matriisi Q, jolle Q™! = QT pitid korvata unitaarisella matriisilla U, jolle
U! = U*, missi U* on konjugaattitranspoosi:

(U*)ij = U]*l



Luku 7

Tason symmetristen matriisien
ominaisarvohajotelma

Diagonaalimatriisit ja ortogonaaliset matriisit

Matriisihajotelmien ideana on esittdd annettu matriisi yksinkertaisempien matriisien tulona. Tarkas-
telemme téssd luvussa tason symmetrisia neliomatriiseja. Toisin sanoen matriiseja

A = [ Ay Ap ]
Ay Ap [
joille Aj, = A, eli AT =A.
Esitimme tdssd luvussa, miten symmetrinen matriisi voidaan esittda diagonaalimatriisin ja orto-
gonaalisen matriisin avulla.

Tason neliomatriisi A on diagonaalimatriisi eli lavistdjamatriisi, jos se on muotoa

A = A O
0 A, |
Diagonaalimatriisia vastaavan lineaarisen operaattorin geometrinen tulkinta on yksinkertainen: dia-

gonaalimatriisi vastaa venytystd, jossa x;-akseli venytetddn A,-kertaisesti ja x,-akselia venytetdan
A, -kertaisesti.

Diagonaalimatriisien algebra on my®os erittdin yksinkertaista.
Diagonaalimatriisin determinatti on

det(A) - 211 A«z .

Siten diagonaalimatriisi on kdantyvé jos ja vain jos molemmat diagonaalialkiot A, ja A, ovat nollasta
poikkeavia. Itse kdanteismatriisin laskeminen on my6s helppoa:

1
= 0
A_l = |:)8 i:|
A

Itse asiassa diagonaalimatriisin potenssien (ja kdanteispotenssien) laskeminen on yhta helppoa:

n_/l';o
A‘[ozz]
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kaikilla kokonaisluvuilla n.
Diagonaalimatriisien transponointi on poikkeuksellisen helppoa: AT = A.

7.1 Esimerkki
(i) Diagonaalimatriisi

1 0
* = o0
projisoi tason pisteet x = [x; x,]' x;-akselille “hévittimall4” x,-koordinaatin. Tima diagonaali-

matriisi ei ole kddntyva.

(ii) Diagonaalimatriisi

1 0
C =
0 —1
vaihtaa x,-akselin suunnan. Timi diagonaalimatriisi on siis peilaus x,-akselin suhteen. Tama dia-

gonaalimatriisi on kdantyva. Kdantdminen tapahtuu vaihtamalla x,-akselin suunta uudestaan sa-
malla tavalla: C™! = C.

Toinen mukava luokka matriiseja on ortogonaaliset matriisit. Formaali maaritelmé ortogonaaliselle
matriisille on seuraava: tason neliématriisi Q on ortogonaalinen, jos

(7.2) Q' =Q".

Madritelma (7.2) on toki elegantti, mutta ehkd hieman lapindkyméaton. Ortogonaalisen matriisin idea
on se, ettd on kannanvaihtomatriisi, joka kuvaa ortonormaalit kannat ortonormaaleiksi kannoiksi.
Erityisesti se tarkoittaa sitd, ettd standardikanta (e;,e,) kuvautuu ortonormaaliksi kannaksi. Koska
Q:n sarakkeet ovat standardikannan kuvat, tarkoittaa tima sitd, etta

(7.3) QI = 1,
(7.4) 1Qu.ll = 1,
(7.5) Qi-Q.; = 0.

7.6 Harjoitustehtiva
Osoita ettd ehdot (7.3)-(7.5) ja (7.2) tarkoittavat samaa. Voit halutessasi kdyttda apuna (jos siitd on
apua) seuraavaksi esitettdvia ortogonaalisten matriisien hajotelmaa Q = CR, missi C on peilaus ja
R on kierto.

Tasossa ortogonaaliset matriisit voidaan esittda poikkeuksellisen konkreettisesti: ne koostuvat pei-
lauksista ja kierroista. Matriisi C on peilaus, jos se on muotoa

+1 0
C_[Ozlzl]'
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Matriisi R on kierto (6 radiaania vastapdividan), jos se on muotoa

R = [cos@ —sin 6O ]

sin @ cos 6

Pienelld geometrisella pahkailylla on suhteellisen helppo ndhda, ettd matriisi Q on ortogonaalinen
jos ja vain jos se on muotoa Q = CR, missd C on peilaus ja R on kierto.

Peilausmatriisien algebra on helppoa, koska ne ovat diagonaalimatriiseja. Kiertomatriisien algebra
on myos helppoa: jos R(0) ja R(¢) ovat kiertomatriiseja (6 ja ¢ radiaania vastapdivaan), niin

R(6)R(¢) = R(O+9),
mistd seuraa esimerkiksi, ettd R(6)" = R(n8) kaikilla kokonaisluvuila n, ja erityisesti kidnteismatrii-
sille pitee R(0)™! = R(—0) (kierto myo6tipiivdain 0 radiaania).
7.7 Harjoitustehtiva

Olkoon

A _ [ 07071 —0.7071
~ [ 07071 o0.7071 |

Huomaa, ettd 0.7071 = +/2/2, ja laske

@ AT,
(i) A°S.

Ominaisarvohajotelman laskeminen

Entédpa sitten symmetriset matriisit A? Jos A on diagonaalimatriisi ja Q on ortogonaalinen matriisi,
niin

(7.8) A = QAQ!
on symmetrinen. Nimittdin, ensinnédkin
A" = (QaQ™)!
= (QAQN),

koska Q on ortogonaalinen. Toiseksikin, kdyttdmalla tulon transponointikaavaa ja matriisitulon asso-
siatiivisuutta, saamme

(QAQN)T = (QAQ™)T
= (AQN)'Q"
(QT)TATQT.
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Kolmanneksi, koska AT = A (pitee diagonaalimatriiseille) ja Q" = Q™! (pitee ortogonaalisille mat-
riiseille) sekd (QT)" = Q (pitee kaikille matriiseille), niin

(@H'ATQT = QAQ.
Olemme siis osoittaneet, ettd kaavan (7.8) antamalle matriisille A pétee AT =A, eli A on symmetri-
nen.

Mutta onnistuuko tdma hajotelma toisin pdin? Voidaanko annetulle symmetriselle matriisille A
l6ytdaa ortogonaalinen matriisi Q ja diagonaalimatriisi A niin, ettd hajotelma (7.8) pitee? Ja mika
vield olennaisempaa: miksi ylipdatdan haluaisimme 16ytda hajotelman (7.8)?

7.9 Huomautus
Ennen hajotelman laskemista esitimme yhden ilmiselvdn sovelluksen ominaisarvohajotelmalle:
kidnteismatriisin laskemisen. Jos A = QAQ™, niin

AT = (QaQ )T
= (@)™
= @)@
= QAT'QL

Koska Q! = Q' ja A™! ovat helppoja laskea, niemme etti kiifinteismatriisin laskeminen on helppoa
ominaisarvohajotelmasta.

Ominaisarvohajotelman (7.8) laskeminen kannattaa aloittaa ominaisarvojen, eli matriisin A las-
kemisella. Ominaisarvohajotelman nojalla tarkoitus on 16ytaa sellaiset luvut A ja vektorit q, ettd

(7.10) Aq = Aq.

Yhtélo (7.10) sanoo, ettd kuvaus A on suuntaan q venytys. Venytyksen voimakkuutta A kutsutaan
matriisin A ominaisarvoksi ja vektoria q ominaisarvoa A vastaavaksi ominaisvektoriksi. Yhtdlon
(7.10) ratkaisemiseksi kirjoitamme sen muodossa

(A—ADqg = O.

Tastd muodosta ndemme, etté ratkaisu on olemassa (kun q 7# 0), jos matriisi A— Al ei ole kdédntyva.
Taten A on niin sanotun karakteristisen polynomin

p(A) = det(A—AT)

nollakohta. Koska tarkastelemme vain 2 x 2 symmetrisid matriiseja (jolloin A;, = A,; ), voimme laskea
karakteristisen polynomin auki kohtalaisen helposti:

P00 = der([ g 2 |=[ 3 7 )

A, —A A
— det 11 12 ])
e([ Ay Ap—2
= (An - A)(Azz - A) _A12A21

= (A11 - A)(Azz - A) —Aiz
== AZ - (All +A22)A +A11A22 _A%Z.
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Ndemme, ettd p(A) on toisen asteen polynomi, joten sen ratkaisut voidaan laskea vanhalla tutulla
ratkaisukaavalla:

A +Ay + \/(Au +Ap)*—4(A Ay —A2)

A =
' 2
v = Ay + Ay — \/(Au +Ap)* —4(AAy —A3)
2 = .
2

Tastd ndemme, ettd ratkaisut ovat aina reaalisia, silld voidaan osoittaa, ettd aina pitee
(A +A5)" = 444y —AT).

Samoin ndemme, ettd ratkaisut A, ja A, ovat samoja jos
(A11 +A22)2 = 4(A11A22 _Aiz),

mika pelkistyy ehdoiksi A;, = 0 ja A;; = Ay, = A. Tama siis tarkoittaa sitd, ettd A on jo valmiiksi
diagonaalimatriisi, ja erityisesti se on muotoa A = Al

Oletamme nyt, ettd olemme l6ytdneet kaksi ominaisarvoa A; < A, (silla tilanne A; = A, osoittau-
tui tylsaksi).

Etsimme ominaisarvoa A, vastaavan ominaisvektorin q, = [q;; qy»]' . TAm4i tarkoittaa ominai-
sarvoyhtalon

Aq, = Mq

ratkaisemista. Koska A; on tunnettu, tdméa on normaali yhtélopari, joka voidaan ratkaista normaaliin
tapaan esimerkiksi kirjoittamalla se muotoon

(A—AIq = 0
ja ratkaisemalla tdtd muotoa vastaava laajennettu lohkomatriisi

|:A11_A‘1 A12 0]
A21 A22 - A’l 0

Ratkaisuja on direton maira (ja nollakin on mitd ilmeisimmin ratkaisu). Valitsemme sellaisen ratkai-
sun, jolle ||q,|| = 1. Samalla tavalla ominaisarvoa A, vastaava ominaisvektori q, = [qy; qo»]' 16ytyy
ratkaisemalla normaaliin tapaan ominaisarvoyhtalo

Aq; = Axq,.

Matriisin A ominaisarvohajotelma (7.8) on nyt itse asiassa 1oydetty:

A O . di1 g
A= 1 Y :| a :[ 11 921 :|
[ 0 2, ) Q d12 922
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7.11 Esimerkki
Etsimme symmetrisen matriisin

3 —1
a= [0
ominaisarvohajotelman.

Nyt

A—Al = [B_X _1].

-1 5—-2
Siten karakakteristinen polynomi on
p(d) = (5-A)B-21)-1
= A*—8A+14,
jonka nollakohdat voidaan laskea toisen asteen yhtédlon ratkaisukaavasta. Saamme

A, = 2.5858,
A, = 5.4142.

Ominaisarvoa A; = 2.5858 vastaava ominaisvektori q; saadaan yhtaloparista

3—2.5858 1 _Jo
1 5-26858 |14 T [0 |

eli kaaviomuodosta

0.4142 —1.0000 0.0000
—1.0000 2.4142 0.0000 |-

Tamén kaavion voi ratkaista normaaliin tapaan esimerkiksi eliminoimalla q;;- muuttujan toiselta
rivilta:

0.4142 —1.0000 0.0000 - 0.4142 —1.0000 0.0000
—1.0000 2.4142 0.0000 0.0000  0.0000 0.0000

Toinen rivi eliminoitui taysin (ja néin pitikin kdyda, silla matriisin A — A,I determinantti on nolla.
Ensimmaiselti riviltd luemme, etti ratkaisut ovat muotoa

q].2 = 0.4‘142 * q].l'
Nyt pitda valita sellainen q,, ettd ||q,||*> = 1. Toisin sanoen
_ 2 e
I = qll + q12
= ¢, +0.4142°¢2
— 2
= 1.1716¢%
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Siten

qu = y1/1.716 = 0.9239,

qi, = 0.4142-0.9239 = 0.3829

eli q; =[0.9239 0.3829]".
Ominaisarvoa A, = 5.4142 vastaava ominaisvektori q, saadaan yhtaloparista

3-5.4142 1 o
1 5-54142 |2 T | o |’

eli kaaviomuodosta

—2.4142 —1.0000 0.0000
—1.0000 —0.4142 0.0000 |-

Havittdmalld muuttuja q,; toiselta riviltd, eliminoituu toinen rivi taysin (niin kuin pitddkin):
—2.4142 —1.0000 0.0000 - —2.4142 —1.0000 0.0000
—1.0000 —0.4142 0.0000 0.0000 0.0000 0.0000 |-
Saamme siis ratkaisut, jotka ovat muotoa

q22 = _2.4142 * q21,

ja normalisointiehdosta ||q,||> = 1, saamme ehdon
1 = q;+4y
= ¢}, +2.4142°¢2,
= 6.8284-¢3,.

dn = +1/6.8284 = 0.3827,

Gy = —2.4142-0.3827 = —0.9239,

eli g, =[0.3827 —0.9239]".
Olemme siis l6ytdneet matriisin A ominaisarvohajotelman A = QAQ™':

A= [M 0] _ [ 2588 0.0000
~ L oA, ] T [ 00000 5.4142
Q = | 9n]| _ [09239 03827
TGz 9 | | 03829 —0.9239 |’
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Harjoitustehtiva
Esimerkissd 7.11 on pydristysvirheitd. Laske se tarkoilla arvoilla.

Harjoitustehtiva
Laske seuraavien matriisien ominaisarvohajotelmat:

@)
1.5 0.5

(i)

0.5 0.5

Kerddmme tdhén loppuun joitakin keskeisid havaintojamme ominaisarvohajotelmasta:

Jokainen symmetrinen matriisi A voidaan esittid ominaisarvohajotelmana

A = QAQ',

missd Q on koordinaatiston vaihto: se muuttaa tason standardikannan uudeksi ortonormaalik-
si kannaksi. Standardikannan saa takaisin kdinteismuunnoksella Q' = Q. Matriisi A on diago-
naalimatriisi. Se siis venyttida “Q-koordinaatistoa” eli ominaisvektoreita matriisin A diagonaalilla
olevien ominaisarvojen verran.

Ominaisarvohajotelma voidaan laskea ratkaisemalla ensin ominaisarvot A; ominaisarvoyhta-
16ista

Aq; = Aq;
esimerkiksi laskemalla karakteristisen polynomin
p(A) = det(A—AI)

nollakohdat. Ominaisvektorit q;, eli ortogonaalisen matriisin Q sarakkeet, saadaan ratkaisemalla
ominaisarvoyhtilot, kun niihin on ensin sijoitettu aikaisemmin saadut ominaisarvot. Ratkaisuiksi
pitda valita ykkosen pituiset vektorit q; .

Ominaisarvohajotelma on hyddyllinen esimerkiksi (kéénteis)potenssien A*, missd k on koko-
naisluku, laskemisessa.
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ole

Ominaisarvohajotelma yleisessa tapauksessa*

Jos A on symmetrinen n X n-matriisi, niin silli on ominaisarvohajotelma A = QAQ™!. Timéi omi-
naisarvohajotelma voidaan laskea teoriassa tismalleen samalla tavalla kuin 2 x 2-matriisellekin. Kay-
tannossa tdma ei kuitenkaan onnistu, silld nyt karakteristinen polynomi p(A) on n. astetta, joten
sen nollakohtien ratkaiseminen ei onnistu millddn ratkaisukaavalla, vaan joudumme turvautumaan
numeerisiin menetelmiin.

Jos A ei ole symmetrinen matriisi, niin silld ei voi olla hajotelmaa A = QAQ™!, missd Q on or-
togonaalinen ja A on diagonaalimatriisi. Periaatteessa voi kuitenkin joskus olla mahdollista 10ytaa
hajotelma

(7.15) A = PAP!

missd A on edelleen diagonaalimatriisi, mutta P on vain jokin kdantyva matriisi. Hajotelmaa (7.15)
kutsutaan myds joskus (valitettavasti) ominaisarvohajotelmaksi. Esimerkiksi epdsymmetrisen matrii-

sin
1 3
S

kaavan (7.15) mukainen ominaisarvohajotelma on

p [—0.9486 —0.7071] A = [2 0 ]

—0.3162 —0.7071 0 4

Téssi siis P ei ole ortogonaalinen: P! #P'.

Joskus voimme rakentaa (ortogonaalistyyppisen) ominaisarvohajotelman piipahtamalla komplek-
sipuolella. Esimerkiksi antisymmetrinen matriisi

2 —1
v =[]
voidaan esittdd muodossa UAU™!, missi

[ cos(t/4) cos(n/4)] a A = [2+i O].

v —cos(mt/4)-i cos(m/4)-1i 0 2—i

Téssd siis A on diagonaalimatriisi ja U on unitaarinen matriisi: U™! = U*.
Yleisessa tapauksessa, missd A on vain jokin (kompleksialkioinen) m x n-matriisi, voidaan raken-
taa niin sanottu singulaariarvohajotelma

(7.16) A = UV,

missd U ja V ovat unitaarisia matriiseja ja ¥ on diagonaalimatriisi, jonka diagonaalialkioita kutsu-
taan matriisin A singulaariarvoiksi. Karkeasti ottaen singulaariarvohajotelma sanoo seuraavaa: en-
sin pyoritetddn koordinaatisto uudeksi koordinaatistoksi kdyttdmallda muunnosta V*. Taman jilkeen
venytetdan akseleita matriisin ¥ singulaariarvoilla ja lopuksi vield pyoraytetdan (joskaan ei ehka ta-
kaisin) koordinaatistoa kuvauksella U. Singulaariarvohajotelmaa kutsutaan joskus myos paaakseli-
hajotelmaksi. Lopuksi on hyvad huomata, ettd hajotelmassa (7.16) ainoastaan diagonaalimatriisi X
on yksikésitteinen.
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Lineaarialgebraa GNU Octavella

GNU Octave on avoimen ldhdekoodin versio legendaarisesta Matlab-ohjelmistosta. Sen saa ladattua
osoitteesta https://octave.org/. Jos et jostain syystd halua asentaa GNU Octavea, voit kayttda sitd
myo0s verkossa osoitteessa https://octave-online.net/

Naitéd luentoja kirjoitettaessa viimeisin stabiili versio GNU Octavesta oli 7.2.0, mutta uudemmat
ja vahemmat versiot toimivat tdimén kurssin puitteissa varmasti hyvin. Tamén kurssin kannalta myos
Matlab toimii tdsmélleen samoin kuin GNU Octave.

Esitimme GNU Octaven kayttod varsin minimaalisesti. Lisda ohjeita GNU Octaven kaytosta 16ytyy
esimerkiksi sen manuaalista, joka 10ytyy osoitteesta https://docs.octave.org/latest/

Lineaarinen yhtdloryhma GNU Octavella

GNU Octave on matriisiorientoitunut. Tama tarkoittaa sitd, ettd GNU Octavelle enemman tai vihem-
man kaikki otukset tulkitaan matriiseksi. Matriisi esitetdan GNU Octavelle hakasulkeissa niin etti ele-
mentit on erotettu toisistaan joko valilyonnilla tai pilkuilla ja rivit on erotettu toisistaan puolipisteilla.

Siten esimerkiksi matriisi
[ 0.11 0.12 ]

0.21 0.22

on GNU Octavessa [0.11 0.12; 0.21 0.22] tai [0.11, 0.12; 0.21, 0.22].

Transpoosi ' on GNU Octavessa heittomerkki ’. Siten esimerkiksi pystyvektori [0.1 0.2]" on GNU
Octavessa joko [0.1 0.2]7, [0.0, 0.2]° tai [0.1; 0.2].

GNU Octavessa matriisin A elementteihin viitataan sulkeilla. Jos esimerkiksiA = [11 10; 11 23]
niin A(1,2) = 12. Vastaavasti A(2,2)=23.

Tulomerkki on GNU Octavessa *, ja se tarkoittaa matriisituloa. Siten, jos esimerkiksi
A= [11 12; 21 22]jaB = [1 0; O 2],niin A*B = [11 24; 21 44].

Matriisin A kdanteismatriisi on GNU Octavessa joko inv(A) tai A~(-1). Siten yhtdléryhméan
A*x = b voi ratkaista asettamalla x = A~ (-1)*b. Usein ei kutenkaan kannata ratkaista yhtaléryh-
mad ndin. Kuten tieddmme voi nimittdin olla ettd yhtdloryhmallda A*x = b on ratkaisu, vaikka A ei
olekaan kadntyva. GNU Octave osaa ottaa tdman vain jossain méadrin huomioon ja ratkaista yhtilo-
ryhmén “jakamalla sen vasemmalta” kdskylla x = A\b. Téss4 siis operaatio \ tarkoittaa “vasemmalta
jakamista”. Formaalisti ajatus menee ndin: A*x=b voidaan jakaa vasemmalla puolittain matriisilla


https://octave.org
https://octave-online.net/
https://docs.octave.org/latest/
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A, jolloin x = A\A*x=A\b, koska A\A on “identiteetti”. Jitimme lukijan harrastuneisuuden varaan
miettid, mitd “oikealta jakaminen” / tarkoittaa.

Jos yhtélolla A*xx=b on useita ratkaisuja komento A\b antaa vain yhden ratkaisuista. Jos yhtalolla
Axx=D ei ole ratkaisuja, antaa Octaven komento A\b sille silti mukaratkaisun. Tima4 ei kuitenkaan ole
luonnollisestikaan yhtdlon oikea ratkaisu, vaan niin sanottu miniminormiratkaisu. Tama tarkoittaa si-
td, ettd Octave antaa yhtilolle A*xx=b sellaisen mukaratkaisun x, jolle norm (A*x-b) on mahdollisim-
man pieni. Tdssd norm(a) on verktorin a normi, eli norm(a) = ||a||. Vield kertaalleen toisin sanoen
GNU Octaven vasemmalta jakaminen A\ b antaa yhtélolle Ax = b jonkin sellaisen mukaratkaisun x,
jolle normivirhe ||Ax — b|| on mahdollisimman pieni.

Lisdda GNU Octavesta ja yhtdloryhmista 16ytyy osoitteesta https://docs.octave.org/latest/Simple-
Examples.html. Suosittelen lampimasti lukemaan!

Esimerkki
Olkoot

0.51 0.027 . 0.00
A‘[ 1.21 2.02] a b_[ 1.15 ]

Seuraava konsolikeskustelu (Command Window) ratkaisee yhtidloparin Ax = b GNU Octavella:

>> A = [0.51 0.02; 1.21 2.02]
A =

0.510000  0.020000
1.210000 2.020000

>> b = [0.00 1.15]°
b =

0
1.1500

>> x = A\b
X=

-0.022863
0.583002

Harjoitustehtiva
Olkoot

250 0007 . , [ —2.00
A_[7.20 2.20] Ja b_[ 2.75]'

Ratkaise yhtdlopari Ax =b GNU Octavella.


https://docs.octave.org/latest/Simple-Examples.html
https://docs.octave.org/latest/Simple-Examples.html
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8.3 Harjoitustehtava
Etsi sellainen yhtdlopari Ax = b, jolla on ratkaisu tai ratkaisuja, vaikka A ei olekaan kdantyva.
Ratkaise Ax =b GNU Octavella.

Ominaisarvohajotelma GNU Octavella

GNU Octave 16ytda matriisin A ominaisarvohajotelman funktiolla eig, jonka syntaksi on
[Q, LAMBDA] = eig(A)

missd Q on matriisi, jonka sarakkeet ovat ominaisarvovektorit ja LAMBDA on lavistdjamatriisi, jonka
lavistgjilla on matriisin Q ominaisvektoreita vastaavat ominaisarvot. Suosittelen lampimasti tutustu-
maan funktion eig ohjeeseen kirjoittamalla help eig GNU Octaven konsoliin (Command Window).

8.4 Esimerkki
Etsimme esimerkin 7.11 ominaisarvohajotelman GNU Octavella. Tama tapahtuu seuraavan konsoli-
keskustelun kautta

>> A = [3 -1; -1 5]
A =

3 -1
-1 5

>> [Q,LAMBDA] = eig(A)

qQ =
-0.9239 -0.3827
-0.3827 0.9239
LAMBDA =

Diagonal Matrix

2.5858 0
0 5.4142

Huomamme ettd saamamme Q ei ole sama kuin esimerkin 7.11 Q (Q=—Q). Tama ei kuitenkaan ole
virhe, silld ominaisarvohajotelma ei ole yksikasitteinen.
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8.5 Harjoitustehtava
Laske GNU Octavella matriisin

A_[ 050 0.02
— [ 0.02 2.00

ominaisarvohajotelma.

8.6 Harjoitustehtiva
Mita tapahtuu jos yritit laskea GNU Octavella epdsymmetrisen matriisin

[ 050 0.02
~ | 3.00 2.00

ominaisarvohajotelman? Analysoi tulos.



	Yhtälöpari
	Yhtälöparin ratkaisu piirtämällä
	Yhtälöparin ratkaisu alkeisrivioperaatioilla

	Vektorit lähinnä tasossa
	Karteesinen muoto ja napamuoto
	Suorat ja vektorit: parametrimuoto ja normaalivektorimuoto

	Matriisilaskentaa lähinnä tasossa
	Matriisit ja niiden perusoperaatiot
	Käänteismatriisi ja determinantti

	Matriisit ja lineaarikuvaukset
	Funktioalgebraa
	Matriisialgebra lineaaristen funktioiden algebrana

	Yhtälöpari matriisein
	Ratkaisu matriisimerkinnöin
	Ratkaisujen lukumäärä ja determinantti

	Kompleksitaso
	Kompleksilukujen karteesinen muoto
	Kompleksilukujen napamuoto

	Tason symmetristen matriisien ominaisarvohajotelma
	Diagonaalimatriisit ja ortogonaaliset matriisit
	Ominaisarvohajotelman laskeminen

	Lineaarialgebraa GNU Octavella
	Lineaarinen yhtälöryhmä GNU Octavella
	Ominaisarvohajotelma GNU Octavella


