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Johdanto

Tämä on luentokirjanen Vaasan yliopiston kurssille Lineaarialgebra I syksylle 2022. Kurssi on 2 opinto-
pisteen laajuinen sisältäen noin 20 tuntia (à 45 min) luentoja ja 8 tuntia (à 45 min) harjoituksia. Luen-
tokirjasen jokainen luku vastaa noin 2 tuntia (eli 1 h 30 min) luentoja. Mahdollisesti aivan kaikkea
kirjasen tekstiä ei ehditä käymään läpi luennoilla. Opiskelijoita kannustetaankin lukemaan luen-
toja vastaava teksti kirjasesta ennen luentoja ja esittää kysymyksiä, jos jokin asia on esitetty
epäselvästi.

Olemme käyttäneet “juoksevaa numerointia”: harjoitustehtäviä, esimerkkejä yms. ei ole numeroitu
erikseen. Siten esimerkiksi harjoitustehtävään 2.12 johdatteleva esimerkki on 2.11.

Tämä luentokirjanen tarkastelee lähinnä vain tason tapausta; toisin sanoen tarkastelemme kahden
muuttujan yhtälöpareja eli (2×2)-matriiseja. Karkeasti otten kurssin ydin on tarkastella (abstraktia)
yhtälöparia

§

A11 x1 + A12 x2 = b1

A21 x1 + A22 x2 = b2

ja etsiä kaikki sen ratkaisut x1, x2 tai osoittaa että ratkaisuja ei ole olemassa. Osoittautuu, että rat-
kaisuja on olemassa tasan yksi pari x1, x2 , jos determinantti

D = A11A22 − A12A21 ̸= 0.

Tällöin yksikäsitteinen ratkaisu on itse asiassa
�

x1 = 1
D (A22 b1 − A12 b2)

x2 = 1
D (−A21 b1 + A11 b2)

.

Jos taas determinantti D = 0, niin ratkaisuja x1, x2 joko ei ole ollenkaan tai sitten niitä on ääretön
määrä (joskaan kaikki tason pisteet x1, x2 eivät ole juuri koskaan ratkaisuja).

Luentokirjasen jokaisen luvun lopussa on tähtiosio, joka ei kuulu varsinaisiin oppimistavoitteisiin.
Tähtiosiot tarkastelevat yleistä (m× n)-tapausta















A11 x1 + A12 x2 + · · · + A1n xn = b1

A21 x1 + A22 x2 + · · · + A2n xn = b2
...

Am1 x1 + Am2 x2 + · · · + Amn xn = bm

ja ne antavat vihjeen siitä, mitä opiskellaan jatkokurssilla Lineaarialgebra II.

Vaasassa 2. joulukuuta 2022
T.S.
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Luku 1

Yhtälöpari

Yhtälöparin ratkaisu piirtämällä

Kahden muuttujan x1 ja x2 yleinen lineaarinen yhtälöpari on muotoa

(1.1)
§

A11 x1 + A12 x2 = b1

A21 x1 + A22 x2 = b2
.

Yhtälöparin (1.1) ratkaisu on sellainen tason piste (x1, x2) , joka toteuttaa molemmat yhtälöt sa-
manaikaisesti. Koska molemmat yhtälöt määrittelevät suoran tasoon, on ratkaisu (jos sellainen on,
ja jos se on yksikäsitteinen) yhtälöiden määräämien suorien leikkauspiste. Jos yhtälöparin molem-
mat yhtälöt kuvaavat saman suoran, on ratkaisu kaikki ko. suoralla olevat pisteet. Jos yhtälöparin
määräämät suorat ovat yhdensuuntaisia, mutta eivät kuvaa samaa suoraa, niin ratkaisuja ei ole.

1.2 Esimerkki
Ratkaisemme piirtämällä yhtälöparit

(1.3)
§

−14x1 + 2x2 = 0
6x1 + 2x2 = 10 ,

(1.4)
§

10x1 − 2x2 = 4
5x1 − x2 = 2

ja

(1.5)
§

8x1 + 2x2 = 4
4x1 + x2 = 0 .

Alla olevasta piirroksesta näemme, että yhtälöparin (1.3) ratkaisu on (x1, x2) = (0.5, 3,5) , yhtälö-
parin (1.4) ratkaisu on koko suora (t, 5t − 2) , missä t on vapaa parametri, ja yhtälöparilla (1.5) ei
ole ratkaisuja.
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Yhtälöparien (1.3) (vasemmalla), (1.4) (keskellä) ja (1.5) (oikealla) ratkaisut.

1.6 Harjoitustehtävä
Ratkaise seuraavat yhtälöparit piirtämällä:

(i)
§

−4x1 + 3x2 = 0
6x1 + 2x2 = 2 ,

(ii)
§

4x1 − 2x2 = 2
6x1 + 2x2 = 3 .

1.7 Harjoitustehtävä
Määrää mitä yhtälöpareja seuravat kuvat kuvaavat.
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x1

x2

x1

x2

Yhtälöparin ratkaisu alkeisrivioperaatioilla

1.8 Esimerkki
Haluamme ratkaista yhtälöparin

(1.9)
§

4x1 + 2x2 = 1
5x1 − 4x2 = 6 .

Eliminoimme muuttujan x1 jälkimmäisestä yhtälöstä, jolloin saamme muuttujan x2 ratkaistuksi.
Eliminointi onnistuu vähentämällä ensimmäinen yhtälö 5/4 kertaa jälkimmäisestä yhtälöstä puolit-
tain. Nimittäin tällöin jälkimmäinen yhtälö saa muodon

5x1 − 4x2 −
5
4
· (4x1 + 2x2) = 6−

5
4
· 1

5x1 − 4x2 − 5x1 − 2.500x2 = 4.750

−6.500x2 = 4.750

x2 = −0.7308.

Sijoittamalla tämä uusi jälkimmäinen yhtälö paikalleen yhtälöpariin 1.9 saamme yhtälöparin

(1.10)
§

4x1 + 2x2 = 1
x2 = −0.7308
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Nyt vähentämällä vastavuoroisesti jälkimmäinen yhtälö 2 kertaa ensimmäisestä yhtälösta puo-
littain yhtälöparissa (1.10) saamme

4x1 + 2x2 − 2x2 = 1− 2 · (−0.7308)

4x1 = 2.4616

x1 = 0.6154.

Olemme löytäneet ratkaisun

(1.11)
§

x1 = 0.6154
x2 = −0.7308

1.12
Esimerkissä 1.8 käytimme seuraavia huomiota:

(i) Yhtälön saa kertoa puolittain nollasta poikkeavalla luvulla.
(ii) Yhtälöön saa lisätä puolittain toisen yhtälön.

Näitä huomioita kutsutaan alkeisrivioperaatioiksi.

1.13 Esimerkki
Haluamme ratkaista yhtälöparin

(1.14)
§

4x1 + 2x2 = 1
8x1 + 4x2 = 3 .

Eliminoimme muuttujan x1 jälkimmäisestä yhtälöstä vähentämällä ensimmäisen yhtälön 2 ker-
taa jälkimmäisestä yhtälöstä. Saamme yhtälöparin

§

4x1 + 2x2 = 1
0 = 1 .

Koska 0= 1 on absurdia, näemme että yhtälöparilla (1.14) ei ole ratkaisua.

1.15 Esimerkki
Haluamme ratkaista yhtälöparin

(1.16)
§

4x1 + 2x2 = 1
12x1 + 6x2 = 3 .
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Eliminoimme muuttujan x1 jälkimmäisestä yhtälöstä vähentämällä ensimmäisen yhtälön 3 ker-
taa jälkimmäisestä yhtälöstä. Saamme yhtälöparin

§

4x1 + 2x2 = 1
0 = 0 .

Koska 0= 0 aina, niin toinen yhtälö elimioitui täydellisesti. Tulkinta on, että kaikki pisteet suoralla
4x1+ 2x2 = 1 ovat yhtälöparin ratkaisuja. Toisin sanoen yhtälöparin molemmat yhtälöt määräsivät
saman suoran.

1.17 Harjoitustehtävä
Ratkaise harjoitustehtävän 1.6 yhtälöparit alkeisrivioperaatioilla.

1.18 Esimerkki
Haluamme ratkaista yhtälöparin

(1.19)
§

x1 + ax2 = 1
4x1 − 2x2 = 0 ,

missä a on jokin kiinnitetty, mutta mielivaltainen parametri.
Vähentämällä ensimmäinen yhtälö 4 kertaa jälkimmäisestä yhtälöstä eliminoituu x1 jälkimmäi-

sestä yhtälöstä ja saamme yhtälöparin
§

x1 + ax2 = 1
(−4a− 2)x2 = −4 .

Muuttuja x2 ratkeaa jälkimmäisestä yhtälöstä periaatteessa helposti:

(−4a− 2)x2 = −4

x2 =
−4
−4a− 2

x2 =
2

2a+ 1
.

Ainoa ongelma tässä on, että emme saa jakaa nollalla. Siten joudumme olettamaan, että a ̸= −1/2.
Olemme siis saaneet yhtälöparin, jossa x2 on ratkaistu jälkimmäisessä yhtälössä:

(1.20)
§

x1 + ax2 = 1
x2 = 2

2a+1
.

Nyt pitää eliminoida muuttuja x2 ensimmäisestä yhtälöstä. Tämä tapahtuu vähentämällä jälkim-
mäinen yhtälö a kertaa puolittain ensimmäisestä yhtälöstä. Saamme ratkaisun

(1.21)

�

x1 = 1− 2a
2a+1

x2 = 2
2a+1

,
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joka pätee, jos a ̸= −1/2. Jos a = −1/2, niin alkuperäinen yhtälöpari (1.19) on muotoa

§

x1 −
1
2 x2 = 1

4x1 − 2x2 = 0

Kertomalla ensimmäinen yhtälö 4:llä saamme yhtälöparin

§

4x1 − 2x2 = 4
4x1 − 2x2 = 0 ,

mistä näemme että tapauksessa a = −1/2 yhtälöparilla (1.18) ei ole ratkaisua.

1.22 Harjoitustehtävä
Ratkaise yhtälöpari

§

x1 + 6x2 = b
4x1 − 2x2 = 1

käyttämällä alkeisrivioperaatioita.

Tässä yhtälöparissa siis x1 ja x2 ovat muuttujia, joiden suhteen se on ratkaistava ja b on kiinni-
tetty, mutta mielivaltainen parametri.

1.23 Harjoitustehtävä
Millä parametrien a ja b arvoilla seuraavalla yhtälöparilla on (i) yksikäsitteinen ratkaisu, (ii) ääret-
tömästi ratkaisuja ja (iii) ei yhtään ratkaisua

§

5x1 − ax2 = 0
10x1 − 2x2 = b .

Yhtälöryhmän ratkaisu alkeisrivioperaatioilla*

Yleinen lineaarinen n:n muuttujan ja m:n yhtälön yhtälöryhmä on muotoa














A11 x1 + A12 x2 + · · · + A1n xn = b1

A21 x1 + A22 x2 + · · · + A2n xn = b2
...

Am1 x1 + Am2 x2 + · · · + Amn xn = bm

.

Jos tällä yhtälöryhmällä on yksikäsitteinen ratkaisu, niin se voidaan löytää alkeisrivioperaatioilla pe-
riaatteessa seuraavasti:
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(i) Eliminoidaan muuttuja x1 yhtälöistä 2, . . . , m lisäämällä yhtälö 1 sopivasti kerrottuna niihin.
Esimerkiksi yhtälöstä 2 saadaan x1 eliminoitua vähentämällä siitä puolittain yhtälö 1 kerrottuna
vakiolla A21/A11 .

(ii) Toistetaan kohta (i) muuttujille x2, . . . , xm−1 , jolloin kaikki muuttujat x1, . . . , x j on eliminoitu
yhtälöistä j + 1, . . . , m kaikilla j = 2, . . . , m− 1.

(iii) On saatu porrasmuotoinen yhtälöryhmä














B11 x1 + B12 x2 + · · · + B1n xn = c1

B22 x2 + · · · + B2n xn = c2
...

Bmn xn = cm

.

Tästä ratkeaa xn = cm/Bmn ja yleisesti yhtälöryhmä ratkeaa esimerkiksi takaisinsijoittamalla
muuttujat xn, xn−1, . . . , x2 yhtälöihin (m− 1), . . . , 1.

Mikäli yllä kuvattu algoritmi toimii moitteettomasti, löytää se yhtälöryhmän yksikäsitteisen rat-
kaisun. Muussa tapauksessa on syytä epäillä, että yhtälöryhmällä ei ole ratkaisua tai ratkaisuja on
äärettömän paljon. Jos n ̸= m , niin tyypillisesti yhtälöryhmällä ei ole yksikäsitteistä ratkaisua. Jos
muuttujia on liikaa (n > m), niin tyypillisesti ratkasiuja on äärettömästi, koska pelivaraa on liikaa.
Vastaavasti jos muuttujia on liian vähän (n < m), niin tyypillisesti ratkaisuja ei ole, koska on liikaa
rajoitteita.
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Vektorit lähinnä tasossa

Karteesinen muoto ja napamuoto

Samaistamme tason pisteet (x1, x2) tason vektorin x = (x1, x2) kanssa, joka alkaa origosta ja päät-
tyy pisteeseen (x1, x2) . Tätä tason pisteen esitysmuotoa kutsutaan karteesiseksi ja tällaista vektoria
kutsutaan myös nimellä paikkavektori.

2.1 Huomautus
Käytämme vektoreille lihavoitua merkintää x . Joissakin insinöörikirjoissa käytetään sen sijaan nuo-
limerkintää −→x tai vähemmän rumaa viivamerkintää x̄ .

Kahden vektorin x= (x1, x2) ja y= (y1, y2) summa on vektori

x+ y = (x1 + y1 , x2 + y2).

Summassa siis lasketaan yhteen komponenteittain.

Vektori x kerrottuna skalaarilla (eli luvulla) t on vektori

tx = (t x1, t x2).

Skalaarilla kerrottaessa siis venytetään tai typistetään komponenteittain samalla luvulla.

2.2 Esimerkki
Jos x= (1,0) ja y= (2, 2) , niin

x− 0.5y = (1,0) + (−0.5) · (2, 2)

= (1,0) + (−1,−1)

= (0,−1)
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Tason koordinaattivektorit ovat

e1 = (1,0) ja e2 = (0, 1).

Jokainen vektori x= (x1, x2) voidaan esittää koordinaattivektorien avulla summana

x = x1e1 + x2e2.(2.3)

2.4 Huomautus
Joissakin toisissa kirjoissa koordinaattivektoreille käytetään toisin merkintöjä. Insinööripuolella on

suosittua merkitä
−→
i , ī tai i koordinaattivektorille e1 ja

−→
j , j̄ tai j koordinaattivektorille e2 .

2.5 Esimerkki
Olkoon x= (4, 2) ja y= (−1, 3) . Laskemme vektorin z= 5x− 2y . Käyttämällä koordinaattiesitystä
(2.3) voimme laskea

z = 5x− 2y

= 5 · (4e1 + 2e2)− 2 · (−e1 + 3e2)

= 20e1 + 10e2 + 2e1 − 6e2

= 22e1 + 4e2,

eli z= (22, 4) .

2.6 Harjoitustehtävä
Olkoot x= (1,−1) , y= (1, 2) ja z= (0,3) . Laske

(i) 2x+ y− z ,
(ii) x− 3y+ 2z .

Voit halutessasi käyttää koordinaatiesitystä (2.3).

Vektorit v1 ja v2 ovat lineaarisesti riippuvia, jos toinen voidaan esittää toisen avulla. Tasossa tämä
tarkoittaa sitä, että vektorit ovat samalla suoralla. Toisin sanoen v2 = tv1 , missä t on jokin skalaari.
Vektorit v1 ja v2 ovat lineaarisesti riippumattomia, jos toista ei voi esittää toisen avulla. Lineaarisesti
riippumattomat vektorit virittävät koko tason, mikä tarkoittaa sitä että jokainen tason piste x voidaan
esittää niiden avulla:

x = a1v1 + a2v2.(2.7)

Lineaarisesti riippumattomia vektoreita kutsutaan myös vapaiksi ja kaavaa (2.7) kutsutaan vektorin
x esitykseksi kannassa (v1,v2)
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2.8 Esimerkki
Olkoon v1 = (0,−1) ja v2 = (−1,1) . Haluamme löytää esityksen (2.7) yleiselle tason pisteelle
x= (x1, x2) .

Yleiselle vektoriparille (v1,v2) vektoriyhtälö (2.7) tarkoittaa yhtälöparia

§

a1v11 + a2v21 = x1

a1v12 + a2v22 = x2
,

missä a1 ja a2 ovat muuttujia, joiden suhteen yhtälöpari on ratkaistava. Vektorit v1 ja v2 on annettu,
ja vektori x on mielivaltainen, mutta kiinnitetty parametri.

Tarkastelemme siis yhtälöparia

§

− a2 = x1

−a1 + a2 = x2
.

Vaihtamalla yhtälöiden järjestystä ja kertomalla uusi jälkimmäinen yhtälö −1:llä saamme yhtälöpa-
rin

§

−a1 + a2 = x2

a2 = −x1
.

Vähentämällä jälkimmäinen yhtälö ensimmäisestä yhtälöstä saamme yhtälöparin

§

−a1 = x2 + x1

a2 = −x1
.

Tästä näemmekin jo ratkaisun
§

a1 = −(x1 + x2)
a2 = −x1

,

eli kannassa (v1,v2) vektorin x= (x1, x2) esitys on

x = −(x1 + x2)v1 − x1v2.

Vektori x voidaan karteesisen muodon x= (x1, x2) lisäksi esittää myös napamuodossa eli napa-
koordinaatistossa x= 〈r,θ 〉 , missä r on vektorin x pituus eli normi ja θ on vektorin x virittämän
origon kautta kulkevan suoran ja x1 -akselin välinen kulma. Valitsemme kulman mitaksi radiaanit ja
tarkastelemme vain positiivisia kulmia. Toisin sanoen θ ∈ [0, 2π) .

Vektorin x normin r , jolle käytämme myös merkintää ∥x∥ , saamme tarkastelemalla suorakulmais-
ta kolmiota, jonka kärjet ovat pisteet (0, 0) , (x1, 0) ja (x1, x2) . Tällöin kateettien pituudet ovat x1 ja
x2 , ja hypotenuusan pituus on vektorin pituus. Siten Pythagoraan lauseen nojalla

∥x∥ =
q

x2
1 + x2

2 .

Jos vektorin pituus on yksi, kutsumme sitä yksikkövektoriksi. Karteesisesta muodosta x= (x1, x2)
saadaan vektorin x suuntainen yksikkövektori jakamalla se pituudellaan:

x̂ =
x
∥x∥

.
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Napamuodosta x= 〈r,θ 〉 vektorin x suuntaisen yksikkövektorin rakentaminen on helppoa:

x̂ = 〈1,θ 〉.

2.9 Esimerkki
Vektorin x= (2, 4) normi on

∥x∥ =
p

22 + 42

=
p

4+ 16

=
p

20

=
p

22 · 5

= 2
p

5

≈ 4.4721.

Vektorin x= (2, 4) suuntainen yksikkövektori on

x̂ =
x
∥x∥

=
(2, 4)
2
p

5

=
�

2

2
p

5
,

4

2
p

5

�

=
�

1
p

5
,

2
p

5

�

≈ (0.44721,0.89443).

Etsimme nyt napamuodon 〈r,θ 〉 karteesisesta muodosta (x1, x2) . Tiedämme jo, että

r = ∥x∥ =
q

x2
1 + x2

2 .

Suoraan tangentin määritelmästä seuraa, että

tanθ =
x2

x1
.

Siten

θ = arctan
x2

x1
,

jos x1 ̸= 0. Jos taas x1 = 0, niin kulma on joko π/2 tai 3π/4 riippuen siitä onko x2 posiviivinen vai
negatiivinen.
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2.10 Huomautus
Koska haluamme että kulmat θ ovat välillä [0, 2π) tulee funktiosta arctan valita mahdollisesti jokin
muu kuin päähaara. Käytännössä tämä hoituu helpoiten vähentämällä (tai pikemminkin lisäämällä)
saatu negatiivinen kulma θ = arctan x2/x1 koko kehän kulmasta 2π . Tässä on siis kyse siitä, että
kulma ei ole yksikäsitteinen, vaan kaikki kulmat θ + k2π , k ∈ Z , esittävät samaa kulmaa θ .

Kääntäen karteesinen muoto (x1, x2) saadaan napamuodosta 〈r,θ 〉 tarkastelemalla suorakulmais-
ta kolmiotamme, joka kärjet ovat pisteet (0, 0) , (x1, 0) ja (x1, x2) . Tällöin kolmion hypotenuusan pi-
tuus on r , joten sinin ja kosinin määritelmästä seuraa, että

x1 = r cosθ ,

x2 = r sinθ .

2.11 Esimerkki
(i) Olkoon x= (2,−4) . Etsimme sen napamuodon x= 〈r,θ 〉 . Vektorin x normi on

r = ∥x∥

=
q

x2
1 + x2

2

=
Æ

22 + (−4)2

=
p

4+ 16

=
p

20

≈ 4.4721.

Vektorin x kulma on

θ = arctan
−4
2

≈ −1.1071,

minkä saamme välille [0, 2π) vähentämällä se koko kehän kulmasta 2π:

θ ≈ 2π− 1.1071

= 5.1761.

Olemme löytäneet napaesityksen

x ≈ 〈4.4721, 5.1761〉.

(ii) Olkoon x = 〈3,π/4〉 . Etsimme sen karteesisen muodon x = (x1, x2) . Ensimmäinen koordi-
naatti on

x1 = r cosθ

= 3 cos
π

4
≈ 2.1213.
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Toinen koordinaatti on

x2 = r sinθ

= 3 sin
π

4
≈ 2.1213.

Olemme löytäneet karteesisen esityksen

x ≈ (2.1213, 2.1213).

2.12 Harjoitustehtävä
(i) Olkoon x= (1, 2.5) . Etsi x:n napaesitys.

(ii) Olkoon x= 〈4, 1.4〉 . Etsi x:n karteesinen esitys.

Kahden vektorin x= (x1, x2) ja y= (y1, y2) välinen pistetulo on

x · y = x1 y1 + x2 y2.(2.13)

2.14 Huomautus
Rakkaalla lapsella on monta nimeä ja symbolia. Pistetuloa kutsutaan myös sisätuloksi, skalaaritu-
loksi ja projektiotuloksi. Sille käytetään myös merkinnän x ·y lisäksi merkintöjä (x,y) , (x|y) , 〈x,y〉 ,
〈x|y〉 , ja x⊤y .

2.15 Huomautus
Pistetulo on symmetrinen ja bilineaarinen. Symmetrisyys tarkoittaa sitä, että

x · y = y · x.

Bilineaarisuus tarkoittaa sitä, että pistetulo on lineaarinen sekä x:n että y:n suhteen. Esimerkiksi
lineaarisuus x:n suhteen tarkoittaa sitä, että kaikilla skalaareilla a1 ja a2 sekä vektoreilla x1 ja x2

sekä y pätee

(a1x1 + a2x2) · y = a1(x1 · y) + a2(x2 · y).
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2.16 Huomautus
Pistetulon yhteys normiin on ilmeinen:

∥x∥2 = x · x.

Kääntäen pätee niin sanotusta suunnikassäännöstä

2∥x∥2 + 2∥y∥2 = ∥x+ y∥2 + ∥x− y∥2

seuraavat polarisaatioidentiteetit:

x · y =
1
4

�

∥x+ y∥2 − ∥x− y∥2
�

=
1
2

�

∥x∥2 + ∥y∥2 − ∥x− y∥2
�

.

Pistetulo x · y määrää vektorien x ja y välisen kulman. Tämä ei ole ihan ilmiselvää pistetulon
karteesesta määritelmästä (2.13). Napamuotoinen määritelmä kuitenkin paljastaa totuuden. Olkoot
x= 〈rx,θx〉 ja y= 〈ry,θy〉 . Tällöin

x · y = x1 y1 + x2 y2

= rx cosθx ry cosθy + rx sinθx ry sinθy

= rxry

�

cosθx cosθy + sinθx sinθy

�

.

Nyt muistamme tutun trigonometrisen kaavan

cos(α− β) = cosα cosβ + sinα sinβ .

Tämä antaa meille napamuotoisen sisätulon määritelmän

x · y = rxry cos(θx − θy).(2.17)

Napamuotoinen sisätulon määritelmä (2.17) antaa meille seuraavan kosinilauseen:

2.18
Pistetulo määrittää vektorien x ja y välisen kulman θ kosinilauseen kautta:

cosθ = x̂ · ŷ,(2.19)

missä x̂ ja ŷ ovat x:n ja y:n suuntaiset yksikkövektorit: x̂= x/∥x∥ ja ŷ= y/∥y∥ .
Yksi seuraus tästä on se, että vektorit x ja y ovat kohtisuoria jos ja vain jos

x · y = 0.

Toinen seuraus on se, että vektorit x ja y ovat yhdensuuntaisia jos ja vain jos

x · y = ∥x∥∥y∥.
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2.20 Harjoitustehtävä
Olkoon x= (1, 3) ja y= (2, a) . Mikä tulee parametrin a olla, jotta vektorit x ja y olisivat

(i) yhdensuuntaisia,
(ii) kohtisuoria?

Suorat ja vektorit: parametrimuoto ja normaalivektorimuoto

Jos suora kulkee origon 0 = (0, 0) ja pisteen p = (p1, p2) kautta, voidaan se esittää muodossa tp,
missä t on vapaa parametri. Yleinen suoran parametrimuoto on

tp+ b,(2.21)

missä t on vapaa parametri, p on suoran suuntavektori ja b= (b1, b2) on siirtovektori. Kaava (2.21)
tarkoittaa sitä, että kun t käy läpi kaikki luvut, niin kaava (2.21) piirtää tasoon suoran kuvaajan.

2.22 Huomautus
Esityksessä (2.21) ei ole mitään yksikäsitteistä. Esimerkiksi

t(1,1) + (0,2), −t(3,3) + (0,2) ja t(1, 1) + (−4,−2)

esittävät samaa suoraa, jonka kulmakerroinmuoto on

x2 = x1 + 2.

Kulmakerroinmuotoa

x2 = kx1 + β

vastaa esimerkiksi parametrimuoto
t(1, k) + (0,β).

Normaalimuotoa

a1 x1 + a2 x2 = b(2.23)

vastaavan parametrimuodon saamme vaikkapa käyttämällä apuna kulmakerroinmuotoa:

a1 x1 + a2 x2 = b

a2 x2 = −a1 x1 + b

x2 = −
a1

a2
x1 +

b
a2

.
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Eräs normaalimuotoa (2.23) vastaava parametrimuoto on siis

t(1,−a1/a2) + (0, b/a2).

Nopeuttamalla parametrin t “juoksuvauhdin” a2 -kertaiseksi, saamme parametrimuodon

t(a2,−a1) + (0, b/a2).

Jos suora kulkee pisteiden p = (p1, p2) ja q = (q1, q2) , niin kaikki pisteet x pisteiden p ja q
välisellä suoran pätkällä voidaan kirjoittaa muodossa x= tp+(1− t)q , missä t kuuluu välille [0, 1] .
Tästä laajentamalla näemme että pisteiden p ja q kautta kulkevalla suoralla on parametriesitys

(2.24) tp+ (1− t)q,

missä t on vapaa parametri.

Kutsuimme esitystä (2.23) suoran normaalimuodoksi. Merkitsemme a = (a1, a2) . Tällöin huo-
maamme, että (2.23) voidaan kirjoittaa sisätulon avulla

a · x = b.

Jos b = 0 (ja siten suora kulkee origon kautta), niin esitys (2.23) saa muodon a · x = 0, mikä tar-
kottaa, että a ja x ovat kohtisuoria. Toinen tapa sanoa tämä on, että a on x:n normaali. Nimitys
normaalimuoto juontuu tästä.
Huomautus: Seuraava tarina on vähän hankala, mutta alla oleva kuva selventänee tarinaa.

x1

x2

tp+ bb

p

b = (−2, 3)

p = (2,−1)

x1

x2

tp+ aa

p/‖p‖

a = (4/5, 8/5)

p/‖p‖ = (2/
√
5,−1/

√
5)

Etsimme sitten niin sanotun normaalivektorimuodon, kun suora ei kulje origon kautta. Tarkoitus
on esittää suora niin, että sen suuntavektori p on annetun vektorin a kohtisuora ja suora kulkee
pisteen a= (a1, a2) kautta. Tällöin vektori a määrää suoran yksikäsitteisesti. Erityisesti tällöin ∥a∥ on
suoran etäisyys origosta. Lähdemme liikkeelle parametrimuodosta (2.21). Jos p ja b ovat kohtisuoria,
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eli p ·b= 0, olemme löytäneet normaalivektorin: a= b . Oletamme sitten, että p ·b ̸= 0. Muuttamalla
“kulkuvauhtia” t , voimme olettaa että p on yksikkövektori, eli ∥p∥ = 1. Tämä helpottaa merkintöjä
hieman jatkossa. Tarkoituksenamme on siis löytää sellainen suoran (2.21) piste a = t0p + b , että
a · p= 0. Saamme siis parametrille t0 yhtälön

(t0p+ b) · p = 0.

Tästä t0 ratkeaa suoraviivaisesti:

(t0p+ b) · p = 0

t0p · p+ b · p = 0

t0 + b · p = 0

t0 = −b · p.

Yllä käytimme hyväksi ensiksi sisätulon bilinearisuutta, ja toiseksi sitä että p on yksikkövektori, jolloin
p ·p= ∥p∥2 = 1. Nyt suoraa (2.21) vastaava normaalivektori a saadaan sijoittamalla saatu t0 = −b ·p
suoran parametrimuotoon (2.21):

a = t0p+ b

= (−b · p)p+ b

Näin saatua vektoria a kutsumme suoran normaalivektoriksi ja esitysmuotoa tp + a suoran nor-
maalivektorimuodoksi.

2.25 Esimerkki
Olkoon suora annettu normaalimuodolla

x1 + x2 = 1.(2.26)

Etsimme sen normaalivektorimuodon. Heti aluksi huomaamme (piirrä kuva), että eräs paramet-
rimuoto tp + b suorallemme saadaan asettamalla p = (1,−1) ja b = (0, 1) . Suuntavektori p
saadaan yksikkövektoriksi jakamalla se pituudellaan ∥p∥ =

p
2. Olkoon siis uusi suuntavektori

p= (1/
p

2,−1/
p

2) . Tällöin

a = (−b · p)p+ b

=
�

− (0, 1) · (1/
p

2,−1/
p

2)
�

p+ b

=
1
p

2
p+ b

=
1
p

2
(1/
p

2,−1/
p

2) + (0,1)

= (1/2,−1/2) + (0, 1)

= (1/2,1/2).
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2.27 Harjoitustehtävä
Etsi seuraavien suorien jokin parametriesitys ja normaalivektorimuoto:

(i) x1 = 8x2 − 3,
(ii) 2x1 − 3x2 = 7.

Vektorit korkeammissa avaruuksissa*

Yleinen n-ulotteinen vektori on muotoa x= (x1, x2, . . . , xn) . Yleisten vektorien x= (x1, x2, . . . , xn) ja
y= (y1, y2, . . . , yn) summa määrätään pisteittäin eli komponenteittain:

x+ y = (x1 + y1, x2 + y2, . . . , xn + yn).

Skalaarilla t kerrottu vektori on komponenteittain venytys tai typistys

tx = (t x1, t x2, . . . , t xn)

Vektorit v1,v2, . . . ,vm ovat lineaarisesti riippumattomia eli vapaita, jos mikään niistä ei ole min-
kään muiden lineaarikombinaatio. Eli ei voi olla esimerkiksi niin, että

v4 = 2v1 − 0.3v2 + 10v6.

Jos vektorit v1,v2, . . . ,vm ovat lineaarisesti riippumattomia, niin jokainen niistä määrittelee uuden
suunnan, jossa n-ulotteisessa avaruudessa voi kulkea. Yleisessä n-ulotteisessa avaruudessa voi olla
korkeintaan n lineaarisesti riippumatonta vektoria.

Vektorin x = (x1, x2, . . . , xn) normi saadaan käyttämällä Pythagoraan lausetta (n− 1) kertaa pe-
räkkäin:

∥x∥ =
q

x2
1 + x2

2 + · · ·+ x2
n.

Vektorien x= (x1, x2, . . . , xn) ja y= (y1, y2, . . . , yn) pistetulo on

x · y = x1 y1 + x2 y2 + · · ·+ xn yn.

Pistetulo on symmetrinen ja bilineaarinen. Kosinikaava pätee. Lisäksi kaava ∥x∥2 = x · x pätee.

Napamuodot ovat viheliäisiä n-ulotteisessa avaruudessa. Niitä on syytä välttää jos vain mahdol-
lista.

Kaikki osion “Suorat ja vektorit: parametrimuoto ja normaalivektorimuoto” tulokset pätevät n-
ulotteisessa avaruudessa luonnollisella tavalla yleistäen.



Luku 3

Matriisilaskentaa lähinnä tasossa

Matriisit ja niiden perusoperaatiot

Matriisi on lukuja taulukossa1. Tarkastelemme lähinnä ainoastaan (2 × 2)-matriiseja, eli matriiseja,
jotka ovat muotoa

A =
�

A11 A12

A21 A22

�

.

Tavallisesti tulkitsemme että vektorit x= (x1, x2) ovat (2× 1)-matriiseja eli pystyvektoreita

x =
�

x1

x2

�

.

Matriisin transpoosi saadaan, kun sen rivit ja sarakkeet vaihdetaan päittäin. Merkitsemme trans-
poosioperaatiota yläindeksillä ⊤ .

Jos x on pystyvektori, niin x⊤ = [x1 x2] on (1× 2)-matriisi eli vaakavektori. Tarpeen vaatiessa
saatamme tulkita vektorin x= (x1, x2) myös vaakavektoreiksi.

3.1 Esimerkki
Jos

A =
�

1 2
30 40

�

,

niin

A⊤ =
�

1 30
2 40

�

.

1ja musiikki on paineaaltoja ilmassa.
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Matriisit ovat samanmuotoisia, jos niillä on yhtä monta riviä ja saraketta. Kaikki (2×2)-matriisit
ovat samanmuotoisia keskenään. Samoin kaikki pystyvektorit ovat keskenään samanmuotoisia ja kaik-
ki vaakavektorit ovat keskenään samanmuotoisia. Sen sijaan (2×2)-matriisit, pystyvektorit ja vaaka-
vektorit ovat toisiinsa nähden erimuotoisia.

Samanmuotoisten matriisien summa määritellään alkioittain: jos

A =
�

A11 A12

A21 A22

�

ja B =
�

B11 B12

B21 B22

�

,

niin

A+B =
�

A11 + B11 A12 + B12

A21 + B21 A22 + B22

�

.

Vastaavasti, jos x= [x1 x2] ja y= [y1 y2] ovat vaakavektoreita, niin

x+ y = [x1 + y1 x2 + y2].

Jos x on vaakavektori ja y on pystyvektori, niin x + y ei ole määritelty, koska x ja y eivät ole
samanmuotoisia. Samoin, jos A on (2× 2)-matriisi ja x on joko pysty- tai vaakavektori, niin A+ x ei
ole määritelty.2

Matriisin kertominen skalaarilla määritellään alkioittain samaan tapaan kuin vektoreilla: jos

A =
�

A11 A12

A21 A22

�

ja λ on skalaari, niin

λA =
�

λA11 λA12

λA21 λA22

�

.

3.2 Harjoitustehtävä
Olkoot

A =
�

0 2
7 1

�

ja B =
�

3 0
6 0

�

.

Laske

(i) A+ 2B,
(ii) 33A⊤ − 7B.

Matriisin riveille ja sarakkeille käytämme pallonotaatiota. Matriisin

A =
�

A11 A12

A21 A22

�

2Joskus on tosin luonnollista laajentaa määritelmiä “ilmeisellä tavalla”, mitä se sitten ikinä tarkoittaakaan.
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i :s rivi on vaakavektori

Ai• = [Ai1 Ai2]

ja sen j :s sarake on pystyvektori

A• j =
�

A1 j

A2 j

�

.

3.3 Huomautus
Pallonotaation voi tulkita niin, että pallo tarkoittaa “vapaana juoksevaa otusta”. Esimerkiksi A•i tar-
koittaa sitä, että sarake i on kiinnitetty ja rivi “juoksee vapaana”. Toinen tapa tulkita pallonotaatio
on lukea pallo sanalla “kaikki” (rivit tai sarakkeet).

3.4 Huomautus
Käyttämällä lohkomatriisimerkintää ja transpooseja havaitsemme, että esimerkiksi

A = [A•1 A•2] = [A⊤1• A⊤2•]
⊤.

Matriisitulo määritellään hieman kinkkisesti: Jos A ja B ovat molemmat (2× 2)-matriiseja, niin
AB on (2× 2)-matriisi C , jonka alkiot ovat

Ci j = Ai• · B• j.(3.5)

Toisin sanoen tulomatriisin C= AB alkio Ci j on matriisin A i :nnen rivin ja matriisin B j :nnen sarak-
keen pistetulo. Vielä toisin sanoen C= AB on matriisi jonka alkiot ovat

Ci j =
2
∑

k=1

AikBk j.

3.6 Huomautus
Jos haluamme pitää tiukasti kiinni tulkinnasta, että vektorit ovat nimenomaan pystyvektoreita, niin
silloin kaava (3.5) on formaalisti väärin ja se pitää korvata kaavalla

Ci j = A⊤i• · B• j.(3.7)

Kaava (3.7) eroaa kaavasta (3.5) ainoastaan siten, että Ai• on vaakavektori ja A⊤i• on pystyvektori.

Yleisemmin, jos matriisilla A on yhtä monta saraketta kuin matriisilla B on rivejä, niin tulomat-
riisin C = AB alkio Ci j on matriisin A i :nnen rivin Ai• ja matriisin B j :nnen sarakkeen B• j välinen
pistetulo. Formaalisti siis samoin kuten kaavassa (3.5).
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3.8 Esimerkki
Olkoot

A =
�

0 2
7 1

�

ja B =
�

3 8
6 4

�

.

Tällöin C= AB on (2× 2)-matriisi ja se lasketaan seuraavasti:

C11 = A1• · B•1
= (A11, A12) · (B11, B21)

= (0, 2) · (3,6)

= 0 · 3+ 2 · 6

= 12,

C12 = A1• · B•2
= (A11, A12) · (B12, B22)

= (0, 2) · (8,4)

= 0 · 8+ 2 · 4

= 8,

C21 = A2• · B•1
= (A21, A22) · (B11, B21)

= (7, 1) · (3,6)

= 7 · 3+ 1 · 6

= 27,

C22 = A2• · B•2
= (A21, A22) · (B12, B22)

= (7, 1) · (8,4)

= 7 · 8+ 1 · 4

= 60.

Siispä

C = AB =
�

12 8
27 60

�

.
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3.9
Matriisitulo on siitä ikävä, että se ei ole vaihdannainen: yleisesti ottaen

AB ̸= BA.

Muuten matriiseilla voi laskea kuten luvuilla:

(i) (AB)C= A(BC) ,
(ii) (A+B)C= AC+BC ,

(iii) C(A+B) = CA+CB .

3.10 Harjoitustehtävä
Olkoot A ja B kuten esimerkissä 3.8. Laske BA .

Vektorien välinen matriisitulo voidaan määritellä formaalisti samalla tavalla kuin matriisien. Täl-
löin osoittautuu, että jos x = [x1 x2]⊤ ja y = [y1 y2]⊤ ovat pystyvektoreja, niin xy ei ole määritelty
eikä x⊤ y⊤ ole määritelty, mutta

xy⊤ =
�

x1

x2

�

[y1 y2] =
�

x1 y1 x1 y2

x2 y1 x2 y2

�

ja

x⊤y = [x1 x2]
�

y1

y2

�

= x1 y1 + x2 y2 = x · y.

Jos A on (2 × 2)-matriisi, niin xA ei ole määritelty, koska x:llä on yksi sarake ja A:lla on kaksi
riviä. Samasta syystä, mutta rivit ja sarakkeet kääntäen, tulo Ax⊤ ei ole määritelty. Sen sijaan

x⊤A = [x1 x2]
�

A11 A12

A21 A22

�

= [A11 x1 + A21 x2 A12 x1 + A22 x2]

ja

Ax =
�

A11 A12

A21 A22

��

x1

x2

�

=
�

A11 x1 + A12 x2

A21 x1 + A22 x2

�

.(3.11)

3.12 Huomautus
Kaava (3.11) liittyy yhtälöpareihin. Nimittäin sen nojalla yhtälöpari

§

A11 x1 + A12 x2 = b1

A21 x1 + A22 x2 = b2
.

voidaan kirjoittaa matriisein ja vektorein kompaktisti muodossa

Ax= b.
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Käänteismatriisi ja determinantti

Olkoon 0 (nolla) vektori tai matriisi, jonka alkiot ovat nollia.

3.13 Huomautus
Jos haluamme olla tarkkoja, niin meillä on erilaisia nollia:

02×2 =
�

0 0
0 0

�

, 02×1 =
�

0
0

�

ja 01×2 = [0 0].

Jatkossa kuitenkin käytämme merkintää 0 näille kaikille ja oletamme että asiayhteydestä käy sel-
väksi, mitä nollaa tarkoitamme.

Matriisinolla 0 toimii matriisien yhteenlaskun tapaan kuten skalaarinolla 0 toimii skalaarien yh-
teenlaskussa: A+ 0= A= 0+A kaikilla matriiseilla A .

Skalaariykköstä 1 vastaa matriisipuolella identiteettimatriisi

I =
�

1 0
0 1

�

.

Nimittäin tällöin AI= IA= A kaikilla (2× 2)-matriiseilla A .

Matriisilla jakaminen on kinkkistä. Haluamme määrittää sellaisen käänteismatriisin A−1 , että
A−1A = I (jolloin myös automaattisesti AA−1 = I). Tämä vastaa skalaarijakolaskua, missä a−1a = 1,
eli a−1 = 1/a . Skalaaripuolella tiedämme, että nollalla ei saa jakaa. Matriisipuolella on enemmän
rajoituksia.

Yritämme seuraavaksi kääntää (2× 2)-matriiseja

A =
�

A11 A12

A21 A22

�

.

Yksi tapa yrittää kääntää (2× 2)-matriisi on tarkastella laajennettua (2× 4)-lohkomatriisia [A I] ja
yrittää muuttaa tämä alkeisrivioperaatioilla laajennetuksi lohkomatriisiksi [I B] . Jos tässä onnistu-
taan, niin siloin B = A−1 . Menetelmä perustuu seuraavaan ajattelutapaan: Matriisin A kääntäminen
tarkoittaa lineaarisen yhtälöryhmän

Ax = y(3.14)

ratkaisemista, missä y on mielivaltainen. Tämän yhtälöryhmän yleinen ratkaisu y:n funktiona on

A−1y = x.(3.15)

Huomaamalla, että x = Ix ja y = Iy , ja kirjoittamalla yhtälöryhmä (3.14) niin että muuttujat x ja y
vastaavat sarakkeita, saamme laajennetun lohkomatriisin [A I] . Jos tämä laajennettu lohkomatriisi
saadaan alkeisrivioperaatioilla muotoon [I B] , niin se vastaa yhtälöryhmää (3.15). Toisin sanoen B=
A−1 .
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Alkeisrivioperaatiot ovat samat, kuin yhtälöparien tapauksessa:

(i) Rivin saa kertoa (puolittain) nollasta poikkeavalla luvulla.
(ii) Rivin saa lisätä (puolittain) toiseen riviin.

3.16 Esimerkki
Haluamme kääntää matriisin

A =
�

2 0
2 4

�

.

Laajennettu lohkomatriisi kääntämistä varten on

[A I] =
�

2 0 1 0
2 4 0 1

�

.

Vähentämällä ensimmäinen rivi toisesta rivistä saamme
�

2 0 1 0
2 4 0 1

�

⇝
�

2 0 1 0
0 4 −1 1

�

Jakamalla sitten ensimmäinen rivi 2:lla ja toinen rivi 4:llä saamme

�

2 0 1 0
0 4 −1 1

�

⇝
�

1 0 1
2 0

0 4 −1 1

�

⇝
�

1 0 1
2 0

0 1 −1
4

1
4

�

.

Tästä päättelemme, että

A−1 =

�

1
2 0
−1

4
1
4

�

.

3.17 Esimerkki
Haluamme kääntää matriisin

A =
�

2 3
2 3

�

.

Laajennettu lohkomatriisi kääntämistä varten on

[A I] =
�

2 3 1 0
2 3 0 1

�

.

Vähentämällä ensimmäinen rivi toisesta rivistä saamme
�

2 3 1 0
2 3 0 1

�

⇝
�

2 3 1 0
0 0 −1 1

�

.

Toiselta riviltä eliminoitui liikaa alkioita. Tästä eteenpäin emme voi jatkaa. Tämä antaa ymmärtää,
että matriisi A ei ole kääntyvä.
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3.18 Esimerkki
Haluamme kääntää matriisin

A =
�

4 2
8 a

�

,

missä a on mielivaltainen, mutta kiinnitetty parametri.

Laajennettu lohkomatriisi kääntämistä varten on

[A I] =
�

4 2 1 0
8 a 0 1

�

.

Vähentämällä ensimmäinen rivi 2 kertaa toisesta rivistä saamme
�

4 2 1 0
8 a 0 1

�

⇝
�

4 2 1 0
0 a− 4 −2 1

�

.

Vähentämällä toinen rivi 2/(a− 4) kertaa ensimmäisestä rivistä saamme

�

4 2 1 0
0 a− 4 −2 1

�

⇝
�

4 0 1+ 4
a−4 −

2
a−4

0 a− 4 −2 1

�

=
�

4 0 a
a−4 −

2
a−4

0 a− 4 −2 1

�

.

Jakamalla toinen rivi luvulla a− 4 ja sitten ensimmäinen rivi luvulla 4 saamme

�

4 0 a
a−4 −

2
a−4

0 a− 4 −2 1

�

⇝
�

4 0 a
a−4 −

2
a−4

0 1 − 2
a−4

1
a−4

�

⇝
�

1 0 a
4a−16 −

1
2a−8

0 1 − 2
a−4

1
a−4

�

.

Siten, jos a ̸= 4, niin

A−1 =

�

a
4a−16 −

1
2a−8

− 2
a−4

1
a−4

�

=
1

a− 4

� a
4 −

1
2

−2 1

�

.

Jos taas a = 4, niin matriisi A ei ole kääntyvä. Perustelu tälle tulee myöhemmin.

3.19 Esimerkki
Haluamme kääntää matriisin

A =
�

a 0
b 1

�

,

missä a ja b ovat mielivaltaisia, mutta kiinnitettyjä parametreja

Laajennettu lohkomatriisi kääntämistä varten on

[A I] =
�

a 0 1 0
b 1 0 1

�

.
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Jakamalla ensimmäinen rivi a :llä ja vähentämällä näin saatu rivi b kertaa toisesta rivistä saamme

�

a 0 1 0
b 1 0 1

�

⇝
�

1 0 1
a 0

b 1 0 1

�

⇝
�

1 0 1
a 0

0 1 − b
a 1

�

.

Näemme, että, jos a ̸= 0, niin

A−1 =

�

1
a 0
− b

a 1

�

=
1
a

�

1 0
−b a

�

.

Jos a = 0, niin osoittautuu, että A ei ole kääntyvä.

Yleisen (2× 2)-matriisin voi kääntää periaatteessa seuraavasti. Laajennettu lohkomatriisi on

[A I] =
�

A11 A12 1 0
A21 A22 0 1

�

.

Aluksi vähennämme ensimmäisen rivin toisesta rivistä niin monta kertaa että saamme nollan toisen
rivin ensimmäiseksi alkioksi. Seuraavaksi vähennämme toisen rivin ensimmäisestä rivistä niin monta
kertaa, että saamme ensimmäisen rivin toisen alkion nollaksi. Lopuksi kerromme rivit sopivilla va-
kioilla. Merkitsemällä nokkelasti

D = A11A22 − A12A21.

ja jättämällä kiusallisen rasittavat välivaiheet väliin, saamme

�

A11 A12 1 0
A21 A22 0 1

�

⇝ · · · ⇝
�

1 0 A22
D −A12

D

0 1 −A21
D

A11
D

�

Tästä luemme, että yleinen ratkaisu (2× 2)-matriisin A käänteismatriisille on

A−1 =
1
D

�

A22 −A12

−A21 A11

�

.(3.20)

Lukua

D = det(A) = A11A22 − A12A21

kutsutaan matriisin A determinantiksi. Edellinen (sivuutettu) pyörittely antaa oikean lopputulok-
sen, jos ja vain jos det(A) ̸= 0. Lisäksi, pienellä piirroksella näemme, että |det(A)| on matriisin A
rivivektorien (tai yhtä hyvin sarakevektorien) virittämän suunnikkaan pinta-ala.
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3.21
Seuraavat ovat yhtäpitäviä:

(i) Matriisi A on kääntyvä.
(ii) det(A) ̸= 0.

(iii) Matriisin A sarakevektorit A•1 ja A•2 ovat lineaarisesti riippumattomia.
(iv) Ei ole olemassa sellaista lukua λ , että A•1 = λA•2 .
(v) Matriisi A⊤ on kääntyvä.

(vi) det(A⊤) ̸= 0.
(vii) Matriisin A rivievektorit A1• ja A2• ovat lineaarisesti riippumattomia.

(viii) Ei ole olemassa sellaista lukua λ , että A1• = λA2• .

3.22 Huomautus
Kuten tunnettua rakkaalla lapsella on monta nimeä. Kääntyvälle matriisille on myös nimet säännöl-
linen, epäsingulaarinen ja ei-degeneroitunut.

3.23 Harjoitustehtävä
Käännä, mikäli mahdollista, matriisit

(i)

A =
�

2 1
2 4

�

,

(ii)

B =
�

2 4
3 6

�

.

3.24 Harjoitustehtävä
Määrää vapaat parametrit a ja b siten, että matriisi A on kääntyvä

A =
�

2 a
1 b

�

.
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Keräämme tähän loppuun vielä matriisien transpoosien ja determinanttien sekä tulojen ja kääntä-
misen laskusääntöjä:

3.25 Huomautus
Transpoosi toteuttaa seuraavat laskusäännöt:

(i) (A⊤)⊤ = A ,
(ii) (A+B)⊤ = A⊤ +B⊤ ,

(iii) (AB)⊤ = B⊤A⊤ ,
(iv) (A−1)⊤ = (A⊤)−1 ,
(v) (λA)⊤ = λA⊤ .

Determinantti toteuttaa seuraavat laskusäännöt:

(i) det(A⊤) = det(A) ,
(ii) det(A−1) = det(A)−1 ,

(iii) det(AB) = det(A)det(B) ,
(iv) det(λA) = λ2 det(A) .

Tulolle pätee valitettavasti yleisesti AB ̸= BA , mutta onneksi

(i) (AB)C= A(BC) ,
(ii) (A+B)C= AC+BC ,

(iii) C(A+B) = CA+CB .

Tulon käänteismatriisille pätee kaava

(AB)−1 = B−1A−1.

3.26 Harjoitustehtävä
Olkoot a ja b mielivaltaisia parametreja sekä

A =
�

a 2
0 4

�

ja B =
�

3 0
1 b

�

.

Laske (AB)−1 , silloin kun se on olemassa.
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Matriisit korkeammissa avaruuksissa*

Yleisesti matriisi A on lukuja taulukossa, (m× n)-matriisissa on m riviä ja n saraketta. Esimerkiksi
(7× 4)-matriisi on muotoa

A =



















A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

A51 A52 A53 A54

A61 A62 A63 A64

A71 A72 A73 A74



















.

Kaikki edellä esitetty, paitsi kääntäminen ja determinantti, toimii ilmeisellä tavalla (m × n)-
matriiseille. Esimerkiksi matriisitulo määritellään (n × p)-matriisille A ja (p × m)-matriisille B
asettamalla C= AB on se matriisi, jolle

Ci j = Ai• · B• j,

tai yhtä hyvin

Ci j =
p
∑

k=1

AikBk j.

Tämä on formaalisti sama kuin tason määritelmä (3.5).

Matriisin kääntäminen on takkuista: Jotta matriisi olisi käänntyvä, on sen oltava neilömatriis, eli
muotoa n × n . Neliömatriisin A käänteismatriisi määritellään toki helposti. Se on se matriisi A−1 ,
joka toteuttaa A−1A = I , missä I on (n× n)-identiteettimatriisi, eli matriisi, jossa on ykköset lävistä-
jällä ja nollat muualla. Käänteismatriisin voi myös yrittää löytää muuntamalla laajennetun (n× 2n)-
lohkomatriisin [A I] alkeisrivioperaatioilla laajennetuksi lohkomatriisiksi [I B] , jolloin A−1 = B . Tämä
onnistuu täsmälleen silloin, kun matriisin A determinantti ei ole nolla.

Yleisen matriisin determinantin laskeminen, jopa sen esittäminen, (n×n)-tapauksessa on vaikeaa.
Esitämme sen tässä vain ja ainoastaan peloittelutarkoituksessa:

det(A) =
∑

j1, j2,..., jn

sgn( j1, j2, . . . , jn)A1 j1A2 j2 · · ·An jn ,

missä summa käy yli kaikki lukujen {1,2, . . . , n} permutaatiot, ja sgn on 1 tai -1 sen mukaan onko
permutaatio parillinen vai pariton. Intuitiivisesti determinantti kuvaa (etumerkkiä vaille) matriisin A
sarakevektorien (tai yhtä hyvin rivivektorien) virittämän n-ulotteisen hypersuunnikassärmiön “tila-
vuutta”.
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Matriisit ja lineaarikuvaukset

Tähän asti olemme katsoneet matriiseja algebrallisesti: ne ovat olleet vain tiettyjä otuksia, joita las-
ketaan jollain tietyllä tavalla. Tässä luvusssa esitämme matriiseille tulkinnan, eli katsantokannan, li-
neaarisina funktioina, eli kuvauksina. Lyhtyesti tämän luvun samoma on seuraava: jos ajattelemme
muotoa Ax muuttujan x funktiona, on tämä funktio lineaarinen; ja kääntäen jos f(x) on lineaarinen
funktio, niin se on välttämättä muotoa f(x) = Ax jollekin matriisille A .

Funktioalgebraa

Funktio eli kuvaus f joukolta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täs-
mälleen yhden joukon Y alkion. Tälle käytetään usein merkintää f : X → Y . Joukkoa X kutsutaan
funktion f lähtö- tai määrittelyjoukoksi ja joukkoa Y kutsutaan funktion f maali- tai arvojou-
koksi. Määrittelyjoukon X alkioita x kutsutaan usein funktion argumenteiksi. Maalijoukon Y niitä
alkioita, joille y = f (x) jollakin x kutsutaan usein funktion kuviksi, kuva-alkioiksi tai kuvapisteik-
si. Niitä määrittelyjoukon X pisteitä x , joille y = f (x) kutsutaan kuvapisteen y alkukuviksi tai
alkupisteiksi.

Funktio f : X → Y on

(i) injektio jos jokaisella kuvalla y = f (x) on korkeintaan yksi alkukuva,
(ii) surjektio jos jokaisella kuvajoukon Y alkoilla y on jokin alkukuva x joukossa X ,

(iii) bijektio jos se on sekä injektio että surjektio.

Bijektion f : X → Y käänteisfunktio on funktio f −1 : Y → X , jolle x = f −1(y) tismalleen silloin
kun y = f (x) . Jos f ei ole bijektio, niin sille ei ole käänteisfunktiota. Jos taas f on bijektio, niin sen
käänteisfunktion käänteisfunktio on se itse: ( f −1)−1 = f .

Reaalilukusuoralle käytämme merkintää R . Reaalitaso on R2 .

Vektoriarvoisille funktioille f: R→ R2 tai f: R2→ R2 käytämme tarvittaessa komponenttimerkin-
tää f= ( f1, f2) tai pystyvektorimerkintää f= [ f1 f2]⊤ .

Jatkossa olemme kiinnostuneita lähinnä funktioista suoralta R tasolle R2 , tasolta R2 suoralle R
ja tasolta R2 itselleen.
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4.1 Esimerkki
Olkoon funktio f : R2→ R annettu kaavalla

f (x) = f
�

[x1 x2]
⊤
�

= f (x1, x2)

= x1 + 42x2.

Tällöin f on surjektio, sillä jokaisella kuvajoukon pisteellä y ∈ R on alkukuva. Esimerkiksi x =
[y 0]⊤ kelpaa alkukuvaksi f (x) = y . Funktio f ei ole kuitenkaan bijektio, sillä se ei ole injetio.
Esimerkiksi pisteen y = 0 alkukuvia ovat sekä x = [0 0]⊤ ja x = [−42 1]⊤ , sillä sekä f (0, 0) = 0
että f (−42,1) = 0. Funktiolla f : R2→ R ei ole käänteisfunktiota, koska se ei ole bijektio.

4.2 Huomautus
Funktio f : X → Y on bijektio täsmälleen silloin, kun yhtälöllä y = f (x) on jokaiselle maalijoukon
Y alkiolle y täsmälleen yksi ratkaisu x lähtöjoukossa X . Jos f ei ole injektio, niin siitä voi yrittää
tehdä bijektion rajoittamalla lähtöjoukkoa X . Vastaavasti jos f ei ole surjektio, siitä voi yrittää tehdä
bijektion rajoittamalla maalijoukkoa Y .

4.3 Esimerkki
Olkoon f= [ f1 f2]⊤ : R→ R2 annettu kaavalla

f(x) =
�

f1(x)
f2(x)

�

=
�

x
3x

�

.

Tällöin funktio f: R → R2 ei ole surjektio, sillä esimerkiksi pisteellä y = [1 2]⊤ ei ole alkukuvaa.
Funktio f: R→ R2 on kuitenkin injektio, sillä jos f(x1) = y ja f(x2) = y , niin x1 = x2 = y1

4.4 Esimerkki
Olkoon R reaalilukusuora, R+ sen ei-negatiiviset pisteet ja R∗+ sen aidosti positiiviset pisteet.

(i) Funktio f : R→ R , joka on annettu kaavalla f (x) = x2 ei ole injektio, sillä esimerkiksi pisteet
−2 ja 2 kuvautuvat molemmat pisteeksi 4. Se ei ole myöskään surjektio, sillä esimerkiksi
pisteellä −1 ei ole alkukuvaa. Funktio f : R → R+ on surjektio. Funktio f : R+ → R+ on
bijektio ja sen käänteisfunktio f −1 : R+→ R+ on f −1(x) =

p
x .

(ii) Funktio f : R→ R , joka on annettu kaavalla f (x) = ex on injektio, sillä se on aidosti kasvava.
Se ei ole kuitenkaan surjektio, sillä esimerkiksi pisteellä 0 ei ole alkukuvaa. Funktio f : R→ R∗+
on bijektio ja sen käänteisfunktio f −1 : R∗+→ R on f −1(x) = ln x .



Luku 4 Matriisit ja lineaarikuvaukset 35

4.5 Esimerkki
(i) Olkoon f : R2→ R annettu kaavalla

f (x) = x2
1 + x2

2 .

Toisin sanoen f (x) on vektorin x normin neliö. Tällöin f selvästikään ei ole injektio eikä
surjektio. Rajoittuma f : R2→ R+ on surjektio, muttei injektio.

(ii) Olkoon f: R→ R2 annettu kaavalla

f(x) =
�

f1(x)
f2(x)

�

=
�

−x
ex

�

.

Tällöin f on injektio, sillä sen komponentit ovat molemmat injektioita, mutta f ei ole surjektio,
sillä esimerkiksi pisteellä [0 0]⊤ ei ole alkukuvaa.

4.6 Esimerkki
Olkoon polar funktio, joka kuvaa karteesiset koordinaatit napakoordinaateiksi. Funktion polar
määrittelyjoukko on taso R2 ja sen arvojoukko on R+ × [0, 2π) , missä R+ tarkoittaa ei-negatiivisia
reaalilukuja ja [0,2π) tarkoittaa reaalilukuja θ , joille 0 ≤ θ < 2π , ja tulomerkintä R+ × [0,2π)
tarkoittaa joukkoa, joka koostuu pareista (r,θ ) = 〈r,θ 〉 , missä r ∈ R+ ja θ ∈ [0, 2π) .

Funktion polar= [polar1 polar2]
⊤ : R2→ R+ × [0,2π) kaava on

polar(x) =

�

∥x∥ , arctan
x2

x1

�

,

missä funktiosta arctan pitää valita sopiva haara.

Funktion polar käänteisfunktio polar−1 tulee kaavasta

polar−1(r,θ ) =
�

polar−1
1 (r,θ )

polar−1
2 (r,θ )

�

=
�

r cosθ
r sinθ

�

.

Jos g : X → Y ja f : Y → Z , niin yhdistetty funktio f ◦ g : X → Z on funktio, joka määräytyy
kaavasta ( f ◦ g)(x) = f (g(x)) . Jos f ja g ovat molemmat bijektioita, niin f ◦ g on myös bijektio ja
( f ◦ g)−1 = g−1 ◦ f −1 .

4.7 Huomautus
f ◦ g ei ole g ◦ f , eikä ananaspizza ole pizza-ananas. Sen sijaan f ◦ f −1 = f −1 ◦ f , kuten Valtais-
tuinpelistä saadaan Noituri, ja päivastoin.
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Yhdistetty kuvaus (vasemmalla) ja käänteiskuvaus (oikealla).

4.8 Harjoitustehtävä
(i) Olkoon f: R2→ R2 annettu kaavalla

f(x) =
�

f1(x)
f2(x)

�

=
�

−x1

x3
2

�

.

Onko f bijektio?

(ii) Olkoon f : R2→ R , g: R2→ R2 ja h: R→ R2 annettu kaavoilla

f (x) = x1, g(x) = [2x1 + x2 x2]
⊤ ja h(x) = [x 3x]⊤

Onko yhtälöllä ( f ◦ g ◦ h)(x) = y ratkaisu kaikilla y ?

Suorien ja tasojen välisille funktioille f , g , h , jne. (emme nyt käytä lihavoitua merkintää) voidaan
määritellä summa ja skalaarilla kertominen pisteittäin luonnollisella tavalla:

( f + g)(x) = f (x) + g(x),

(λ f )(x) = λ f (x).
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Jos tulkitsemme yhdistetyn funktion muodostamisen funktiotuloksi, niin saamme funktioille saman
kaltaisen algebran kuin matriiseillekin. Nolla-alkoita vastaa nollafunktio f (x) = 0 kaikilla x , ykkö-
salkiota vastaa identiteettifunktio Id(x) = x kaikilla x ja käänteisalkioita vastaa käänteisfunktio
f −1 .

4.9 Huomautus
Funktiotulolle pätee valitettavasti yleisesti f ◦ g ̸= g ◦ f , mutta onneksi

(i) ( f ◦ g) ◦ h= f ◦ (g ◦ h) ,
(ii) ( f ◦ g)−1 = g−1 ◦ f −1.

4.10 Harjoitustehtävä
Perustele Huomautus 4.9.

Matriisialgebra lineaaristen funktioiden algebrana

Funktio f on lineaarinen, jos

f(tx+ sy) = t f(x) + s f(y)(4.11)

kaikilla vektoterilla x ja y sekä kaikilla skalaareilla t ja s .

4.12 Huomautus
Jos f ja g ovat lineaarisia, niin silloin myös f ◦ g , g ◦ f , f −1 ja g−1 (silloin kun ne ovat olemassa)
ovat lineaarisia. Jos taas olisimme määritelleet funktiotulon pisteittäin, eli ( f g)(x) = f (x)g(x) , niin
f g ei olisi yleensä lineaarinen vaikka f ja g olisivatkin. Lisäksi on epäselvää mitä tulo f (x)g(x)
tarkoittaa vektorien tapauksessa. Näistä syistä emme määritelleet funktiotuloa pisteittäin.

Olkoon f : R→ R linaarinen. Silloin määritelmästä (4.11) seuraa, että

f (x) = f (1)x .

Erityisesti näemme tästä, että kaikki lineaarikuvaukset f : R→ R ovat muotoa

f (x) = fc(x) = c · x

jollekin luvulle c .
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Olkoon f : R2→ R lineaarinen. Käyttämällä koordinaattivektoriesitystä x= x1e1+ x2e2 määritel-
mässä (4.11) näemme, että

f (x) = f (x1e1 + x2e2)

= x1 f (e1) + x2 f (e2).

Merkitsemällä c= [ f (e1) f (e2)]⊤ näemme että kaikki lineaarikuvaukset f : R2→ R ovat pistetuloja

f (x) = fc(x) = c · x = c⊤x

jollekin vektorille c ∈ R2 .
Jos f = [ f1 f2]⊤ : R2 → R2 on vektoriarvoinen funktio, niin se on lineaarinen jos ja vain jos sen

komponenttikuvaukset ovat molemmat lineaarisia. Tämän näkee koordinaattivektoriesitystä käyttä-
västä pyörittelystä (se luetaan sekä ylhäältä alas että alhaalta ylös)

f(x) = f(x1e1 + x2e2)

= x1f(e1) + x2f(e2)

= x1

�

f1(e1)
f2(e1)

�

+ x2

�

f1(e2)
f2(e2)

�

=
�

x1 f1(e1) + x2 f1(e2)
x1 f2(e1) + x2 f2(e2)

�

=

�

[ f1(e1) f1(e2)]
⊤ · x

[ f2(e1) f2(e2)]
⊤ · x

�

=
�

f1(x)
f2(x)

�

.

Samalla tavalla näemme, että funktio f: R→ R2 on lineaarinen jos ja vain jos se on muotoa

f(x) = fc⊤(x) = c x =
�

c1 · x
c2 · x

�

,

jollekin vektorille c ∈ R2 . Nimittäin lineaarisuuden määritelmästä (4.11) seuraa, että

f(x) = xf(1)

= x
�

f1(1)
f2(1)

�

=
�

x f1(1)
x f2(1)

�

=
�

f1(x)
f2(x)

�

.

Tästä näemme, että c= [ f1(1) f2(1)]⊤ .
Palaamme lopuksi vielä lineaarisiin funktioihin f: R2→ R2 . Koordinaattivektoriesityksestä (katso

edellä)

f(x) =

�

[ f1(e1) f1(e2)]
⊤ · x

[ f2(e1) f2(e2)]
⊤ · x

�

(4.13)
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päättelemme, että neljä lukua, f1(e1) , f1(e2) , f2(e1) ja f2(e2) määräävät täysin lineaarikuvauksen f .
Huomaamme sitten, että vektori

f(e1) =
�

f1(e1)
f2(e1)

�

kertoo, mihin koordinaattivektori e1 kuvautuu. Samalla tavalla vektori

f(e2) =
�

f1(e2)
f2(e2)

�

kertoo, mihin koordinaattivektori e2 kuvautuu. Jos taas tiedämme, mihin koordinaattivektorit kuvau-
tuvat, tiedämme koko kuvauksen, sillä lineaarisuudesta (4.11) seuraa että

f(x) = f(x1e1 + x2e2)

= x1f(e1) + x2f(e2).

Nyt jippo on määritellä matriisi

A =
�

f(e1) f(e2)
�

.

Tällöin, suoraan matriisitulon määritelmästä seuraa, että

f(x) = Ax.

Edellä esitetystä seuraa kurssimme yksi keskeisimmistä huomioista:

4.14
Funktio f: R2→ R2 on lineaarinen jos ja vain jos se on muotoa

f(x) = fA(x) = Ax

jollekin (2×2)-matriisille A . Matriisin A sarakkeet kertovat mihin koordinaattivektorit e1 = [1 0]⊤

ja e2 = [0 1]⊤ kuvautuvat.

Funktio f= fA on bijektio jos ja vain jos sitä vastaava matriisi A on kääntyvä ja käänteiskuvaus
tulee kaavasta

f−1
A (x) = fA−1(x) = A−1x.

Jos fA ja fB ovat kaksi lineaarikuvausta tasojen välillä, niin niiden yhdistetyt kuvaukset on line-
aarikuvauksia, jotka määräytyvät matriisitulon avulla kaavoilla

(fA ◦ fB)(x) = ABx,

(fB ◦ fA)(x) = BAx
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4.15 Harjoitustehtävä
Olkoot lineaariset funktiot f: R2→ R2 ja g: R2→ R2 annettu kaavoilla

f(x) =
�

2 0
0 1

�

x ja g(x) =
�

2 −1
0 1

�

x

(i) Laske yhdistetyt kuvaukset f ◦ g ja g ◦ f . Toisin sanoen laske ko. lineaarikuvauksia vastaavat
matriisit.

(ii) Laske käänteiskuvaukset (f ◦ g)−1 ja (g ◦ f)−1 . Toisin sanoen laske ko. lineaarikuvauksia vas-
taavat matriisit.

4.16 Harjoitustehtävä
Olkoot lineaariset funktiot f: R2→ R2 ja g: R2→ R2 annettu kaavoilla

f(x) =
�

2 0
0 a

�

x ja g(x) =
�

2 −1
b 1

�

x,

missä a ja b ovat mielivaltaisia parametreja.

(i) Millä parametrien a ja b arvoilla f ja g ovat bijektioita?
(ii) Laske käänteiskuvaukset (f ◦ g)−1 ja (g ◦ f)−1 , silloin kun ne ovat olemassa. Laskeminen tar-

koittaa ko. lineaarikuvauksia vastaavien matriisien laskemista.

Esitämme lopuksi muutamia matriiseja eli lineaarikuvauksia, joilla on selkeä tulkinta. Huomau-
tamme, että käytännössä lähes kaikki matriisit saadaan yhdistelemällä alla olevia esimerkkimatriiseja
matriisitulon avulla.

4.17 Esimerkki
(i) Matriisi

�

2 0
0 3

�

on venytys, joka venyttää x1 -akselia 2:n verran ja x2 -akselia 3:n verran.

(ii) Matriisi
�

−1 0
0 1

�

on peilaus x2 -akselin suhteen ja matriisi

�

1 0
0 −1

�

on peilaus x1 -akselin suhteen.
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(iii) Matriisi
�

1 0
0 0

�

on tason projektio x1 -akselille ja matriisi

�

0 0
0 1

�

on tason projektio x2 -akselille.

(iv) Matriisi
�

cosθ − sinθ
sinθ cosθ

�

on tason θ -radiaanin kierto vastapäivään ja matriisi

�

cos(−θ ) − sin(−θ )
sin(−θ ) cos(−θ )

�

on tason θ -radiaanin kierto myötäpäivään.

Matriisit ja lineaarikuvaukset korkeammissa avaruuksissa*

Olkooon Rn niin sanottu n-ulotteinen euklidinen avaruus, eli vektoreiden x= [x1 x2 · · · xn]⊤ joukko.

Kaikki edellä esitetty laajenee luonnollisella ja ilmeisellä tavalla lineaarikuvauksille f: Rm → Rn .
Lineaarikuvausta f vastaa (n × m)-matriisi A , jonka sarakkeet kertovat mihin koordinaattivektorit
e1,e2, . . . ,em kuvautuvat. Yhdistetty kuvaus saadaan matriisitulolla ja käänteiskuvaus käänteismatrii-
silla. Erityisesti ainoastaan lineaarikuvauksilla avaruudelta itselleen voi olla käänteiskuvaus. Lineaa-
rikuvaus on bijektio täsmälleen silloin, kun sitä vastaavan matriisin determinantti ei ole nolla.
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Yhtälöpari matriisein

Ratkaisu matriisimerkinnöin

Palaamme yhtälöparin

(5.1)
§

A11 x1 + A12 x2 = b1

A21 x1 + A22 x2 = b2

ratkaisemiseen. Toki osaamme ratkaista yhtöparin (5.1) jo koulutiedoilla. Siten olemme kiertäneet
ympyrän. Toivottavasti olemme kuitenkin oppineet jotakin kierroksen aikana.

Matriisimerkinnöin voimme kirjoittaa yhtälöparin (5.1) kompaktissa muodossa matriisiyhtälönä

Ax = b,(5.2)

missä

A =
�

A11 A12

A12 A22

�

, x =
�

x1

x2

�

ja b =
�

b1

b2

�

.

Jos matriisi A on kääntyvä, niin yhtälön (5.2) ratkaisu on

x = A−1b(5.3)

Jos kuitenkin tarkoitus on ainoastaan ratkaista x yhtälöstä (5.2), niin kaavaa (5.3) ei yleensä kannata
käyttää, sillä:

(i) Käänteismatriisin A−1 laskeminen on raskasta.
(ii) Yhtälöllä (5.2) saattaa olla ratkaisu, vaikka matriisi A ei olisikaan kääntyvä.

Käytännössä yhtälö (5.2), eli yhtälöpari (5.1), kannattaa ratkaista muuttamalla laajennettu lohko-
matriisi [A b] alkeisrivioperaatioilla laajennetuksi lohkomatriisiksi [I b′] . Tällöin ratkaisu on x= b′ .



Luku 5 Yhtälöpari matriisein 43

5.4 Esimerkki
Ratkaisemme yhtälöparin

§

x1 − x2 = 2
4x1 + x2 = 4 .

Tätä yhtälöparia vastaava laajennettu lohkomatriisi on

[A b] =
�

1 −1 2
4 1 4

�

.

Koska

det(A) = 1 · 1− (−1) · 4 = 5 ̸= 0,

niin yhtälöparillamme on yksikäsitteinen ratkaisu.

Vähentämällä ensimmäinen rivi 4 kertaa toisesta rivistä saamme
�

1 −1 2
4 1 4

�

⇝
�

1 −1 2
0 1− 4 · (−1) 4− 4 · 2

�

=
�

1 −1 2
0 5 −4

�

.

Lisäämällä toinen rivi 1/5 kertaa ensimmäiseen riviin saamme
�

1 −1 2
0 5 −4

�

⇝
�

1 0 2+ (1/5) · (−4)
0 5 −4

�

=
�

1 0 6/5
0 5 −4

�

.

Lopuksi kertomalla toinen yhtälö luvulla 1/5 saamme lopullisen muodon

�

1 0 6/5
0 5 −4

�

⇝
�

1 0 6/5
0 1 −4/5

�

.

Tästä luemme, että ratkaisu on
§

x1 = 6/5
x2 = −4/5 .

5.5 Harjoitustehtävä
Ratkaise yhtälöparit

(i)
§

x1 − x2 = 1
4x1 + x2 = 2 ,

(ii)
§

x1 − x2 = 10
4x1 + x2 = 20 .
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5.6 Esimerkki
Ratkaisemme yhtälöparin

§

x1 − x2 = b1

4x1 + x2 = b2
,

missä b= [b1 b2]⊤ on mielivaltainen parametri.

Tätä yhtälöparia vastaava laajennettu lohkomatriisi on

[A b] =
�

1 −1 b1

4 1 b2

�

.

Koska

det(A) = 1 · 1− (−1) · 4 = 5 ̸= 0,

niin yhtälöparillamme on yksikäsitteinen ratkaisu.

Vähentämällä ensimmäinen rivi 4 kertaa toisesta rivistä saamme
�

1 −1 b1

4 1 b2

�

⇝
�

1 −1 b1

0 1− 4 · (−1) b2 − 4 · b1

�

=
�

1 −1 b1

0 5 b2 − 4b1

�

.

Lisäämällä toinen rivi 1/5 kertaa ensimmäiseen riviin saamme
�

1 −1 b1

0 5 b2 − 4b1

�

⇝
�

1 0 b1/5+ b2/5
0 5 −4b1 + b2

�

.

Lopuksi kertomalla toinen rivi luvulla 1/5 saamme lopullisen muodon

�

1 0 b1/5+ b2/5
0 5 −4b1 + b2

�

⇝
�

1 0 (1/5)b1 + (1/5)b2

0 1 −(4/5)b1 + (1/5)b2

�

.

Tästä luemme, että ratkaisu on
§

x1 = (1/5)b1 + (1/5)b2

x2 = −(4/5)b1 + (1/5)b2
.

5.7 Huomautus
Esimerkissä 5.6 tulimme itse asiassa kääntäneeksi matriisin

A =
�

1 −1
4 1

�

.

Nimittäin b:n yleistä muotoa olevasta ratkaisusta

§

x1 = (1/5)b1 + (1/5)b2

x2 = −(4/5)b1 + (1/5)b2
.
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näemme että

A−1 =
�

1/5 1/5
−4/5 1/5

�

.

5.8 Harjoitustehtävä
Ratkaise yhtälöpari

§

x1 − 3x2 = b1

4x1 + 2x2 = b2
,

kun

(i) [b1 b2]⊤ = [−1 2]⊤ ,
(ii) [b1 b2]⊤ = [−3 0]⊤ .

Ratkaisujen lukumäärä ja determinantti

Edellisessä osiossa kaikki yhtälöt (eli yhtälöparit) Ax= b olivat sellaisia, että det(A) ̸= 0. Tämä takasi,
että ratkaisu oli yksikäsitteinen: x= A−1b , vaikka emme välttämättä laskeneetkaan käänteismatriisia
A−1 . Tarkastelemme nyt yhtälöpareja, joissa det(A) = 0.

Aloitamme esimerkeillä.

5.9 Esimerkki
Yhtälöllä 0x = b on ratkaisu täsmällälleen silloin, kun b = 0 . Ratkaisu on kaikkea muuta kuin
yksikäsitteinen: jokainen x on ratkaisu.

5.10 Huomautus
Koska 0-matriisi ei ole kovin mielenkiintoinen, emme käsittele sitä enää, ja oletammekin aina, että
matriisimme eivät ole nollamatriiseja.

5.11 Esimerkki
Olkoon

A =
�

1 0
0 0

�

.
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Tällöin A on tason projektio x1 -suoralle: Ax= [x1 0]⊤ . Siispä yhtälöllä Ax= b on ratkaisu täsmäl-
leen silloin, kun b2 = 0. Tällöin ratkaisuja on äärettömästi. Nimittäin kaikki suoralla (b1,α) , α ∈ R ,
olevat pisteet ovat ratkaisuja.

5.12 Esimerkki
Haluamme ratkaista yhtälöparin

§

2x1 + x2 = 0
4x1 + 2x2 = 3 .

Tätä yhtälöparia vastaava matriisiyhtälö on

Ax = b,

missä b= [0 3]⊤ ja

A =
�

2 1
4 2

�

.

Koska

det(A) = 2 · 2− 1 · 4 = 0,

niin ikävyyksiä voi olla tiedossa!

Yritämme joka tapauksessa ratkaista yhtälöparin. Laajennettu lohkomatriisi on

[A b] =
�

2 1 0
4 2 3

�

.

Eliminoimme x1 -termin toisesta yhtälöstä vähentämällä ensimmäisen yhtälön 2 kertaa toisesta yh-
tälöstä. Saamme

�

2 1 0
4 2 3

�

⇝
�

2 1 0
0 2− 2 · 1 3− 2 · 0

�

=
�

2 1 0
0 0 3

�

.

Tämä tarkoittaa, että yhtälöparimme on ekvivalentti seuraavan yhtälöparin kanssa:

§

2x1 + x2 = 0
0x1 + 0x2 = 3 .

Tästä näemme, että ratkaisuja ei voi olla olemassa.

5.13 Esimerkki
Haluamme ratkaista yhtälöparin

§

2x1 + x2 = 10
4x1 + 2x2 = 20 .
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Tätä yhtälöparia vastaava matriisiyhtälö on

Ax = b,

missä b= [10 20]⊤ ja

A =
�

2 1
4 2

�

.

Koska

det(A) = 2 · 2− 1 · 4 = 0,

niin ikävyyksiä voi olla tiedossa!

Yritämme joka tapauksessa ratkaista yhtälöparin. Laajennettu lohkomatriisi on

[A b] =
�

2 1 10
4 2 20

�

.

Eliminoimme x1 -termin toisesta yhtälöstä vähentämällä ensimmäisen yhtälön 2 kertaa toisesta yh-
tälöstä. Saamme

�

2 1 10
4 2 20

�

⇝
�

2 1 10
0 2− 2 · 1 20− 2 · 10

�

=
�

2 1 10
0 0 0

�

.

Tämä tarkoittaa, että yhtälöparimme on ekvivalentti seuraavan yhtälöparin kanssa:

§

2x1 + x2 = 10
0x1 + 0x2 = 0 .

Tästä näemme, että ratkaisuja on äärettömästi. Nimittäin kaikki tason pisteet, jotka ovat muotoa
(x1, x2) = (x1, 5− (1/2)x1) , x1 ∈ R , ovat ratkaisuja.

5.14 Harjoitustehtävä
Tarkastelemme yhtälöparia

§

2x1 + ax2 = 5
4x1 + 2x2 = 10 ,

missä a on vapaa parametri. Millä a :n arvoilla yhtälöparilla on yksikäsitteinen ratkaisu?

Yritäme nyt selvittää yleisen kuvan. Tarkastelemme yhtälöä Ax = b , missä det(A) = 0. Koska
det(A) = 0, niin matriisin A sarakkeet tai yhtä hyvin rivit ovat lineaarisesti riippuvia. Käytämme
rivitulkintaa. Matriisi A on siis muotoa

A = [a λa]⊤ =
�

a1 λa1

a2 λa2

�⊤

=
�

a1 a2

λa1 λa2

�

,



Luku 5 Yhtälöpari matriisein 48

missä a= [a1 a2]⊤ on jokin vektori ja λ on jokin skalaari.
Yhtälöä Ax= b vastaava laajennettu lohkomatriisi on siis muotoa

[A b] =
�

a1 a2 b1

λa1 λa2 b2

�

.

Vähentämällä ensimmäinen rivi λ kertaa toisesta rivistä saamme ekvivalentin muodon
�

a1 a2 b1

λa1 λa2 b2

�

⇝
�

a1 a2 b1

0 0 b2 −λb1

�

.

Tästä näemme välittömästi, että ratkaisu on olemassa täsmälleen silloin, kun b:n koordinaatit toteut-
tavat yhtälön

b2 = λb1.(5.15)

Tarkastelemme sitten ratkaisujen lukumäärää. Oletamme, että ratkaisuja on olemassa. Toisin sa-
noen kaava (5.15) pätee. Tämä tarkoittaa sitä, että tarkastelemme yhtälöä

�

a1 a2

λa1 λa2

��

x1

x2

�

=
�

b1

λb1

�

Edellisen nojalla tiedämme, että tämä yhtälö on ekvivalentti seuraavan yhtälön kanssa:
�

a1 a2

0 0

��

x1

x2

�

=
�

b1

0

�

Mutta tämä näennäinen yhtälöpari pelkistyy pelkäksi yhtälöksi

a1 x1 + a2 x2 = b1.(5.16)

Tästä näemme, että ratkaisujoukko on suora. Erityisesti ratkaisuja on äärettömän paljon.

5.17 Harjoitustehtävä
Tarkastelemme yhtälöparia

§

2x1 + ax2 = 5
4x1 − x2 = b ,

missä a ja b ovat vapaita parametreja. Etsi yhtälöparin kaikki ratkaisut.

5.18
Yhtälöparilla Ax = b on yksikäsitteinen ratkaisu jokaisella b jos ja vain jos det(A) ̸= 0. Ratkaisu
on tällöin x = A−1b , joskaan käänteismatriisia A−1 ei tarvitse välttämättä ratkaista eksplisiittisesti,
vaan ratkaisu voidaan saada muuttamalla laajennettu lohkomatriisi [A b] alkeisrivioperaatioilla
laajennetuksi lohkomatriisiksi [I b′] . Tällöin ratkaisu on x= b′ .

Jos det(A) = 0, niin yhtälöparilla Ax= b ei ole ratkaisua, jos b ei kuulu matriisin A ensimmäisen
(tai yhtä hyvin toisen) sarakkeen virittämälle suoralle. Jos taas b kuuluu ko. suoralle, on ratkaisuja
äärettömän monta.
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Yhtälöryhmät ja matriisit*

Kaikki edellä esitetty yleistyy luonnollisella tavalla n:n muuttujan ja n:n yhtälön lineaarisille yhtä-
löryhmille Ax = b . Jos muuttujia ja yhtälöita on eri määrä, voidaan lisätä nolla-yhtälöitä tai nolla-
muuttujia niin, että niitä on sen jälkeen sama määrä.

Jos det(A) ̸= 0, on ratkaisu yksikäsitteinen x = A−1b . Jos taas det(A) = 0, niin ratkaisu on olem-
massa jos ja vain jos b kuuluu matriisin A sarakkeiden virittämään aliavaruuteen. Tällöin ratkaisuja
on myös äärettömän paljon.

Käytännön kannalta keskeinen ongelma on, että matriisin determinantin laskeminen on viheliäis-
tä. Yleensä kannattaakin erikseen “nähdä” onko se nolla vai ei tarkastelemalla matriisin sarakkeiden
lineaarista riippuvuutta.

Ratkaisemme esimerkin vuoksi 4 muuttujan ja 4 yhtälön lineaarisen yhtälöryhmän










2x1 + x2 + x4 = 2
4x1 − x2 + 2x4 = 1
4x1 + 2x3 = 4

− 4x3 + 2x4 = 2

.

Nyt siis x= [x1 x2 x3 x4]⊤ , b= [2 1 4 2]⊤ ja

A =







2 1 0 1
4 −1 0 2
4 0 2 0
0 0 −4 2






.

Voidaan itse asiassa laskea, että det(A) = 24, mutta tämä on viheliäistä. Sen sijaan yritämme ratkaista
yhtälöryhmän laajennetuilla kohkomatriiseilla. Tarkoitus on siis muuttaa alkeisrivioperaatioilla [A b]
muotoon [I b′] , missä I on (4× 4)-identiteettimatriisi

I =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






.

Aloitamme väännön. Eliminoimme aluksi muuttujan x1 riveiltä 2 ja 3 (rivillä 4 se ei esiinny):

[A b] =







2 1 0 1 2
4 −1 0 2 1
4 0 2 0 4
0 0 −4 2 2






⇝







2 1 0 1 2
0 −3 0 0 −3
4 0 2 0 4
0 0 −4 2 2







⇝







2 1 0 1 2
0 −3 0 0 −3
0 −2 2 −2 0
0 0 −4 2 2






.

Eliminoimme sitten muuttujan x2 riveiltä 1 ja 3 (rivillä 4 se ei esiinny):






2 1 0 1 2
0 −3 0 0 −3
0 −2 2 −2 0
0 0 −4 2 2






⇝







2 0 0 1 1
0 −3 0 0 −3
0 −2 2 −2 0
0 0 −4 2 2






⇝







2 0 0 1 1
0 −3 0 0 −3
0 0 2 −2 2
0 0 −4 2 2






.
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Eliminoimme sitten muuttujan x3 riviltä 4 (riveillä 1 ja 2 se ei esiinny):







2 0 0 1 1
0 −3 0 0 −3
0 0 2 −2 2
0 0 −4 2 2






⇝







2 0 0 1 1
0 −3 0 0 −3
0 0 2 −2 2
0 0 0 −2 6






.

Eliminoimme sitten muuttujan x4 riveiltä 1 ja 3 (rivillä 2 se ei esiinny):







2 0 0 1 1
0 −3 0 0 −3
0 0 2 −2 2
0 0 0 −2 6






⇝







2 0 0 0 4
0 −3 0 0 −3
0 0 2 −2 2
0 0 0 −2 6






⇝







2 0 0 0 4
0 −3 0 0 −3
0 0 2 0 −4
0 0 0 −2 6






.

Lopuksi kerromme jokaisen rivin sitä vastaavan muuttujan kertoimen käänteisluvulla. Näin saamme
ratkaistun laajennetun lohkomatriisin







2 0 0 0 4
0 −3 0 0 −3
0 0 2 0 −4
0 0 0 −2 6






⇝







1 0 0 0 2
0 1 0 0 1
0 0 1 0 −2
0 0 0 1 −3






= [I b′].

Tästä luemme ratkaisun

x =







2
1
−2
−3






.
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Yhtälöryhmien ratkaisu Cramerin säännöllä*

Esitämme vielä yhden joidenkin suosiman tavan ratkaista yhtälöryhmiä

Ax = b,

kun A on kääntyvä (n× n)-matriisi. Tämä tapa kantaa nimeä Cramerin sääntö. Kaikessa yksinker-
taisuudessaan sen mukaan ratkaisu on x= [x1 x2 · · · xn]⊤ , missä

x i =
det(Ai→b)

det(A)
(5.19)

ja matriisi Ai→b saadaan matriisista A korvaamalla sen i. sarake pystyvektorilla b .
Kaava (5.19) on toki elegantti ja helppo muistaakin, mutta determinanttien laskeminen on työläs-

tä. Jos A on (3× 3)-matriisi, niin determinantin laskeminen on vielä kohtalaisen inhimillistä. Nimit-
täin

det(A) = A11 det(A−1)− A12 det(A−2) + A13 det(A−3),

missä A− j on (2× 2)-alimatriisi, joka on saatu matriisista A poistamalla sen ensimmäinen rivi ja j.
sarake.

Emme perustele Cramerin sääntöä tässä. Tyydymme laskemaan yhden (3× 3)-esimerkin.

5.20 Esimerkki
Ratkaisemme Cramerin säännöllä yhtälöryhmän





1 0 2
0 5 4
2 1 3









x1

x2

x3



 =





6
7
0



 .

Aloitamme laskemalla A:n determinantin:

det(A) = 1 det(A−1)− 0 det(A−2) + 2det(A−3)

= 5 · 3− 4 · 1 − 0 + 2 · (0 · 1− 5 · 2)

= 11− 20

= −9.

Laskemme sitten determinantit Ai→b kaikille i = 1, 2,3:

det(A1→b) = det









6 0 2
7 5 4
0 1 3









= 6 det
��

5 4
1 3

��

− 0det
��

7 4
0 3

��

+ 2 det
��

7 5
0 1

��

= 6 · (5 · 3− 4 · 1) − 0 + 2 · (7 · 1− 5 · 0)

= 80.



Luku 5 Yhtälöpari matriisein 52

det(A2→b) = det









1 6 2
0 7 4
2 0 3









= 1 det
��

7 4
0 3

��

− 6det
��

0 4
2 3

��

+ 2 det
��

0 7
2 0

��

= 7 · 3− 4 · 0 − 6 · (0 · 3− 4 · 2) + 2 · (0 · 0− 7 · 2)

= 41.

det(A3→b) = det









1 0 6
0 5 7
2 1 0









= 1 det
��

5 7
1 0

��

− 0det
��

0 7
2 0

��

+ 6det
��

0 5
2 1

��

= 5 · 0− 7 · 1 − 0 + 6 · (0 · 1− 5 · 2)

= −67.

Olemme siis saaneet ratkaisun

x1 = 80/(−9) = −8.8889,

x2 = 41/(−9) = −4.5556,

x3 = −67/(−9) = 7.4444.

Lopuksi annamme vauhdikkaan todistuksen Cramerin säännölle. Yksityiskohtien pohtimisen jä-
tämme kiinnostuneen lukijan oman harrastuneisuuden varaan.

x i = det (Ii→x)

= det
�

A−1Ai→b

�

= det(A−1)det (Ai→b)

=
det (Ai→b)

det(A)
.
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Kompleksitaso

Kompleksilukujen karteesinen muoto

Eräs tapa ymmärtää kompleksiluvut on tulkita ne tason pisteiksi. Käytämme tässä luvussa edellisistä
luvuista poiketen tason pisteille merkintää z = (x , y) . Formaalisti kirjoitamme myös

z = x + y i,(6.1)

missä i=
p
−1 on imaginääriyksikkö, eli yhtälön

i2 = −1

“positiivinen” ratkaisu.

6.2 Huomautus
Formaalisti yhtälöllä i2 = −1 on ainakin kaksi ratkaisua: ±i . Nimittäin, jos i2 = −1, niin myöskin
(−i)2 = (−1)2i2 = i2 = −1.

Kaava (6.1) on kompleksiluvun karteesinen muoto. Myöhemmin opimme ns. polaari- eli napa-
muodon, joka liittyy yllättäen kompleksiseen eksponenttifunktioon.

Kompleksitaso koostuu pisteistä z = x + yi , missä x ja y ovat reaalilukuja. Lukua x kutsutaan
kompleksiluvun z reaaliosaksi ja lukua y kutsutaan kompleksiluvun z imaginääriosaksi. Joskus käy-
tetään myös merkintojä x = ℜ(z) = Re(z) ja y = ℑ(z) = Im(z) . Siispä voimme kirjoittaa karteesisen
muodon (6.1) myös muodoissa

z = ℜ(z) + ℑ(z)i

= Re(z) + Im(z)i.
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1

−1

1−1 x = Re(z)

y = Im(z)

z = x+ yi
= 1.5− 2.0i

1.5

−2.0

1

−1

1−1 x = Re(z)

y = Im(z)

z = x+ yi
= 1.4 + 3.1i

3.1

1.4

Kompleksiluku z = x+y i= 1.5−2.0i (vasen kuva) ja kompleksiluku z = x+y i= 1.4+3.1i
(oikea kuva).

Kompleksilukujen z1 = x1+ y1i ja z2 = x2+ y2i yhteenlasku toimii täsmälleen samalla tavalla kuin
vastaavien tason pisteiden, eli vektorien, yhteenlasku:

z1 + z2 = (x1 + x2 , y1 + y2)

= (x1 + x2) + (y1 + y2)i.

6.3 Esimerkki
Olkoon

z1 = 3+ 2i,

z2 = −2− 3i.

Tällöin

z1 + z2 = 3+ 2i + (−2)− 4i

= 3− 2+ (2− 3)i

= 1− i.
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1

−1

1−1
Re(z)

Im(z)

z1 = 3 + 2i

z2 = −2− 3i

z = z1 + z2 = 1− i

1

−1

1−1
Re(z)

Im(z)

z1 = 3 + 2i

z2 = −2− 3i

z = z2 + z1 = 1− i

Esimerkin 6.3 kompleksilukujen yhteenlaskua karteesisessa muodossa. Sama summa on
laskettu (tai pikemminkin piirretty) molemmin päin: z = z1+z2 (vasen puoli) ja z = z2+z1

(oikea puoli).

Kompleksitason vektorin eli kompleksiluvun z = (x , y) normille käytetään kompleksilaskennassa
nimeä moduuli ja sitä merkitään (ehkä hieman harhaanjohtavasti) tavallisilla yksinkertaisilla itsei-
sarvomerkeillä:

|z| =
p

x2 + y2.

6.4 Esimerkki
(i) Olkoon

z = −3+ 2i.

Tällöin

|z| =
Æ

(−3)2 + 22

=
p

9+ 4

=
p

13

= 3.6056.

Olkoon

z = 2+ 2i.

Tällöin

|z| =
p

22 + 22

=
p

8

= 2.8284.
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1

−1

1−1 Re(z)

Im(z)

z = −3 + 2i
2

−3

|z| =
√
(−3)2 + 22

= 3.6056

3.6056

1

−1

1−1 Re(z)

Im(z)

z = 2 + 2i
2

2

|z| =
√
22 + 22

= 2.8284

2.8284

Esimerkin 6.4 kompleksiluvut ja niiden moduulit. Vasemmalla z = −3 + 2i ja oikealla
z = 2+ 2i.

Reaalitason vektoreita ei voi kertoa keskenään. Pistetulo eli sisätulo ei ole varsinaista kertomista,
sillä siinä kaksi vektoria kuvautuu reaaliluvuksi. Kompleksilukuja sen sijaan voidaan kertoa keske-
nään niin että tulokseksi saadaan kompleksiluku. Kertolasku määräytyy formaalisti tavallisen kerto-
ja yhteenlaskun osittelulaista sekä kaavasta i2 = −1:

z1z2 = (x1 + y1i)(x2 + y2i)

= x1 x2 + x1 y2i+ y1 x2i+ y1 y2i2

= (x1 x2 − y1 y2) + (x1 y2 + y1 x2)i.

6.5 Esimerkki
(i) Olkoon

z1 = −1.5+ 0.5i,

z2 = 1+ 2i.

Tällöin

z1z2 = (−1.5+ 0.5i)(1+ 2i)

= −1.5× 1− 1.5× 2i+ 0.5i× 1+ 0.5i× 2i

= −1.5− 3i+ 0.5i− 1

= −2.5− 2.5i
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(ii) Olkoon

z1 = 3,

z2 = −i.

Tällöin

z1z2 = 3× (−i)

= −3i.

1

−1

1−1 Re(z)

Im(z)

z1 = 1 + 2i

z2 = −1.5 + 0.5i

z1z2 = −2.5− 2.5i

1

−1

1−1 Re(z)

Im(z)

z1 = 3

z2 = −i

z1z2 = −3i

Esimerkin 6.5 kompleksiluvut ja niiden kertolaskut karteesisessa koordinaatistossa. Va-
semmalla (i) ja oikealla (ii). Kuvasta näkee (tai pikemmikin ei näe), että kmpleksilukujen
tulo on vaikeammin hahmotettava operaatio kuin kompleksilukujen summa.

Kompleksiluvun z = x + yi liittoluku eli konjugaatti on z∗ = x − yi . Liitoluvun ottaminen tar-
koittaa siis peilausta reaaliakselin (eli x -akselin) suhteen. Erityisesti kompleksiluku z on reaalinen,
eli z = x + 0i, jos ja vain jos z = z∗ .

6.6 Huomautus
Liittoluvulle z∗ käytetään joskus myös merkintää z .
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6.7 Esimerkki
Olkoon

z1 = −3+ 2i.

Tällöin

z∗1 = −3− 2i

Olkoon sitten

z2 = z∗1
= −3− 2i.

Tällöin

z∗2 = −3− (−2)i

= −3+ 2i

= z1.

Esimerkin 6.7 tavoin on helppo nähdä, että yleisesti mille tahansa kompeksiluvulle z pätee

(z∗)∗ = z.

1

−1

1−1 Re(z)

Im(z)

z1 = −2 + 3i

z2 = −2− 3i

1

−1

1−1 Re(z)

Im(z)

z1 = 3 + 2i

z2 = 3− 2i

Kompleksilukujen liittolukuja: z2 = z∗1 , ja sama toisin päin.
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Kompleksiluvun moduuli, eli vastaavan kompleksitason vektorin pituus voidaan esittää liittoluvun
avulla:

|z|2 = zz∗.(6.8)

Kaavan (6.8) näkee suoralla laskulla. Nimittäin

zz∗ = (x + y i)(x − y i)

= x2 − x y i+ x y i− y2i2

= x2 + y2.

Kompleksilukujen jakolasku voidaan nyt määritellä kikkailemalla liittolukujen avulla

z1

z2
=

z1z∗2
z2z∗2

=
z1z∗2
|z2|2

.(6.9)

6.10 Harjoitustehtävä
Osoita että kikkaileva määritelmä (6.9) on järkevä. Toisin sanoen, jos z2 ei ole kompleksitason 0-
vektori, niin

z =
z1

z2

on olemassa ja se on yhtälön

z2z = z1

ratkaisu muuttujan z suhteen. Käytä perustelussasi ainoastaan edellä esitettyjä karteesisia muotoja
ja määritelmiä.

Kompleksilukujen potenssit ja juuret määritellään samaan tapaan kuin reaalilukujenkin:

zn = z zn−1,

z0 = 1,

ja z1/n on yhtälön

z = wn

“positiivinen” ratkaisu kompleksiluvun w suhteen. Käytännössä kompleksilukujen potensseja ja juuria
ei kuitenkaan kannata laskea karteesista muotoa z = x + yi käyttäen (eikä oikeastaan tuloja tai
osamääriäkään), vaan käyttämällä napaesitystä ja De Moivren kaavaa, joita käsittelemme seuraavassa
osiossa.
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6.11 Esimerkki
Olkoon

z =
1
p

2
+

1
p

2
i

Tällöin

z2 = zz

=
�

1
p

2
+

1
p

2
i
��

1
p

2
+

1
p

2
i
�

=
1
2
+

1
2

i+
1
2

i+
1
2

i2

=
1
2
+ i−

1
2

= i.

6.12 Harjoitustehtävä
Olkoon z kuten esimerkissä 6.11:

z =
1
p

2
+

1
p

2
i

(i) Laske zn , kun n= 1,2, 3,4, 5,6, 7,8.
(ii) Ratkaise (w:n suhteen) yhtälö z = wn , kun n= 1, 2,3, 4,5, 6,7, 8.

6.13 Esimerkki
Olkoon z1 = 1− i ja z2 = −2i. Laskemme

(i) z1 − z2 ,
(ii) z1z2

2 ,
(iii) z1z∗2 ,
(iv) z1/z2 .

(i) Tämä on suoraviivaista:

z1 − z2 = 1− i− (−2i)

= 1− i+ 2i

= 1+ i.
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(ii) Laskemme ensin

z2
2 = (−2i)(−2i)

= 4i2

= −4.

Siten

z1z2
2 = (1− i)(−4)

= −4+ 4i.

(iii) Koska z∗2 = 2i, niin

z1z∗2 = (1− i)(2i)

= 2i− 2i2

= 2+ 2i.

(iv) Koska z∗2 = 2i ja

|z2|2 = z2z∗2
= (−2i)(2i)

= 4,

niin

z1

z2
=

z1z∗2
|z2|2

=
(1− i)(2i)

4

=
2i− 2i2

4
= 0.5+ 0.5i

6.14 Harjoitustehtävä
Olkoon z1 = 3− 7i ja z2 = 1+ i . Laske

(i) z1 + 3z2 ,
(ii) 2z1z3

2 ,
(iii) z1z∗2 ,
(iv) 0.5z1/z2 .
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Kompleksilukujen napamuoto

Tason vektori on karteesiessa muodossa (x , y) ja napamuodossa 〈r,θ 〉 , missä r on vektorin normi
eli pituus ja θ on vektorin ja vaaka-akselin välinen kulma radiaaneissa. Kompleksitasossa tämä napa-
muoto voidaan esittää näppärästi kompleksisen eksponenttifunktion avulla.

Olkoon z = x + y i . Kompleksinen eksponenttifunktio on

ez = exp(z) = ex (cos y + i sin y) .(6.15)

Määritelmä (6.15) ei varmaankaan ole ilmiselvä. Jos tarkastelemme reaalilukua z = x + 0i, niin
kaava (6.15) kyllä antaa perinteisen eksponenttifunktion. Siten määritelmä ainakin laajentaa perin-
teisen reaalisen eksponenttifunktion kompleksitasoon. Mutta miksi juuri tämä laajennus? Ja miten
trigonometriset funktiot liittyvät asiaan?

Reaalianalyysin puolelta tiedämme, että

ex = lim
n→∞

�

1+
x
n

�n
.

Voisimmeko ymmärtää tämän raja-arvon kompleksiselle luvulle z ja määritellä eksponenttifunktion
tätä kautta? Itse asiassa voisimme ja saisimme tulokseksi kaavan (6.15). Emme perustele tätä tällä
kurssilla.

Reaalianalyysin puolelta tiedämme myös, että

ex =
∞
∑

k=0

x k

k!

Voisimmeko määritellä kompleksisen eksponenttifunktion tämän sarjan avulla. Itse asiassa voisimme
ja saisimme tulokseksi kaavan (6.15). Perustelemme tätä hieman ja samalla näemme (joskin hämä-
rästi) miten trigonometriset funktiot astuvat kuvaan. Lähdemme liikkeelle sinin ja kosinin esityksistä
Taylorin sarjoina (kehitettyinä pisteen y0 = 0 ympärille):

cos y =
∞
∑

k=0

(−1)k
y2k

(2k)!
,

sin y =
∞
∑

k=0

(−1)k
y2k+1

(2k+ 1)!
.

Siispä

cos y + i sin y =
∞
∑

k=0

(−1)k
�

y2k

(2k)!
+ i

y2k+1

(2k+ 1)!

�

= 1+ iy −
y2

2!
− i

y3

3!
+

y4

4!
+ i

y5

5!
− · · ·

=
i0 y0

0!
+

i1 y1

1!
+

i2 y2

2!
+

i3 y3

3!
+

i4 y4

4!
+

i5 y5

5!
+ · · ·

=
∞
∑

k=0

(iy)k

k!
.
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Olemme perustelleet niin sanotun Eulerin kaavan

eiy = cos y + i sin y.(6.16)

Käyttämällä edellisiä laskuja ja reaalisen eksponenttifunktion sarjakehitelmää saamme

ez = ex+iy

= exeiy

= ex (cos y + i sin y)

=
∞
∑

ℓ=0

xℓ

ℓ!

∞
∑

k=0

(iy)k

k!

Käyttämällä Cauchyn kertokaavaa

∞
∑

ℓ=0

aℓ

∞
∑

k=0

bk =
∞
∑

n=0

n
∑

j=0

a j bn− j

ja binomikaavaa

(x + y)n =
n
∑

k=0

�

n
k

�

xn−k yk

takaperin saamme

ez = ex+iy

= exeiy

= ex (cos y + i sin y)

=
∞
∑

ℓ=0

xℓ

ℓ!

∞
∑

k=0

(iy)k

k!

=
∞
∑

n=0

n
∑

j=0

x j

j!
(iy)n− j

(n− j)!

=
∞
∑

n=0

1
n!

n
∑

j=0

�

n
j

�

x j(iy)n− j

=
∞
∑

n=0

(x + iy)n

n!

=
∞
∑

n=0

zn

n!

Olemme siis perustelleet, että

ez = ex (cos y + i sin y)

=
∞
∑

n=0

zn

n!
.
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Lopuksi huomautamme vielä, että kuten reaalipuolella myös kompleksipuolella ekpsonenttifunktio
voidaan määritellä yksikäsitteisesti fuktiona, jolle exp(0) = 1 ja exp′(z) = exp(z) . Emme kuitenkaa
käsitettele tällä kurssilla kompleksista derivointia.

6.17 Huomautus
Sijoittamalla Eulerin kaavaan (6.16) y = π saamme matematiikan kauneimman kaavan:

eπi + 1 = 0.

6.18
Kompleksinen eksponenttifuktio toimii reaalisen eksponenttifunktion tavoin siinä mielessä, että sille
pätee kaavat

(i) ez1+z2 = ez1ez2 ,
(ii) (ez)n = enz ,

(iii) ez1/ez2 = ez1−z2 .

Toisin kuin reaalinen eksponenttifunktio, kompleksinen eksponenttifunktio ei ole “positiivinen”, ei
injektio, eikä kasvava. Itse asiassa jokainen kompleksiluku z voidaan esittää äärettömän monella eri
kompleksiluvulla w muodossa z = ew . Erityisesti kompleksinen eksponenttifuktio on jaksollinen:

ez = ez+2πni

kaikilla kokonaisluvuilla n .

Kompleksilukujen napamuoto seuraa nyt Eulerin kaavasta (6.16). Kyseinen kaava nimittäin sanoo,
että parametrisoitu käyrä eiθ , θ ∈ [0,2π) , piirtää kompleksitasoon yksikköympyrän (vastapäivään).
Siten jokainen kompleksiluku z = x + y i voidaan esittää napamuodossa

z = reθ i,

missä

r = |z| =
p

x2 + y2

on kompleksiluvun z moduuli ja

θ = arg(z)

on kompleksiluvun z argumentti, eli positiivisen reaaliakselin (positiivinen x -akseli) ja kompleksi-
lukua z vastaavan vektorin välinen kulma (vastapäivään kierrettynä). Argumentti θ ei ole yksikäsit-
teinen. Jos haluamme, että θ ∈ [0, 2π) , voimme laskea sen kaavalla

θ =



















arctan y
x , jos x > 0 ja y ≥ 0,

arctan y
x + 2π, jos x > 0 ja y < 0,

arctan y
x +π, jos x < 0,

π
2 , jos x = 0 ja y > 0,
3π
2 , jos x = 0 ja y < 0,
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Jos x , y = 0 molemmat, niin kulma θ ei ole määritelty. Jos haluamme että θ ∈ (−π,π] , voimme
laskea sen kaavalla

θ =



















arctan y
x , jos x > 0,

arctan y
x +π, jos x < 0 ja y ≥ 0,

arctan y
x −π, jos x < 0 ja y < 0,

π
2 , jos x = 0 ja y > 0,
−π2 , jos x = 0 ja y < 0,

Edelleen, jos x , y = 0 molemmat, ei kulma θ ole määritelty.
Napamuodosta z = reiθ saadaan karteesinen muoto z = x + y i vaikkapa käyttämällä kaavoja

x = r cosθ ,

y = r sinθ .

6.19 Huomautus
Kertaamme vielä karteesisen muodon ja napamuodon yhteyden kun valitsemme kulmaksi θ ∈
(−π,π] . Päästäkseen kompleksiluvun z karteesisesta muodosta, z = x + yi , sen napamuotoon,
on löydettävä positiivinen luku r ja kulma θ niin, että z = reθ i . Tässä r = |z|=

p

x2 + y2 ja kulma
θ saadaan ratkaisemalla yhtälö

x + yi= z = reθ i = r(cos(θ ) + i sin(θ ) = r cos(θ ) + ir sin(θ ).

Kulma θ toteuttaa siis seuraavat yhtälöt:

x = r cosθ ja y = r sinθ

Toisin sanoen, on löydettävä θ niin, että

cosθ =
x
r

ja sinθ =
y
r

.

Tämä kulma θ ∈ (−π,π] löydetään esimerkiksi seuraavasti seuraavasti:

• Jos y ≥ 0, niin θ = arccos x
r .

• Jos y < 0, niin θ = −arccos x
r .

6.20 Esimerkki
Etsimme karteesisessa muodossa annetun kompleksiluvun z = 2−5i napamuodon. Moduulin saam-
me suoraan Pytharogaan kaavasta: r =

p
22 + 52 =

p
29 = 5.3852. Argumentin laskemiseksi tar-

kastelemme normalisoitua, ykkösen pituista, kompleksilukua

ẑ =
2
p

29
−

5
p

29
i

= 0.37139− 0.92848i.



Luku 6 Kompleksitaso 66

Huomaamme, että tämä vektori sojottaa yksikkötason neljänteen neljännekseen. Siten (eräs) vaihe-
kulma, eli argumentti, voidaan laskea esimerkiksi kaavasta

− cosθ =
2
p

29
.

Siten

θ = −arccos
2
p

29
= −1.1903.

Olemme siis saaneet karteesisesta muodosta z = 2− 5i (erään) napamuodon

z = 5.3852e−1.1904i.

Etsimme sitten napamuodossa annetun kompleksiluvun z = 5eiπ/4 karteesisen muodon. Vaihe-
kulma π/4 on tunnetusti sama kuin 45◦ . Siten kompleksiluvun z reaali- ja imaginääriosat ovat
samat, mistä päädymme (reaaliseen) yhtälöön

5 =
p

2x2,

jonka ratkaisu on

x =

√

√52

2
= 3.5355.

Olemme siis saaneet napamuodosta z = 5eiπ/4 karteesisen muodon

z = 3.5355+ 3.5355i.

6.21 Harjoitustehtävä
Esitä seuraavat karteesisessa muodossa annetut kompleksiluvut napamuodossa:

(i) 3+ i ,
(ii) −2i,

ja esitä seuraavat napamuodossa annetut kompleksiluvut karteesisessa muodossa:

(iii) 3eiπ/2 ,
(iv) 4ei 317.3 .

Kompleksiluvun karteesinen muoto z = x + y i sopii mainiosti summien laskemiseen, sillä reaali-
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ja kompleksiosta vain lasketaan erikseen yhteen:

z1 + z2 = (x1 + x2 , y1 + y2)

= (x1 + x2) + (y1 + y2)i.

Tulojen laskemiseen karteesinen muoto sopii sitten hieman huonommin, koska pitää käyttää osittelu-
lakia ja kaavaa i2 = −1:

z1z2 = (x1 + y1i)(x2 + y2i)

= x1 x2 + x1 y2i+ y1 x2i+ y1 y2i2

= (x1 x2 − y1 y2) + (x1 y2 + y1 x2)i.

Komplekisluvun napamuoto z = reiθ sopii mainioisti kompleksilukujen kertomiseen. Nimittäin

z1z2 = r1eiθ1 r2eiθ2

= r1r2 ei(θ1+θ2).

Tästä kaavasta näemme myös kompleksilukujen kertolaskun geometrisen tulinnan: kompleksilukuja
kerrottaessa moduulit r1 ja r2 kerrotaan keskenään ja argumentit θ1 ja θ2 lasketaan yhteen. Tar-
kastelaessä kompleksilukuja kompleksitason vektoreina tämä tarkoittaa sitä, että vektorien pituudet
kerrotaan keskenään ja vektoreita kierretäään vastapäivään niiden vaihekulmien summan verran.

Lopuksi huomaamme, että kompleksilukujen potenssit voidaan laskea helposti napamuodosta:

zn = rnein.(6.22)

Kaavaa (6.22) kutsutaan De Moivren kaavaksi ja se toimii kaikilla kokonaisluvuilla n . Valitettavasti se
ei toimi murtopotensseille (eli rationaaliluvuille) n/m saati reaalisille tai kompleksisille potensseille.
Yleisessä tapauksessa, jos haluamme laskea zw , niin se tulee kirjoittaa muodossa

zw = ew log z,(6.23)

missä log on kompleksinen logaritmifunktio, joka on kompleksisen eksponenttifunktion käänteiskunk-
tio. Koska kompleksinen eksponenttifunktio on jaksollinen, on kompleksinen logaritmifunktio moniar-
voinen. Siten kaavassa (6.23) pitää valita jokin, tilanteesta riippuva, logaritmifunktion haara.

6.24 Harjoitustehtävä
Olkoon z1 = 1− i ja z2 = 2i. Esitä z4

1/z
∗
2

(i) napamudossa,
(ii) karteesisessa muodossa.

Esitämme lopuksi tämän luvun keskeiset havainnot lyhyesti:
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6.25
Kompleksiluvut voidaan esittää kompleksitason vektoreina karteesisessa muodossa

z = x + y i,

missä x on kompleksiluvun z reaaliosa ja y on kompleksiluvun z imaginääriosa. Kompleksiluvut
lasketaan yhteen laskemalla reaali- ja kompleksiosat yhteen erikseen.

Kompleksinen eksponenttifunktio on

ez = ex (cos y + i sin y) .

Jokainen nollasta poikkeava kompleksiluku voidaan esittää napamuodossa

z = reiθ ,

missä r = |z| on kompleksiluvun z moduuli, eli sitä vastaavan kompleksitason vektorin pituus,
ja θ on kompleksiluvun z argumentti, eli sitä vastaavan kompleksitason vektorin ja positiivisen
reaaliakselin välinen kulma.

Kompleksista lineaarialgebraa*

Aiemmissa luvuissa olemme käsitelleet vektoreita ja matriiseja, joiden alkiot ovat reaalilukuja. Mi-
kään ei estä käsittelemästä vektoreita, joiden alkiot ovat kompleksilukuja ja muuttamaan skalaarit
(eli aiemmmin reaaliluvut) kompleksiluvuiksi. Periaatteessa kaikki toimii kuten aiemminkin, mutta
uutena piirteenä tulee mukaan kompleksikonjugaatit eli liittoluvut. Esimerkiksi kahden kaksiulottei-
sen kompleksivektorin

z1 =
�

z11

z12

�

=
�

x11 + y11i
x12 + y12i

�

ja z2 =
�

z21

z22

�

=
�

x21 + y21i
x22 + y22i

�

välinen pistetulo eli sisätulo on

z1 · z2 = z⊤1 z∗2
= z11z∗21 + z12z∗22

= (x11 + y11i)(x21 − y21i) + (x12 + y12i)(x22 − y22i)

= x11 x21 − x11 y21i+ x21 y11i+ y11 y21 + x12 x22 − x12 y22i+ x22 y12i+ y12 y22

= x11 x21 + x12 x22 + y11 y21 + y12 y22 + (x21 y11 − x11 y21 + x22 y12 − x12 y22)i.

Vastaavasti reaalipuolen ortogonaalinen matriisi, siis matriisi joka kuvaa ortonormaalin kannan orto-
normaalille kannalle, eli matriisi Q , jolle Q−1 = Q⊤ , pitää korvata unitaarisella matriisilla U , jolle
U−1 = U∗ , missä U∗ on konjugaattitranspoosi:

(U∗)i j = U∗ji.
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Tason symmetristen matriisien
ominaisarvohajotelma

Diagonaalimatriisit ja ortogonaaliset matriisit

Matriisihajotelmien ideana on esittää annettu matriisi yksinkertaisempien matriisien tulona. Tarkas-
telemme tässä luvussa tason symmetrisiä neliömatriiseja. Toisin sanoen matriiseja

A =
�

A11 A12

A21 A22

�

,

joille A12 = A21 eli A⊤ = A .
Esitämme tässä luvussa, miten symmetrinen matriisi voidaan esittää diagonaalimatriisin ja orto-

gonaalisen matriisin avulla.
Tason neliömatriisi Λ on diagonaalimatriisi eli lävistäjämatriisi, jos se on muotoa

Λ =
�

λ1 0
0 λ2

�

.

Diagonaalimatriisia vastaavan lineaarisen operaattorin geometrinen tulkinta on yksinkertainen: dia-
gonaalimatriisi vastaa venytystä, jossa x1 -akseli venytetään λ1 -kertaisesti ja x2 -akselia venytetään
λ2 -kertaisesti.

Diagonaalimatriisien algebra on myös erittäin yksinkertaista.
Diagonaalimatriisin determinatti on

det(Λ) = λ1λ2.

Siten diagonaalimatriisi on kääntyvä jos ja vain jos molemmat diagonaalialkiot λ1 ja λ2 ovat nollasta
poikkeavia. Itse käänteismatriisin laskeminen on myös helppoa:

Λ−1 =

� 1
λ1

0
0 1

λ2

�

.

Itse asiassa diagonaalimatriisin potenssien (ja käänteispotenssien) laskeminen on yhtä helppoa:

Λn =
�

λn
1 0

0 λn
2

�
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kaikilla kokonaisluvuilla n .
Diagonaalimatriisien transponointi on poikkeuksellisen helppoa: Λ⊤ = Λ .

7.1 Esimerkki
(i) Diagonaalimatriisi

P =
�

1 0
0 0

�

projisoi tason pisteet x = [x1 x2]⊤ x1 -akselille “hävittämällä” x2 -koordinaatin. Tämä diagonaali-
matriisi ei ole kääntyvä.

(ii) Diagonaalimatriisi

C =
�

1 0
0 −1

�

vaihtaa x2 -akselin suunnan. Tämä diagonaalimatriisi on siis peilaus x2 -akselin suhteen. Tämä dia-
gonaalimatriisi on kääntyvä. Kääntäminen tapahtuu vaihtamalla x2 -akselin suunta uudestaan sa-
malla tavalla: C−1 = C .

Toinen mukava luokka matriiseja on ortogonaaliset matriisit. Formaali määritelmä ortogonaaliselle
matriisille on seuraava: tason neliömatriisi Q on ortogonaalinen, jos

Q⊤ = Q−1.(7.2)

Määritelmä (7.2) on toki elegantti, mutta ehkä hieman läpinäkymätön. Ortogonaalisen matriisin idea
on se, että on kannanvaihtomatriisi, joka kuvaa ortonormaalit kannat ortonormaaleiksi kannoiksi.
Erityisesti se tarkoittaa sitä, että standardikanta (e1,e2) kuvautuu ortonormaaliksi kannaksi. Koska
Q:n sarakkeet ovat standardikannan kuvat, tarkoittaa tämä sitä, että

∥Q•1∥ = 1,(7.3)

∥Q•2∥ = 1,(7.4)

Q•1 ·Q•2 = 0.(7.5)

7.6 Harjoitustehtävä
Osoita että ehdot (7.3)–(7.5) ja (7.2) tarkoittavat samaa. Voit halutessasi käyttää apuna (jos siitä on
apua) seuraavaksi esitettävää ortogonaalisten matriisien hajotelmaa Q= CR , missä C on peilaus ja
R on kierto.

Tasossa ortogonaaliset matriisit voidaan esittää poikkeuksellisen konkreettisesti: ne koostuvat pei-
lauksista ja kierroista. Matriisi C on peilaus, jos se on muotoa

C =
�

±1 0
0 ±1

�

.
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Matriisi R on kierto (θ radiaania vastapäivään), jos se on muotoa

R =
�

cosθ − sinθ
sinθ cosθ

�

.

Pienellä geometrisella pähkäilyllä on suhteellisen helppo nähdä, että matriisi Q on ortogonaalinen
jos ja vain jos se on muotoa Q= CR , missä C on peilaus ja R on kierto.

Peilausmatriisien algebra on helppoa, koska ne ovat diagonaalimatriiseja. Kiertomatriisien algebra
on myös helppoa: jos R(θ ) ja R(φ) ovat kiertomatriiseja (θ ja φ radiaania vastapäivään), niin

R(θ )R(φ) = R(θ +φ),

mistä seuraa esimerkiksi, että R(θ )n = R(nθ ) kaikilla kokonaisluvuila n , ja erityisesti käänteismatrii-
sille pätee R(θ )−1 = R(−θ ) (kierto myötäpäivään θ radiaania).

7.7 Harjoitustehtävä
Olkoon

A =
�

0.7071 −0.7071
0.7071 0.7071

�

.

Huomaa, että 0.7071=
p

2/2, ja laske

(i) A−1 ,
(ii) A8 .

Ominaisarvohajotelman laskeminen

Entäpä sitten symmetriset matriisit A? Jos Λ on diagonaalimatriisi ja Q on ortogonaalinen matriisi,
niin

A = QΛQ−1(7.8)

on symmetrinen. Nimittäin, ensinnäkin

A⊤ = (QΛQ−1)⊤

= (QΛQ⊤)⊤,

koska Q on ortogonaalinen. Toiseksikin, käyttämällä tulon transponointikaavaa ja matriisitulon asso-
siatiivisuutta, saamme

(QΛQ⊤)⊤ = (Q(ΛQ⊤))⊤

= (ΛQ⊤)⊤Q⊤

= (Q⊤)⊤Λ⊤Q⊤.
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Kolmanneksi, koska Λ⊤ = Λ (pätee diagonaalimatriiseille) ja Q⊤ = Q−1 (pätee ortogonaalisille mat-
riiseille) sekä (Q⊤)⊤ = Q (pätee kaikille matriiseille), niin

(Q⊤)⊤Λ⊤Q⊤ = QΛQ−1.

Olemme siis osoittaneet, että kaavan (7.8) antamalle matriisille A pätee A⊤ = A , eli A on symmetri-
nen.

Mutta onnistuuko tämä hajotelma toisin päin? Voidaanko annetulle symmetriselle matriisille A
löytää ortogonaalinen matriisi Q ja diagonaalimatriisi Λ niin, että hajotelma (7.8) pätee? Ja mikä
vielä olennaisempaa: miksi ylipäätään haluaisimme löytää hajotelman (7.8)?

7.9 Huomautus
Ennen hajotelman laskemista esitämme yhden ilmiselvän sovelluksen ominaisarvohajotelmalle:
käänteismatriisin laskemisen. Jos A= QΛQ−1 , niin

A−1 = (QΛQ−1)−1

= ((QΛ)Q−1)−1

= (Q−1)−1(QΛ)−1

= QΛ−1Q−1.

Koska Q−1 = Q⊤ ja Λ−1 ovat helppoja laskea, näemme että käänteismatriisin laskeminen on helppoa
ominaisarvohajotelmasta.

Ominaisarvohajotelman (7.8) laskeminen kannattaa aloittaa ominaisarvojen, eli matriisin Λ las-
kemisella. Ominaisarvohajotelman nojalla tarkoitus on löytää sellaiset luvut λ ja vektorit q , että

Aq= λq.(7.10)

Yhtälö (7.10) sanoo, että kuvaus A on suuntaan q venytys. Venytyksen voimakkuutta λ kutsutaan
matriisin A ominaisarvoksi ja vektoria q ominaisarvoa λ vastaavaksi ominaisvektoriksi. Yhtälön
(7.10) ratkaisemiseksi kirjoitamme sen muodossa

(A−λI)q = 0.

Tästä muodosta näemme, että ratkaisu on olemassa (kun q ̸= 0), jos matriisi A−λI ei ole kääntyvä.
Täten λ on niin sanotun karakteristisen polynomin

p(λ) = det(A−λI)

nollakohta. Koska tarkastelemme vain 2×2 symmetrisiä matriiseja (jolloin A12 = A21 ), voimme laskea
karakteristisen polynomin auki kohtalaisen helposti:

p(λ) = det
��

A11 A12

A21 A22

�

−
�

λ 0
0 λ

��

= det
��

A11 −λ A12

A21 A22 −λ

��

= (A11 −λ)(A22 −λ)− A12A21

= (A11 −λ)(A22 −λ)− A2
12

= λ2 − (A11 + A22)λ+ A11A22 − A2
12.
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Näemme, että p(λ) on toisen asteen polynomi, joten sen ratkaisut voidaan laskea vanhalla tutulla
ratkaisukaavalla:

λ1 =
A11 + A22 +
Æ

(A11 + A22)2 − 4(A11A22 − A2
12)

2
,

λ2 =
A11 + A22 −
Æ

(A11 + A22)2 − 4(A11A22 − A2
12)

2
.

Tästä näemme, että ratkaisut ovat aina reaalisia, sillä voidaan osoittaa, että aina pätee

(A11 + A22)
2 ≥ 4(A11A22 − A2

12).

Samoin näemme, että ratkaisut λ1 ja λ2 ovat samoja jos

(A11 + A22)
2 = 4(A11A22 − A2

12),

mikä pelkistyy ehdoiksi A12 = 0 ja A11 = A22 = λ . Tämä siis tarkoittaa sitä, että A on jo valmiiksi
diagonaalimatriisi, ja erityisesti se on muotoa A= λI .

Oletamme nyt, että olemme löytäneet kaksi ominaisarvoa λ1 < λ2 (sillä tilanne λ1 = λ2 osoittau-
tui tylsäksi).

Etsimme ominaisarvoa λ1 vastaavan ominaisvektorin q1 = [q11 q12]⊤ . Tämä tarkoittaa ominai-
sarvoyhtälön

Aq1 = λ1q1

ratkaisemista. Koska λ1 on tunnettu, tämä on normaali yhtälöpari, joka voidaan ratkaista normaaliin
tapaan esimerkiksi kirjoittamalla se muotoon

(A−λ1I)q1 = 0

ja ratkaisemalla tätä muotoa vastaava laajennettu lohkomatriisi

�

A11 −λ1 A12 0
A21 A22 −λ1 0

�

.

Ratkaisuja on ääretön määrä (ja nollakin on mitä ilmeisimmin ratkaisu). Valitsemme sellaisen ratkai-
sun, jolle ∥q1∥= 1. Samalla tavalla ominaisarvoa λ2 vastaava ominaisvektori q2 = [q21 q22]⊤ löytyy
ratkaisemalla normaaliin tapaan ominaisarvoyhtälö

Aq2 = λ2q2.

Matriisin A ominaisarvohajotelma (7.8) on nyt itse asiassa löydetty:

Λ=
�

λ1 0,
0 λ2

�

ja Q=
�

q11 q21

q12 q22

�

.



Luku 7 Tason symmetristen matriisien ominaisarvohajotelma 74

7.11 Esimerkki
Etsimme symmetrisen matriisin

A =
�

3 −1
−1 5

�

ominaisarvohajotelman.
Nyt

A−λI =
�

3−λ −1
−1 5−λ

�

.

Siten karakakteristinen polynomi on

p(λ) = (5−λ)(3−λ)− 1

= λ2 − 8λ+ 14,

jonka nollakohdat voidaan laskea toisen asteen yhtälön ratkaisukaavasta. Saamme

λ1 = 2.5858,

λ2 = 5.4142.

Ominaisarvoa λ1 = 2.5858 vastaava ominaisvektori q1 saadaan yhtälöparista
�

3− 2.5858 −1
−1 5− 2.6858

�

q1 =
�

0
0

�

,

eli kaaviomuodosta
�

0.4142 −1.0000 0.0000
−1.0000 2.4142 0.0000

�

.

Tämän kaavion voi ratkaista normaaliin tapaan esimerkiksi eliminoimalla q11 - muuttujan toiselta
riviltä:
�

0.4142 −1.0000 0.0000
−1.0000 2.4142 0.0000

�

⇝
�

0.4142 −1.0000 0.0000
0.0000 0.0000 0.0000

�

Toinen rivi eliminoitui täysin (ja näin pitikin käydä, sillä matriisin A− λ1I determinantti on nolla.
Ensimmäiseltä riviltä luemme, että ratkaisut ovat muotoa

q12 = 0.4142 · q11.

Nyt pitää valita sellainen q1 , että ∥q1∥2 = 1. Toisin sanoen

1 = q2
11 + q2

12

= q2
11 + 0.41422q2

11

= 1.1716q2
11
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Siten

q11 =
Æ

1/1.716 = 0.9239,

q12 = 0.4142 · 0.9239 = 0.3829

eli q1 = [0.9239 0.3829]⊤ .

Ominaisarvoa λ2 = 5.4142 vastaava ominaisvektori q2 saadaan yhtälöparista

�

3− 5.4142 −1
−1 5− 5.4142

�

q2 =
�

0
0

�

,

eli kaaviomuodosta
�

−2.4142 −1.0000 0.0000
−1.0000 −0.4142 0.0000

�

.

Hävittämällä muuttuja q21 toiselta riviltä, eliminoituu toinen rivi täysin (niin kuin pitääkin):

�

−2.4142 −1.0000 0.0000
−1.0000 −0.4142 0.0000

�

⇝
�

−2.4142 −1.0000 0.0000
0.0000 0.0000 0.0000

�

.

Saamme siis ratkaisut, jotka ovat muotoa

q22 = −2.4142 · q21,

ja normalisointiehdosta ∥q2∥2 = 1, saamme ehdon

1 = q2
21 + q2

22

= q2
21 + 2.41422q2

21

= 6.8284 · q2
21.

q21 =
Æ

1/6.8284 = 0.3827,

q22 = −2.4142 · 0.3827 = −0.9239,

eli q2 = [0.3827 − 0.9239]⊤ .

Olemme siis löytäneet matriisin A ominaisarvohajotelman A= QΛQ−1 :

Λ =
�

λ1 0
0 λ2

�

=
�

2.5858 0.0000
0.0000 5.4142

�

Q =
�

q11 q21

q12 q22

�

=
�

0.9239 0.3827
0.3829 −0.9239

�

.
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7.12 Harjoitustehtävä
Esimerkissä 7.11 on pyöristysvirheitä. Laske se tarkoilla arvoilla.

7.13 Harjoitustehtävä
Laske seuraavien matriisien ominaisarvohajotelmat:

(i)

A =
�

1.5 0.5
0.5 1.5

�

,

(ii)

A =
�

0.5 0.5
0.5 0.5

�

.

Keräämme tähän loppuun joitakin keskeisiä havaintojamme ominaisarvohajotelmasta:

7.14
Jokainen symmetrinen matriisi A voidaan esittää ominaisarvohajotelmana

A = QΛQ⊤,

missä Q on koordinaatiston vaihto: se muuttaa tason standardikannan uudeksi ortonormaalik-
si kannaksi. Standardikannan saa takaisin käänteismuunnoksella Q−1 = Q⊤ . Matriisi Λ on diago-
naalimatriisi. Se siis venyttää “Q-koordinaatistoa” eli ominaisvektoreita matriisin Λ diagonaalilla
olevien ominaisarvojen verran.

Ominaisarvohajotelma voidaan laskea ratkaisemalla ensin ominaisarvot λi ominaisarvoyhtä-
löistä

Aqi = λiqi

esimerkiksi laskemalla karakteristisen polynomin

p(λ) = det(A−λI)

nollakohdat. Ominaisvektorit qi , eli ortogonaalisen matriisin Q sarakkeet, saadaan ratkaisemalla
ominaisarvoyhtälöt, kun niihin on ensin sijoitettu aikaisemmin saadut ominaisarvot. Ratkaisuiksi
pitää valita ykkösen pituiset vektorit qi .

Ominaisarvohajotelma on hyödyllinen esimerkiksi (käänteis)potenssien Ak , missä k on koko-
naisluku, laskemisessa.
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Ominaisarvohajotelma yleisessä tapauksessa*

Jos A on symmetrinen n × n-matriisi, niin sillä on ominaisarvohajotelma A = QΛQ−1 . Tämä omi-
naisarvohajotelma voidaan laskea teoriassa tismalleen samalla tavalla kuin 2×2-matriisellekin. Käy-
tännössä tämä ei kuitenkaan onnistu, sillä nyt karakteristinen polynomi p(λ) on n. astetta, joten
sen nollakohtien ratkaiseminen ei onnistu millään ratkaisukaavalla, vaan joudumme turvautumaan
numeerisiin menetelmiin.

Jos A ei ole symmetrinen matriisi, niin sillä ei voi olla hajotelmaa A = QΛQ−1 , missä Q on or-
togonaalinen ja Λ on diagonaalimatriisi. Periaatteessa voi kuitenkin joskus olla mahdollista löytää
hajotelma

A = PΛP−1(7.15)

missä Λ on edelleen diagonaalimatriisi, mutta P on vain jokin kääntyvä matriisi. Hajotelmaa (7.15)
kutsutaan myös joskus (valitettavasti) ominaisarvohajotelmaksi. Esimerkiksi epäsymmetrisen matrii-
sin

A =
�

1 3
−1 5

�

kaavan (7.15) mukainen ominaisarvohajotelma on

P =
�

−0.9486 −0.7071
−0.3162 −0.7071

�

ja Λ =
�

2 0
0 4

�

.

Tässä siis P ei ole ortogonaalinen: P−1 ̸= P⊤ .
Joskus voimme rakentaa (ortogonaalistyyppisen) ominaisarvohajotelman piipahtamalla komplek-

sipuolella. Esimerkiksi antisymmetrinen matriisi

A =
�

2 −1
1 2

�

voidaan esittää muodossa UΛU−1 , missä

U =
�

cos(π/4) cos(π/4)
− cos(π/4) · i cos(π/4) · i

�

ja Λ =
�

2+ i 0
0 2− i

�

.

Tässä siis Λ on diagonaalimatriisi ja U on unitaarinen matriisi: U−1 = U∗ .
Yleisessä tapauksessa, missä A on vain jokin (kompleksialkioinen) m× n-matriisi, voidaan raken-

taa niin sanottu singulaariarvohajotelma

A = UΣV∗,(7.16)

missä U ja V ovat unitaarisia matriiseja ja Σ on diagonaalimatriisi, jonka diagonaalialkioita kutsu-
taan matriisin A singulaariarvoiksi. Karkeasti ottaen singulaariarvohajotelma sanoo seuraavaa: en-
sin pyöritetään koordinaatisto uudeksi koordinaatistoksi käyttämällä muunnosta V∗ . Tämän jälkeen
venytetään akseleita matriisin Σ singulaariarvoilla ja lopuksi vielä pyöräytetään (joskaan ei ehkä ta-
kaisin) koordinaatistoa kuvauksella U . Singulaariarvohajotelmaa kutsutaan joskus myös pääakseli-
hajotelmaksi. Lopuksi on hyvä huomata, että hajotelmassa (7.16) ainoastaan diagonaalimatriisi Σ
on yksikäsitteinen.
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Lineaarialgebraa GNU Octavella

GNU Octave on avoimen lähdekoodin versio legendaarisesta Matlab-ohjelmistosta. Sen saa ladattua
osoitteesta https://octave.org/. Jos et jostain syystä halua asentaa GNU Octavea, voit käyttää sitä
myös verkossa osoitteessa https://octave-online.net/

Näitä luentoja kirjoitettaessa viimeisin stabiili versio GNU Octavesta oli 7.2.0, mutta uudemmat
ja vahemmat versiot toimivat tämän kurssin puitteissa varmasti hyvin. Tämän kurssin kannalta myös
Matlab toimii täsmälleen samoin kuin GNU Octave.

Esitämme GNU Octaven käyttöä varsin minimaalisesti. Lisää ohjeita GNU Octaven käytöstä löytyy
esimerkiksi sen manuaalista, joka löytyy osoitteesta https://docs.octave.org/latest/

Lineaarinen yhtälöryhmä GNU Octavella

GNU Octave on matriisiorientoitunut. Tämä tarkoittaa sitä, että GNU Octavelle enemmän tai vähem-
män kaikki otukset tulkitaan matriiseksi. Matriisi esitetään GNU Octavelle hakasulkeissa niin että ele-
mentit on erotettu toisistaan joko välilyönnillä tai pilkuilla ja rivit on erotettu toisistaan puolipisteillä.
Siten esimerkiksi matriisi

�

0.11 0.12
0.21 0.22

�

on GNU Octavessa [0.11 0.12; 0.21 0.22] tai [0.11, 0.12; 0.21, 0.22].

Transpoosi ⊤ on GNU Octavessa heittomerkki '. Siten esimerkiksi pystyvektori [0.1 0.2]⊤ on GNU
Octavessa joko [0.1 0.2]', [0.0, 0.2]' tai [0.1; 0.2].

GNU Octavessa matriisin A elementteihin viitataan sulkeilla. Jos esimerkiksi A = [11 10; 11 23]
niin A(1,2) = 12. Vastaavasti A(2,2)=23.

Tulomerkki on GNU Octavessa *, ja se tarkoittaa matriisituloa. Siten, jos esimerkiksi
A = [11 12; 21 22] ja B = [1 0; 0 2], niin A*B = [11 24; 21 44].

Matriisin A käänteismatriisi on GNU Octavessa joko inv(A) tai A^(-1). Siten yhtälöryhmän
A*x = b voi ratkaista asettamalla x = A^(-1)*b. Usein ei kutenkaan kannata ratkaista yhtälöryh-
mää näin. Kuten tiedämme voi nimittäin olla että yhtälöryhmällä A*x = b on ratkaisu, vaikka A ei
olekaan kääntyvä. GNU Octave osaa ottaa tämän vain jossain määrin huomioon ja ratkaista yhtälö-
ryhmän “jakamalla sen vasemmalta” käskyllä x = A\b. Tässä siis operaatio \ tarkoittaa “vasemmalta
jakamista”. Formaalisti ajatus menee näin: A*x=b voidaan jakaa vasemmalla puolittain matriisilla

https://octave.org
https://octave-online.net/
https://docs.octave.org/latest/
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A, jolloin x = A\A*x=A\b, koska A\A on “identiteetti”. Jätämme lukijan harrastuneisuuden varaan
miettiä, mitä “oikealta jakaminen” / tarkoittaa.

Jos yhtälöllä A*x=b on useita ratkaisuja komento A\b antaa vain yhden ratkaisuista. Jos yhtälöllä
A*x=b ei ole ratkaisuja, antaa Octaven komento A\b sille silti mukaratkaisun. Tämä ei kuitenkaan ole
luonnollisestikaan yhtälön oikea ratkaisu, vaan niin sanottu miniminormiratkaisu. Tämä tarkoittaa si-
tä, että Octave antaa yhtälölle A*x=b sellaisen mukaratkaisun x, jolle norm(A*x-b) on mahdollisim-
man pieni. Tässä norm(a) on verktorin a normi, eli norm(a) = ∥a∥ . Vielä kertaalleen toisin sanoen
GNU Octaven vasemmalta jakaminen A\b antaa yhtälölle Ax= b jonkin sellaisen mukaratkaisun x ,
jolle normivirhe ∥Ax− b∥ on mahdollisimman pieni.

Lisää GNU Octavesta ja yhtälöryhmistä löytyy osoitteesta https://docs.octave.org/latest/Simple-
Examples.html. Suosittelen lämpimästi lukemaan!

8.1 Esimerkki
Olkoot

A=
�

0.51 0.02
1.21 2.02

�

ja b=
�

0.00
1.15

�

.

Seuraava konsolikeskustelu (Command Window) ratkaisee yhtälöparin Ax= b GNU Octavella:

>> A = [0.51 0.02; 1.21 2.02]
A =

0.510000 0.020000
1.210000 2.020000

>> b = [0.00 1.15]'
b =

0
1.1500

>> x = A\b
x =

-0.022863
0.583002

8.2 Harjoitustehtävä
Olkoot

A=
�

2.50 0.00
7.20 2.20

�

ja b=
�

−2.00
2.75

�

.

Ratkaise yhtälöpari Ax= b GNU Octavella.

https://docs.octave.org/latest/Simple-Examples.html
https://docs.octave.org/latest/Simple-Examples.html
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8.3 Harjoitustehtävä
Etsi sellainen yhtälöpari Ax = b , jolla on ratkaisu tai ratkaisuja, vaikka A ei olekaan kääntyvä.
Ratkaise Ax= b GNU Octavella.

Ominaisarvohajotelma GNU Octavella

GNU Octave löytää matriisin A ominaisarvohajotelman funktiolla eig, jonka syntaksi on

[Q, LAMBDA] = eig(A)

missä Q on matriisi, jonka sarakkeet ovat ominaisarvovektorit ja LAMBDA on lävistäjämatriisi, jonka
lävistäjillä on matriisin Q ominaisvektoreita vastaavat ominaisarvot. Suosittelen lämpimästi tutustu-
maan funktion eig ohjeeseen kirjoittamalla help eig GNU Octaven konsoliin (Command Window).

8.4 Esimerkki
Etsimme esimerkin 7.11 ominaisarvohajotelman GNU Octavella. Tämä tapahtuu seuraavan konsoli-
keskustelun kautta

>> A = [3 -1; -1 5]
A =

3 -1
-1 5

>> [Q,LAMBDA] = eig(A)
Q =

-0.9239 -0.3827
-0.3827 0.9239

LAMBDA =

Diagonal Matrix

2.5858 0
0 5.4142

Huomamme että saamamme Q ei ole sama kuin esimerkin 7.11 Q (Q=−Q). Tämä ei kuitenkaan ole
virhe, sillä ominaisarvohajotelma ei ole yksikäsitteinen.
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8.5 Harjoitustehtävä
Laske GNU Octavella matriisin

A=
�

0.50 0.02
0.02 2.00

�

ominaisarvohajotelma.

8.6 Harjoitustehtävä
Mitä tapahtuu jos yrität laskea GNU Octavella epäsymmetrisen matriisin

A=
�

0.50 0.02
3.00 2.00

�

ominaisarvohajotelman? Analysoi tulos.
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