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Preface

These are notes for a 7.5 hour crash course on stochastic differential equations. There are 5
sections and each section is designed to be 90 min lecture session. In addition to the 7.5 hours
of lectures the course has 2 exercise sessions, 90 min each.

Each section has 4 exercises. Completing 10 exercises is enough for a passing grade.

There are many excellent textbooks on stochastic differential equations with different level
of mathematical sophistication. In writing these notes the author has used mainly Karatzas and
Shreve [3], Oksendal [1], Revuz and Yor [5], and Schilling and Partzsch [6]. The author claims
no originality. Indeed, most of the material here is copy/pasted from the above mentioned
textbooks. Also, it should be noted that the proofs of these notes are sketchy at best. For more
rigorous proofs the reader are referred to the textbooks mentioned above. We have, however,
tried to give a flavor of proof in all cases except for Theorem 2.1 characterizing the space of 1t
integrands, Theorem 2.3, the Doob maximal inequality, and Proposition 5.1 stating that Ito
diffusions are Markovian. Rigorous proofs for all of these results can be found for example in
Revuz and Yor [5].

In these notes we have simplified our story a little bit by assuming that all our processes
and random variables are square-integrable.

The suggested measure-theoretical probability background for students for this course is
given in Williams [].

Tommi Sottinen
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1 Brownian Motion

1.1 Brownian Motion as Martingale

The Brownian motion is arguably the most central stochastic process there is. It belongs
to the intersection of many mathematical models: it is Gaussian, it is a Lévy process, it is a
martingale. An impressive amount of formulas are known for the Brownian motion, see Borodin
and Salminen [1].

A stochastic process X = (Xi(w),t > 0,w € §2) is a collection of random variables indexed
by time ¢. The intrinsic filtration of a stochastic process X is FX = (#X);> is given by
FX = o(X,;u < t). Intuitively this means that .#;/X is the information given by observing the
process X over the time-interval [0,?].

Below we give a qualitative definition of Brownian motion as a continuous Lévy process.

Definition 1.1 (Lévy Process). A stochastic process L is a Lévy process if Ly = 0, it has
stationary and independent increments, and it has right-continuous paths with left limits. Let
s < t. The stationarity of the increments means that the law of L, — L, depends only on t — s
and not on ¢ or s. The independence of the increments mean that L, — L, if independent of
the information (sigma-algebra) o(L,;u < s) generated by the random variables Ly, u < s.

Definition 1.2 (Brownian motion). A 1-dimensional stochastic process W is a Brownian
motion if it is a centered continuous Lévy process with E[W?2] = 1. A d-dimensional stochas-
tic process is a Brownian motion if its components are independent 1-dimensional Brownian
motions.

Remark 1.1. We will later show that the Brownian motion is Gaussian.

Let us recall the notions of conditional expectation and martingale. We define the condi-
tional expectation only for square-integrable random variables.

Definition 1.3 (Conditional Expectation). Let (2,.%,P) be a probability space and let X €
L*(Q, %, P) be a square-integrable random variable. Let ¢ be a sub-sigma-algebra of .%. Then
L*(Q2,%,P) is a subspace of L*(Q,.%,P) and the conditional expectation of X € L*(Q, #,P)
is its orthogonal projection E[X|¥] to the subspace L?(2,%4,P). In other words E[X|¥] is the
¢ -measurable random variable satisfying

E[X|¥9] = argmin E[(X —Y)%.

Y eL?(Q,9,P)

Remark 1.2 (Kolmogorov Definition of Conditional Expectation). YV = E[X|¥4] if ¥V is ¥-
measurable and for all A € ¢4 we have

/ X(w)Pldw] = / Y (w) Pldw].
A A
Below is a list of properties the conditional expectation satisfies
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Proposition 1.1 (Properties of Conditional Expectation). Let X, X™ Y, Z € L*(Q,.%,P)
and let 4 be a sub-sigma-algebra of F . Let a,b € R.

(i
(i

) E[E[X|¥]] = E[X].
) If X is & -measurable, then E[X|¥] = X .
(ili) E[aX +bY|¥] = aE[X|¥] + VE[Y|¥].
(iv) If X >0, then E[X|¥] > 0.
(v) If 0 < X 4 X | then E[X™|¥4] 1+ E[X|¥].
(vi) If X(™ >0, then E[liminf X™|¥] < liminf E[X (™) |%].
)
)
)
)
)

If [ X™] <Y and X™ — X, then E[X™)|¥] — E[X|¥].

(vii
(viii) If ¢: R = R is convex, then E[c(X)|¥9] > c(E[X|¥]).
(ix) If € is a sub-sigma-algebra of &, then E[E[X|9]|] = E[X|].

(x

(xi

If Z is & -measurable, then E[XZ|¥9] = ZE[X|¥Y].

If A is independent of o(0(X),¥9) then E|X|9,#) = E[X|¥9]|. In particular, if X is
independent of 4 then E[X|¥] =E[X].

Proof. See Williams [], Section 9.7. O

Remark 1.3. For the purposes of this course, it is enough to know the following: Let X be
¢ -measurable and let Y be independent of ¢4. Let f: R* — R be such that f(X,Y) is
square-integrable. Then

E[f(‘X?Y)‘g] = E[f(:l},Y)]x:X.

Intuitively, a stochastic process M = (M;);>o is a martingale for the filtration F = (.%;):>0
if the best prediction of the “future” M, given the “today” information .%#; is the today-value
M, . Formal definition is as follows:

Definition 1.4 (Martingale). Let M be a square-integrable stochastic process and let F be a
filtration. If M, is % -measurable and for all s < ¢ and it holds that M, = E[M,;|.%;], we say
that M is an F-martingale. If F = F™ | we say simply that M is a martingale.

Proposition 1.2. The Brownian motion is a martingale.



Proof. Let F = (#;)i>0 be the intrinsic filtration of the Brownian motion. Let ¢ > s. Write
Wt — WS —|— (Wt — Ws)
Then W, is .%#,-measurable and W; — W, is independent of .%,. Consequently,

E [W)|Z] = E[W,+ (W, —W,)|Z]
= E[W,|Z]+E[W, - W,|Z]
W, +E[W, — W]
= Wi

showing that W is a martingale. O]

Exercise 1.1. Suppose that we know that the 1-dimensional Brownian motion is Gaussian.
Show that the (1-dimensional) law of W, — W, conditioned on the intrinsic sigma-algebra
FW = o(Wy;u < s) is Gaussian with mean 0 and variance t — s.

Remark 1.4. The following formula is useful later: Let M be a martingale. Let s < t. Then
E[(M, — M,)?|.7,] = E[M] - MZ.Z%]. (1.1)
To see that (1.1) holds, we first note that

E [(M; — M)*|Z] = E[M] —2MM, + MZ|.Z]

M,
E [M?| %] — E [2M,M,|.%,] + E [M2|Z,]
E [M?|ZF,] — 2M,E [M,|.#,] + M?
E [M7|.%,] — 2M?2 + M?
= E[M?|F] - M?
E[M|7,] - E[M;| 7]
= E[M} - MZ|Z]

showing the claim.

Exercise 1.2. Let W be a 1-dimensional Brownian motion. Show that the process t — W2 —t
is a martingale.

1.2 Quadratic Variation of Brownian Motion

Informally, the paths of Brownian paths are so rough that
(th)2 - dt

This is what Theorem 1.1 below says rigorously.



Theorem 1.1 (Quadratic Variation). Let W be a 1-dimensional Brownian motion. Let 11 =
{0 =ty <ty--- < tm =1t} be a partition of [0,t]. Let |II| = maxy(ty — tp—1). Let AW, =
Wtk - Wtk71 . Then

Proof. Denote At =t —tx_1 and

v (A

o \VAL )
Now, because of stationarity and independence of the increments of the Brownian motion we
have E[(AW,,)?] = At;. Consequently, E[Y;] = 1. Now, note that the Y}’s are independent

and identically distributed. Then, the claim follows from the law of the large numbers. Indeed,
we have

trell trpell k=1
This proves the claim. O

Exercise 1.3 (Nowhere Differentiability of Brownian Motion). Show, by using Theorem 1.1,
that the paths of Brownian motion are nowhere differentiable.

Exercise 1.4 (Quadratic Covariation). Let Il = {0 =ty < t;--- < t,, = t} be a partition of
[0,t]. Let |II|] = maxy(ty —tx—1). Let X and Y be continuous processes. Assume that the
quadratic covariation

<X7Y>t - |r111r£0t;[(AXt’“)(AYtk)

exists. Show that the following polarization formula holds:
1
(XY) = S({(X+Y) —{X) = ().

Remark 1.5. It should be noted that so far we have not assumed that the Brownian motion is
Gaussian. Indeed, we shall prove this later in Section 3 in Proposition 3.1.



2 Ito Integration

2.1 Construction of Ito Integral

In what follows, F = (.%;):>¢ is the intrinsic filtration of the Brownian motion. In other words
Fr =Wy u<t).

The indicator function 1,4 is defined as

1, ifse€ A,
Las) = {o, ifs ¢ A.

Definition 2.1. The class of F-predictable elementary stochastic process & contains processes
of the form

Hs - Z hkl(tk_l,tk](8)7
k=1

where hy is .%#;,_,-measurable and bounded.

Remark 2.1. Sometimes we write H € & as
H, = ZHtkfl]‘(tkfl,tk](s)'
k=1
If H € & we can define the stochastic integral in the natural way as
/ H AW, = > H, AW, = > AW, (2.1)
0 th k=1

where AWtk = Wtk - Wtk,1 .

Exercise 2.1. Calculate the expectations of the following sums

WE

Wi <W£ — W%> ,

m

e
Il
—

NE

W, (Wﬁ _ W@> ,

£
Il
—

NE

Wi <W7 . W%> .

m

b
Il
-

Conclude that Riemann—Stieltjes integration with respect to Brownian motion is practically
impossible.

The following, elementary version of Ito isometry is the key ingredient in extending the
simple Ito-intergral (2.1) beyond &. We leave the following details of the proof as an exercise.
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Exercise 2.2. Let H € &. Show that

S S E[H,  H, AW, AW,] = 0

ti,te: L <ty

and
E [(AWtk)z‘ftkiJ - Atk

Lemma 2.1 (Simple It6 Isometry). Let H € &. Then

o0 2 S8
E (/ Hdes> = / E[H?] ds
0 0
Proof. Now,
o 2 [ 2
E (/ HSdWS)] = E (ZHt“AWtk>
0 t
= E <2Htk1AWtk> (ZHtglAth>
L\ & 12
= > ) E[H, H, AW, AW,]
tr ty
= 23 S E[H, H, AW, AW, ]+ E [kafl(AWth
trote: tp<te ty
= Y B[ (aw,)]
tr B
= Y E[E[m (aW,)|#, ]
tr B
= Y E[m_E[aW,?|7, ]|
tr B
_ Z]E_ka_l} Aty
tr B
~ | Emas
0
which proves the claim. O

Now we extend the It6 integral from & to a space we call Z2. The idea is the following.
Let L? be the space of (centered) square-integrable random variables endowed with the norm
| X|? = E[X?]. Let us endow & with the norm

|H|? = /OOOE[Hf]ds. (2.2)

9



Then the I[to isometry of Lemma 2.1 states that the mapping
H — / H,dW;
0

is an isometry from & to L?. Now, it follows immediately that this mapping extends to the
closure & under the norm (2.2), and the It6-isometry of Lemma 2.1 holds for this extended It6
integral. In other words we have the following

Definition 2.2 (It6 Integral). Let H € £? = &. Let H™ € & approximate H. Then

/ H,dW, = lim H™ dw,.

m—0o0 0

The following is immediate from the definition.

Theorem 2.1 (It6 Isometry). Let H € £?. Then

(/OOOHSdWS)QI _ /OOOE[HS?} ds.

We end this subsection by characterizing, the space .£? = & .

Proposition 2.1 (The Space .£?). A stochastic process H € £? if and only if
(i) (t,w)— Hy(w) is jointly measurable.
(i) Hy is Fi-measurable.

(iii) For all T >0,

T
E{/ Hfds} < 00.
0

Proof. See Qksendal [1], Section 3.1. O

2.2 Properties of Ito Integral

The Ito6 integral fooo H,dW; is linear in terms of the integrator H, this is obvious. It is also
linear in terms of the integration limits. Indeed, let us define

b 0o
/ Hs dWs = / Hsl(a’b]<8) dWS,
a 0

then we have the following.

10



Proposition 2.2. Let H € £?. Then for all t <T we have

T t T
/ H,dW, = / H,dW; —i—/ HydW;
0 0 t

Exercise 2.3. Prove Proposition 2.2.

Theorem 2.2 (Martingale Property). Let H € £?. Then the process

/ HydW;,
0

1S a continuous square-integrable martingale

The main part of the proof of Theorem 2.2 is left as an exercise.

Exercise 2.4. Let H € &. Show that the process

/ Hy dW;
0

is a square-integrable martingale continuous Martingale.

Proof of Theorem 2.2. Let H™ € & approximate H in #?. Then X™ = [/ H™ aw, is a
square-integrable martingale by Exercise 2.4. The martingale property follows by the dominated
convergence theorem for conditional expectations (see Proposition 1.1). For the continuity we
need the Doob maximal inequality (see Theorem 2.3 later). The continuity then follows from
the following estimates:

t
]P’[sup / (H! — Hy) dW; >€1
t<T 0
1 t 2
= SE [sup / (H! — Hy) dW;
3 _th 0
4 _J| /7 ?
< SE||[ - maw.
€ 0
4 /T
- ’E / yH;L—HsPdWS]
€ LJo
— 0.

This means that fo H? dW, converges to fo H,dW, uniformly in probability. By passing to a

subsequence (n’) we obtain that
t , t
/ H? dW —/ H,dW,
0 0

almost surely. The continuity now follows from the fact that uniform limit of continuous
functions is continuous. [

sup —0

t<T
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We end this subsection by a version of the so-called Doob maximal inequality that we need
later in the course in Section 4 in connection to existence and uniqueness of the solutions
of stochastic differential equations. We consider n-dimensional processes. We denote the
Euclidean norm [b]? = ", b7 for vectors and the Frobenius norm |o]* = 3", ", o7 for matrices.
Let W = (W* ..., W% be a d-dimensional Brownian motion and let H be R™?-valued .#>-
process meaning that H* € #? for all ¢ and k. By

t
X = / Hy dW;
0

we mean the n-dimensional stochastic process X = (X1!,..., X™) whose i*® component is given

by

d_ ot
xi = 3 [ mraw
k=1

so that formally

H1 g2z .. Hld dwl

t t HZQ H522 Hsld dWS2

X, = [waw, =[]0 : .
0 0 . : . .

HpY oHP?r oo HMO| | AW

Theorem 2.3 (Doob Maximal Inequality). Let X = (X', X2 ... X™) be a continuous mar-
tingale. Then

E {sup |Xt\2} < 4E[|X7|’]

t<T

The proof of Theorem 2.3 is very technical. So we omit it. (The interested reader should
consult Revuz and Yor [5].) Let us just note that if

t
Xy = / Hy dW;
0

then by using the It isometry, we can rewrite the Doob maximal inequality as

t
E / HydWg
0

sup
t<T

2] < 4/OTIE[|HS|2] ds (2.3)
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3 It6 Formula

The main tool, indeed the only tool, we have for Ito integrals is the so-called It6 formula. This
is a change-of-variables formula for Ito integrals. We begin by stating and proving the formula
for the simple case of 1-dimensional Brownian motion is Subsection 3.1 and in Subsection 3.2
we state and prove the It6 formula for n-dimensional It6 diffusions.

3.1 Homogeneous 1-Dimensional It6 Formula

The change-of-variables formula for classical calculus states that

afx) = Lo, 3.)

This formula is true if X is differentiable. Indeed, in this case the formula can be rewritten in
a more familiar form as

df(xy) _ df(X,) dX;

a de dt
Setting x(t) = X; we get an even more familiar form
df _ dfde
dt — drdt’

If X =W is the Brownian motion, then the formula (3.1) is no longer true, and 4%t does

not make classical sense. Informally, the reason is that as d¢ tends to zero (dW;)? tends to dt
and not to zero. This implies that we have the formula

df 1d*f

1 (Wt) dW, + §F

df 1d%f

_ ——J 2

1z —— (W) dW; + 5 du 5 (W) dt (3.2)

Of course, the differential equation (3.2) has to be understood as an integral equation. The

precise statement of formula (3.2) is given below in Theorem 3.1. For that we recall as an

exercise a version of Taylor formula

df(wy) = (W) (dW3)*

Exercise 3.1 (2°¢ Order Taylor formula). Let f be smooth enough. Show that

f@)=fla) = —“(a)(x—a)+5—5(a)(z —a)’ + R(z,a),
where R(a,z) < e(la —z|)(x —y)? and e(y) — 0 as y — 0.

Theorem 3.1 (Ito6 Formula for 1-Dimensional Brownian motion). Let f: R — R be smooth
enough. Then

sy = sovy+ [ SLovpaw+ 5 [y (33)

13



Proof. Let I={0=1ty <t; <--- <t, =t} be a partition of [0,¢]. Let AW}, =W, — W, _,
and Af(Wy,) = f(Wy,) — f(W;,_,). Then, by Taylor formula,
df

Af(Wtk> = E(Wtk—l)AWtk_’_

1d*f 2 2
5@(Wtk_1)(AWtk) + (AW, ) (AWL,)

Summing over the partition II this yields

d 1 d?
fov) - fovy) = 3 SLow, yaw, 5 S Thon, )
tr €Il trell

+ Z €(AWtk—1 ) (AWtk)z

tpell

Now, by the definition of [to integral
t df
L(IT) — — (W) dW,
m — [t

as |II| — 0.
Let us then consider the sum I5(IT). By the quadratic variation of Brownian motion (The-
orem 1.1) we have informally

(AW,,)? — (dW,)* = dt.

Consequently,
| df )
L) = 52@(1/‘@_1)@”/@)
trell
1 t d2f
= [ =5 (W) (dW,)?
= 5 | S
1 t d2f
= — [ —(Wyd
2/0 de( ) ds
as |II] — 0.

It remains to show that I3(II) — 0 as |II] — 0. Since W has (uniformly) continuous paths
we have, by using the quadratic variation Theorem 1.1 that

L) = > e(AW, ) (AW,)?

trell
< supe(AW, ) Y (AW,)?
trell teell
— 0.
This finishes the proof. O

14



Remark 3.1 (Itd6 Formula and Quadratic Variation). It should be noted that the process W in
the Ito formula (3.3) need not be Brownian motion. Indeed, only things that were needed in the
proof where (i) the process W is continuous and (ii) (dW;)? = dt. We refer to Follmer [2] (see
Sondermann [7] of English translation) on further discussion on how to construct stochastic
calculus for quadratic variation processes.

Exercise 3.2. Calculate by using It6 formula

t
| weaw.
0

We end this subsection by showing that a continuous Lévy process (i.e. the Brownian
motion) is Gaussian.

Proposition 3.1. The Brownian motion is Gaussian.

Proof. We only give the proof in 1-dimensional case. The multidimensional case follows simply
by considering the independent components separately.

Let f(z) = €% . Then, by the 1-dimensional It6 formula we have

d 1d2
= 0f(W,)dW; — %HQf(Wt) dt. (3.4)

Now we note that
¢:(0) = E [eiHWt} = E[f(W)].

Consequently, by taking the expectation in (3.4), we obtain the integral equation

1 t
o(0) = 1-— —92/ ¢s(0) ds.
2 Jo
The solution of this integral equation is the Gaussian characteristic function
0u(0) = e 2",

which shows the claim. O

3.2 Ito6 Formula for Ito Diffusions

Let W = (W' ..., W% be a d-dimensional Brownian motion. Let b: [0,00) x R* — R™ and
o:[0,00) x R" — R4,

We consider the stochastic differential equation that is defined componentwise as

d
dX; = bt X)dt+ Y oult, X)) AW, Xi=&, (3:5)
k=1

15



for each i = 1,...,n. Of course, to be precise, the stochastic differential equation (3.5) should
be understood as the componentwise integral equation

th = 51 / SX dS—l-Z/ UszX dWska

for each 7 = 1,...,n. In the above the initial value £ is .%y-measurable and the filtration
F = (:%)i>0 is such that the Brownian motion W is an F-martingale. In practice, this typically
means that the sigma-algebra %, and the Brownian motion W are independent.

Sometimes we write (3.5) shortly as
dXt = b(t, Xt) dt + U(t, Xt) th

or
t t
X;:g+/u@m@+/a@&mm
0 0

Solutions X of the stochastic differential equations (3.5) are called It6 diffusions. In this
subsection we simply assume that the solution X of (3.5) exists. We will prove the existence
and uniqueness later in Section 4.

The proof of multidimensional It6 formula for It6 diffusions is, like in the simple Brownian
motion case, based on Taylor formula. Therefore we give a version of the Taylor formula as an
exercise.

Exercise 3.3 (Multidimensional 2°¢ Order Taylor Formula). Let f be smooth enough. Show
the following multidimensional second order Taylor formula:

ﬂﬂ—ﬂ@
= 8f( +1ii —a;)(z; —a;) + R(x,a) (3.6)
ilax 211j18:c18x] YA Y ’
where R(z,a) < e(z —a)lz — al* and €(y) — 0 as y — 0, and | - | is the Euclidean norm
lyI* = > i

Below is the Ito formula for Ito diffusions in differential form.

Theorem 3.2 (It6 Formula for It6 Diffusions). Let X be the Ito diffusion (3.5). Let f: [0, 00) X
R™ — R be smooth enough. Then

of ~ Of -
df(t, X)) = — (¢t X,)dt (t, X;) dX; + (t, X;) dXidX]
F(t.X) = S X)) +;a ) ZZM ) AXGAX], (3.7)
where AX}dX] is calculated according to the quadratic variation rules thithj = 9;;dt and
dWidt = dedW} = (dt)? = 0. Here 0;; is the Kronecker delta: 6; =1 and 6;; =0 if i # j.

16



Proof. The formula (3.7) follows from the Taylor formula (3.6) an the proof of the one-
dimensional simple It6 formula. The calculation rules dW/dW} = §;;d¢, dW}dt = dtdW} =
follow from quadratic variation calculus. We omit the details. O]

Remark 3.2. As in the 1-dimensional Brownian case, the multidimensional It6 diffusion Ito
formula (3.7) remains true, if we only assume that (i) X is continuous (ii) X is quadratic
covariation process meaning that

(X', X7, = lim AX] AXT,

[TI]—0
trell
exists. Indeed, then
dXidx] = d(X' X),.

Remark 3.3. The It6 formula (3.7) can be written in many ways in terms of the underlying
Brownian motion. We have, for example,
of of

Af(t X)) = S0 X)de+ Y 2 (t X)dX;
i=1 !

9 #(t, X,)(00 )yt X,) dt

f " of o Of ‘
= Z(t,X,)dt + Zl 8—%(15, X)bi(t, X,) dt + kzl Zl a—xi(t, X,)ow(t, X )dW,

Indeed, we have
AdXidX] = (o0")y(t, X,)dt,
since according to the rules dW/dW/ = §;;dt, dWidt = dtdW; = (dt)> = 0,

d d
k=1 /=1

d
Z Uik<t7 Xt)Uje(t> Xt) thdete

1 /(=1

M=

k

|l

— ZO’ik(t,Xt)Ujk(taXt)dt

k=1
= (O‘O’T)i]‘(t, Xt) dt.

Exercise 3.4 (Integration-by-Parts). Let X and Y be 1-dimensional It6 diffusions. Show the
following integration-by-parts formula:

17



4 Stochastic Differential Equations

In this section we consider stochastic differential equations driven by a d-dimensional Brownian
motion. We begin with examples in the 1-dimensional case and end with proving an existence
and uniqueness theorem in the multivariate case.

4.1 Examples

In general stochastic differential equations cannot be solved analytically. This is not surprising.
Indeed, ordinary differential equations cannot usually be solved analytically. However, in this
section we give a few examples (and exercises) where analytical solutions can be found. In this
subsection we only consider the 1-dimensional case.

Example 4.1 (Geometric Brownian motion). Let W be a 1-dimensional Brownian motion
and let p© and o be constants. Consider the stochastic differential equation

dSt = ,LLStdt—i-JStth (41)

We want to solve this by using It6 formula. An educated guess is to consider the function

) o { (- %) vor).

Then
of B o?
) = (u-%) st
0
i) = oflt,)
32
a_‘%?;(t?x) = UQf(tax>'
Then, by Ito formula, we have that
of of 10°f
df(t, W) = S (6 Wa) dt 4 (8, W) AWy + S 25 (8 W) (d)?
2 2
= (-G ) S dekope Wy Wi+ G ple Wt

= Mf(ta Wt) de + O—f(t> Wt) th
So, we see that the process

g

2
Sy = f(t,W;) = Spexp { (M — ?) t+ th}
solves the stochastic differential equation (4.1).

18



Exercise 4.1. Solve the stochastic differential equation
dXt - Xt dt ‘|‘ th

Example 4.2 (Ornstein—Uhlenbeck Process). Let > 0 a constant. Let ¢ € R be a constant.
The Ornstein—Uhlenbeck process U is the solution of the Langevin equation

AU, = —0U,dt+odW,, Uy =¢. (4.2)

To solve the Langevin equation (4.2) one can mimic he solution of linear ordinary differential
equation. Indeed, let W, = %Wt be the (nonexistent) time derivative of the Brownian motion
W. Then, at least informally, we can rewrite (4.2) as the linear equation

d .
&Ut = —9Ut + O'Wt.

This is a linear first order non-homogeneous equation and classical theory of ordinary differential
equations suggests the solution

¢
U = & %4 eet/ e’ oW, ds.
0
Since, informally Wt dt = dW,, this suggests that the solution of (4.2) is

t
U = & 4o /0 e 0= amy,. (4.3)

This is indeed the solution.

Another way to find the solution is to use the Itd formula (or rather integration by parts
formula) with the function

f(t,z) =e"a.
Indeed,

df(t,Uy) = d("U;)
= AU, + U dt
= " (—0U, dt + odW, + 0U, dt)
= odW,.

Integrating this differential gives us
t
eetUt = é_ —+ / ees dWs,
0

i.e, we obtain the solution (4.3).

Exercise 4.2 (Ornstein-Uhlenbeck with Drift). Consider the Ornstein-Uhlenbeck process with
constant drift pu:

dVi = 0(p—V,)dt +odW,. (4.4)
Solve the stochastic differential equation (4.4).
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4.2 Existence and Uniqueness

Let W = (W' ... ;W% be a d-dimensional Brownian motion. Let b: [0,00) x R® — R™ and
o:[0,00) x R — R™4. In this section we provide existence and uniqueness result for the
stochastic differential equation

In this section |-| will denote the Euclidean norm |b*> = > i b?- for vectors and the Frobenius
norm |o|* = 37,37, 0% for matrices.

Remark 4.1. We note that if ¢ = 0 then the stochastic differential equation (4.5) is just a
deterministic differential equation

d . .
EXtJ - bj(taXt)v X(])Zgh

j=1,...n. The theory of ordinal differential equations suggests we need growth and Lipschitz
conditions for b. Then the solution of the differential equation can be then constructed by
using Picard iterations.

Assumption 4.1 (Growth and Lipschitz). We assume the following growth condition for the
coefficients b and o

b(t,2)|* + o (t,2)]* < Mr(1+ |z])” (4.6)

for all z € R™ and ¢ € [0,7].
We also assume the following Lipschitz condition for the coefficients b and o:

b(t,2) = b(t. y)|* + lo(t,2) —o(t.y))? < Lrjr—yf (4.7)
for all z,y € R™ and and ¢ € [0,7].

We begin by proving a stability result for the stochastic differential equations (4.5) that
implies the uniqueness of the results.

Theorem 4.1 (Stability). Let X and X be two solutions of (4.5) with Xo = ¢ € L*(P) and
Xo =& € L*(P). Assume that the Lipschitz condition (4.7) hold. Then

E {sup X, — Xﬂ < C4E [|g - 512] .

t<T

Before going to the proof of Theorem 4.1 we give an auxiliary result called Gronwall in-
equality needed in the proof as an exercise.

Exercise 4.3 (Gronwall Lemma). Suppose u,a,b: [0,00) — [0,00) satisfy
T
w(T) < a(T) +/ b(t)u(t)dt.
0
Show that

w(T) < a(T) + /0 ' a(t)b(t)el by
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Proof of Theorem /.1. Let us first note that

t t
Xo- % = 6= [ [ X — s X ds [ [l < b, X0 W,
0 0
Since
(a+b+c)? < 3a®+3V° +3c,

we obtain

E {sup | X, — Xt@ < 3E [|§ - é|2]

t<T

+3E [sup
t<T

/Ot [b(s,Xs) - b(sjs)} ds

+3E -sup /Ot |:0'(S,Xs) — O'(S,Xs)] dW, 2]

t<T

Let us consider the second term above. The supremum is eliminated by noticing that

t T
sup / [b(s,Xs) - b(s,Xs)} ds| < / ‘b(s,Xs) —b(s, X5)|ds
t<T |Jo 0
Then we can use the Cauchy—Schwarz (or Jensen) inequality to obtain
T ~ 2 T 2
(/ ’b(s,Xs) (s, X.) ds> < T/ ‘b(s,XS) ~ (s, X4)| ds
0 0

Finally, by using the Lipschitz condition (4.7) and taking expectations, we obtain

E /Ot [b(s, X)) — b(s,f(s)] ds

sup
t<T

2 T ~
] < L%T/ ]E[]XS—XSF} ds
0

Let us consider the third term. Here we need the maximal inequality for stochastic integrals
(Theorem 2.3) and the Lipschitz condition (4.7). We obtain

2] < 4/OTIE Uo—(s,xs) ~ (s, X.)
4L2T/OT]E [)XS—XS 2‘

Plugging in the estimates for the second and third term we obtain

E /Ot [U(S,Xs) — U(S,Xs)i| dW;

sup
t<T

2
}ds

IN

ds

E {Sup]Xt —Xﬂ < 3E [\5 _gﬂ +3L5(T +4) /TIE [\XS _5(3,2] ds
0

t<T

~ T ~
< 3E [\5—5\2} +3L%(T+4)/ Elsup|Xr—XT|2} ds
0

r<s
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Now, we denote

u(T) —_ ]E |:Sup |Xt — Xt|2:| 5

t<T
at) = 3E[j¢— &P,
b(t) = 3L*(T+4)
and apply the Gronwall lemma of Exercise 4.3. The claim follows from this. O

Corollary 4.1 (Uniqueness). Suppose (4.7) holds. Then the solution of the stochastic differ-
ential equation (4.5) is unique.

Let us then show the existence of the solution to (4.5) by using Picard iterations. Again,
we leave some technical details as an exercise.

Exercise 4.4. Let X(™) be the Picard iteration defined as
X = ¢
t t
xm = §+/ b(s,X§m>)ds+/ o(s, X{™) dW,.
0 0

(i) Assume the growth condition (4.6). Show, as in the proof of Theorem 4.1, that

2
E {sup |Xt(m+1) - §|2} < CrE {sup (1 + Xt(m)> } .

t<T t<T

(ii) Assume the Lipschitz condition (4.7). Show, as in the proof of Theorem 4.1, that

u
t<T u<s

T
E {sup X m Xt(m)|2} < C’T/ E {sup | X — X(m_l)lz} ds.
0
Theorem 4.2 (Existence). Assume the growth condition (4.6) and the Lipschitz conditions
(4.7) hold. Then the stochastic differential equation (4.5) admits a solution X .
Proof. We set the Picard iterations as
X" = ¢
t t
X = g+/ b(s, X™) ds +/ o(s, XI™) AW,
0 0

By Exercise 4.4 we have

2
E {sup |Xt(m+1) — §|2} < CrE {sup (1 + Xt(m)> } . (4.8)

t<T t<T

This shows that the iterations X (™ are well-defined.

22



Let us then consider the convergence of the iterations. By Exercise 4.4 we have

T
E sup|Xt(m+1) —Xt(m)\Q} < C’T/ E [sup|XL(Lm) - X(m_l)]ﬂ ds. (4.9)
0

U
t<T u<s

Set

an(T) = E {sup |Xt(m+1) — Xt(m)|2} )

t<T

Then, the inequality (4.9) takes the form

am(T) < Cr /OTozm_l(s)ds.

Iterating this with m and noticing that Cy < Cr we see that

Tm
an(T) < c{ﬁmao(T).

By the estimate (4.8) we have
ao(T) = CrE[(1+ [¢])?] < 0.

Consequently, a,,(T), m € N, converges exponentially fast. This means that the uniform L2
limit

X = lim X

m—00

exists in the sense that

lim E {sup | X — Xt(m)\ﬂ = 0.
m—0o0

t<T

Finally, by using the dominated convergence theorem, we see that the limit X satisfies the
stochastic differential equation (4.5). O
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5 Ito Diffusions and Partial Differential Equations

5.1 Dynkin Formula

In this subsection we consider the homogneus n dimensional It6 diffusion as a Markov process
and consider its generator and its connection to partial differential equations. A homogeneous
Ito diffusion is the solution X of the following time-independent stochastic differential equation

dXt = b(Xt)dt+U<Xt)th, X():J?. (51)

As before (5.1) should be understood as the componentwise integral equations

¢ d t
Xp =t [ s+ 3 [ o) awk,
0 k=10

1 =1,...,n. Here we have written x; instead of & to emphasize the fact that the initial point
Xo = x of the Ito diffusion is deterministic.

Recall that a process is Markovian intuitively if its past is independent of the future given
the present. A rigorous definition is the following.

Definition 5.1 (Markov Process). A process X = (X;)i>0 is a time-homogeneous strong
Markov process if for all bounded Borel functions f: R — R and stopping times 7

E[f(Xewn)|ZFX] = EX[f(Xa)]

Here we have written EX~ = E[- | X,].

Proposition 5.1. Let f: R"™ — R be bounded Borel function. Let T be stopping time. Let X
be given by (5.1). Then

BT [f(Xein)|[Z7] = EX [f(X)],
i.e., X 1s a time-homogeneous strong Markov process.
Proof. See Qksendal [1] Theorem 7.1.2 and Theorem 7.2.4 O

Since the It6 diffusion (5.1) is Markovian, its probability law can be described by the tran-
sition semigroup (F;)¢>o given by

Fif(x) = E*[f(X)],

where f: R®™ — R is smooth. The transition semigroup itself can be written by using its
generator A formally as

where

_ i Bif@) = f)
Af(x) = ltlil[l)lf.
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Exercise 5.1. Let B be d-dimensional Brownian motion. Show that its generator is given by
the Laplacian as

d 82
Afw) = A = 53 T5w)
k=1

The generator of time-homogeneous It6 diffusion (5.1) is

n n d 2
;;m@§£@y+%}:}:w&yuw825%@y (5.2)

i=1 k=1

Indeed, the claim follows from the following Dynkin formula.

Theorem 5.1 (Dynkin Formula). Let X be the Ité diffusion given by (5.1). Let T be stopping
time such that E*[t] < co. Let f: R" — R be a bounded Borel function. Then

B O] = o)+ 8 | [T, (5:3)
0
Proof. By It6 formula (see Theorem 3.2 and Remark 3.3) we have
_ of i 3 j
M%%-a‘mm+zzw%&ﬂﬂ

j=1 =1

0
= E b Xt Xt dt+ E E O'O' l] Xt ax éfx (Xt> dt
J J

21]1

Z%mmew

= Af(X;)dt + martingale.
The claim follows by integrating and taking expectations. O]
Exercise 5.2. Let U be the 1-dimensional Ornstein—Uhlenbeck process, i.e.,
dU; = —-0U,dt + odW,.
Find its generator.

We end this section by giving a Monte Carlo type of method for solving Dirichlet boundary
problem for partial differential equations.

Example 5.1. Suppose we have a domain D C R" and given boundary data f(z) = ¢(x) on
0D and we assume that Af(x) = 0 on D. Here A is the differential operator (5.2). Then
Dynkin formula (5.3) gives us immediately a way to simulate the solution of the equation
Af(z) = 0. Indeed, we have

flx) = E[p(Xp)],

where 7p is the first time the It6 diffusion X exits the domain D.
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5.2 Feynman—Kac Formula

In this subsection we consider time-dependent n-dimensional 1t6 diffusion
dXt = b(t, Xt) dt + O'(t, Xt) th, XO =X (54)

and its connection to deterministic partial differential equations. The generator of such time-
inhomogeneous It6 diffusion is

82
me PSS ! hlta) o).

kl]l

Theorem 5.2 (Feynman-Kac Formula). Let u = u(t,x), V = V(t,z) and f = f(t,z) be
real-valued. Consider the backward partial differential equation

— F+Au—Vu+ f=0 (5.5)
with boundary condition uw(T,x) = ¢(x). The solution of (5.5) can be written as
T
u(t,z) = E“ [ / e I V@Xdu g x ) qp 4o~ i VXudug y 1 (5.6)
t

where E** = E[-| X, = x| and X is the Ito diffusion (5.4).

Proof. We only prove that if the solution to (5.5) exists, then it is necessarily of the form (5.6).
The key idea is to use integration-by-parts and It6 formula to the process (s > t)

Y, = o RV@Xoan x4 / o JI VXDt g X dr (5.7)
t

After some simplifications that are left as an exercise, we obtain

s 0
A, = e VORI V(s Xu(s, X+ F(5, X+ G50 + Auls. X)) ds
s
0
fe iV Xu)duy (S,Xs)a_“(s,xs) dw,. (5.8)
x
Since the terms in the parentheses sum up to zero, we obtain
S V(u,Xy)du Ou
dY, = ek g (s, X ) =— (s, X,) dW,
Ox
Now, by integrating we obtain
g — [ V(u,Xu)du du
Yr—Y, = e Je VA a(s,Xs)a—(s,Xs) dWs.
' x

Taking conditonal expectations we obtain, since the right hand side above is an It6 integral,
EYr| X, =2] = EYiXy=2] = u(t, x),

which finishes the proof. m
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Exercise 5.3. Finalize the proof of Theorem 5.2, i.e., let Y be given by (5.7). Show that (5.8)
holds.

Exercise 5.4 (Black—Scholes Partial Differential Equation). Let V =V (¢,z). Let r and o be
constants. Consider the so-called Black—Scholes partial differential equation

oV 1, 0%V OV B
o7 e Ty Y = 0

with boundary condition V(7T,z) = (z— K)*. Show that the solution of this partial differential
equation is

V(t,z) = N(dy)z+ N(dy)Ke T,

where

1,2
e 2% dw

N(z) =

M

7l

and

d = N%{ln(%)+(r+%2>@—t)}7
dy = di—oVT —t.
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