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Preface

These are notes for a 7.5 hour crash course on stochastic differential equations. There are 5

sections and each section is designed to be 90 min lecture session. In addition to the 7.5 hours

of lectures the course has 2 exercise sessions, 90 min each.

Each section has 4 exercises. Completing 10 exercises is enough for a passing grade.

There are many excellent textbooks on stochastic differential equations with different level

of mathematical sophistication. In writing these notes the author has used mainly Karatzas and

Shreve [3], Øksendal [4], Revuz and Yor [5], and Schilling and Partzsch [6]. The author claims

no originality. Indeed, most of the material here is copy/pasted from the above mentioned

textbooks. Also, it should be noted that the proofs of these notes are sketchy at best. For more

rigorous proofs the reader are referred to the textbooks mentioned above. We have, however,

tried to give a flavor of proof in all cases except for Theorem 2.1 characterizing the space of Itô

integrands, Theorem 2.3, the Doob maximal inequality, and Proposition 5.1 stating that Itô

diffusions are Markovian. Rigorous proofs for all of these results can be found for example in

Revuz and Yor [5].

In these notes we have simplified our story a little bit by assuming that all our processes

and random variables are square-integrable.

The suggested measure-theoretical probability background for students for this course is

given in Williams [8].

Tommi Sottinen
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1 Brownian Motion

1.1 Brownian Motion as Martingale

The Brownian motion is arguably the most central stochastic process there is. It belongs

to the intersection of many mathematical models: it is Gaussian, it is a Lévy process, it is a

martingale. An impressive amount of formulas are known for the Brownian motion, see Borodin

and Salminen [1].

A stochastic process X = (Xt(ω), t ≥ 0, ω ∈ Ω) is a collection of random variables indexed

by time t . The intrinsic filtration of a stochastic process X is FX = (FX
t )t≥0 is given by

FX
t = σ(Xu;u ≤ t). Intuitively this means that FX

t is the information given by observing the

process X over the time-interval [0, t] .

Below we give a qualitative definition of Brownian motion as a continuous Lévy process.

Definition 1.1 (Lévy Process). A stochastic process L is a Lévy process if L0 = 0, it has

stationary and independent increments, and it has right-continuous paths with left limits. Let

s < t . The stationarity of the increments means that the law of Lt −Ls depends only on t− s

and not on t or s . The independence of the increments mean that Lt − Ls if independent of

the information (sigma-algebra) σ(Lu;u ≤ s) generated by the random variables Ls , u ≤ s .

Definition 1.2 (Brownian motion). A 1-dimensional stochastic process W is a Brownian

motion if it is a centered continuous Lévy process with E[W 2
1 ] = 1. A d-dimensional stochas-

tic process is a Brownian motion if its components are independent 1-dimensional Brownian

motions.

Remark 1.1. We will later show that the Brownian motion is Gaussian.

Let us recall the notions of conditional expectation and martingale. We define the condi-

tional expectation only for square-integrable random variables.

Definition 1.3 (Conditional Expectation). Let (Ω,F ,P) be a probability space and let X ∈
L2(Ω,F ,P) be a square-integrable random variable. Let G be a sub-sigma-algebra of F . Then

L2(Ω,G ,P) is a subspace of L2(Ω,F ,P) and the conditional expectation of X ∈ L2(Ω,F ,P)
is its orthogonal projection E[X|G ] to the subspace L2(Ω,G ,P). In other words E[X|G ] is the

G -measurable random variable satisfying

E[X|G ] = argmin
Y ∈L2(Ω,G ,P)

E[(X − Y )2].

Remark 1.2 (Kolmogorov Definition of Conditional Expectation). Y = E[X|G ] if Y is G -

measurable and for all A ∈ G we have∫
A

X(ω)P[dω] =
∫
A

Y (ω)P[dω].

Below is a list of properties the conditional expectation satisfies
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Proposition 1.1 (Properties of Conditional Expectation). Let X,X(m), Y, Z ∈ L2(Ω,F ,P)
and let G be a sub-sigma-algebra of F . Let a, b ∈ R.

(i) E[E[X|G ]] = E[X].

(ii) If X is G -measurable, then E[X|G ] = X .

(iii) E[aX + bY |G ] = aE[X|G ] + bE[Y |G ].

(iv) If X ≥ 0, then E[X|G ] ≥ 0.

(v) If 0 ≤ X(m) ↑ X , then E[X(m)|G ] ↑ E[X|G ].

(vi) If X(m) ≥ 0, then E[lim infX(m)|G ] ≤ lim inf E[X(m)|G ].

(vii) If |X(m)| ≤ Y and X(m) → X , then E[X(m)|G ] → E[X|G ].

(viii) If c : R → R is convex, then E[c(X)|G ] ≥ c(E[X|G ]).

(ix) If H is a sub-sigma-algebra of G , then E[E[X|G ]|H ] = E[X|H ].

(x) If Z is G -measurable, then E[XZ|G ] = ZE[X|G ].

(xi) If H is independent of σ(σ(X),G ) then E[X|G ,H ] = E[X|G ]. In particular, if X is

independent of G then E[X|G ] = E[X].

Proof. See Williams [8], Section 9.7.

Remark 1.3. For the purposes of this course, it is enough to know the following: Let X be

G -measurable and let Y be independent of G . Let f : R2 → R be such that f(X, Y ) is

square-integrable. Then

E
[
f(X, Y )

∣∣G ] = E [f(x, Y )]x=X .

Intuitively, a stochastic process M = (Mt)t≥0 is a martingale for the filtration F = (Ft)t≥0

if the best prediction of the “future” Mt given the “today” information Fs is the today-value

Ms . Formal definition is as follows:

Definition 1.4 (Martingale). Let M be a square-integrable stochastic process and let F be a

filtration. If Mt is Ft -measurable and for all s < t and it holds that Ms = E[Mt|Fs] , we say

that M is an F-martingale. If F = FM , we say simply that M is a martingale.

Proposition 1.2. The Brownian motion is a martingale.
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Proof. Let F = (Ft)t≥0 be the intrinsic filtration of the Brownian motion. Let t > s . Write

Wt = Ws + (Wt −Ws).

Then Ws is Fs -measurable and Wt −Ws is independent of Fs . Consequently,

E
[
Wt

∣∣Fs

]
= E

[
Ws + (Wt −Ws)

∣∣Fs

]
= E

[
Ws

∣∣Fs

]
+ E

[
Wt −Ws

∣∣Fs

]
= Ws + E [Wt −Ws]

= Ws

showing that W is a martingale.

Exercise 1.1. Suppose that we know that the 1-dimensional Brownian motion is Gaussian.

Show that the (1-dimensional) law of Wt − Ws conditioned on the intrinsic sigma-algebra

FW
s = σ(Wu;u ≤ s) is Gaussian with mean 0 and variance t− s .

Remark 1.4. The following formula is useful later: Let M be a martingale. Let s < t . Then

E
[
(Mt −Ms)

2
∣∣Fs

]
= E

[
M2

t −M2
s

∣∣Fs

]
. (1.1)

To see that (1.1) holds, we first note that

E
[
(Mt −Ms)

2
∣∣Fs

]
= E

[
M2

t − 2MsMt +M2
s

∣∣Fs

]
= E

[
M2

t

∣∣Fs

]
− E

[
2MtMs

∣∣Fs

]
+ E

[
M2

s

∣∣Fs

]
= E

[
M2

t

∣∣Fs

]
− 2MsE

[
Mt

∣∣Fs

]
+M2

s

= E
[
M2

t

∣∣Fs

]
− 2M2

s +M2
s

= E
[
M2

t

∣∣Fs

]
−M2

s

= E
[
M2

t

∣∣Fs

]
− E

[
M2

s

∣∣Fs

]
= E

[
M2

t −M2
s

∣∣Fs

]
showing the claim.

Exercise 1.2. Let W be a 1-dimensional Brownian motion. Show that the process t 7→ W 2
t −t

is a martingale.

1.2 Quadratic Variation of Brownian Motion

Informally, the paths of Brownian paths are so rough that

(dWt)
2 = dt.

This is what Theorem 1.1 below says rigorously.
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Theorem 1.1 (Quadratic Variation). Let W be a 1-dimensional Brownian motion. Let Π =

{0 = t0 < t1 · · · < tm = t} be a partition of [0, t]. Let |Π| = maxk(tk − tk−1). Let ∆Wtk =

Wtk −Wtk−1
. Then

⟨W ⟩t = lim
|Π|→0

∑
tk∈Π

(∆Wtk)
2 = t.

Proof. Denote ∆tk = tk − tk−1 and

Yk =

(
∆Wtk√
∆tk

)2

.

Now, because of stationarity and independence of the increments of the Brownian motion we

have E[(∆Wtk)
2] = ∆tk . Consequently, E[Yk] = 1. Now, note that the Yk ’s are independent

and identically distributed. Then, the claim follows from the law of the large numbers. Indeed,

we have ∑
tk∈Π

(∆Wtk)
2 =

∑
tk∈Π

∆tkYk ∼ t

m

m∑
k=1

Yk.

This proves the claim.

Exercise 1.3 (Nowhere Differentiability of Brownian Motion). Show, by using Theorem 1.1,

that the paths of Brownian motion are nowhere differentiable.

Exercise 1.4 (Quadratic Covariation). Let Π = {0 = t0 < t1 · · · < tm = t} be a partition of

[0, t] . Let |Π| = maxk(tk − tk−1). Let X and Y be continuous processes. Assume that the

quadratic covariation

⟨X, Y ⟩t = lim
|Π|→0

∑
tk∈Π

(∆Xtk)(∆Ytk)

exists. Show that the following polarization formula holds:

⟨X, Y ⟩ =
1

2
(⟨X + Y ⟩ − ⟨X⟩ − ⟨Y ⟩) .

Remark 1.5. It should be noted that so far we have not assumed that the Brownian motion is

Gaussian. Indeed, we shall prove this later in Section 3 in Proposition 3.1.
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2 Itô Integration

2.1 Construction of Itô Integral

In what follows, F = (Ft)t≥0 is the intrinsic filtration of the Brownian motion. In other words

Ft = σ(Wu;u ≤ t).

The indicator function 1A is defined as

1A(s) =

{
1, if s ∈ A,

0, if s ̸∈ A.

Definition 2.1. The class of F-predictable elementary stochastic process E contains processes

of the form

Hs =
m∑
k=1

hk1(tk−1,tk](s),

where hk is Ftk−1
-measurable and bounded.

Remark 2.1. Sometimes we write H ∈ E as

Hs =
m∑
k=1

Htk−1
1(tk−1,tk](s).

If H ∈ E we can define the stochastic integral in the natural way as∫ ∞

0

Hs dWs =
∑
tk

Htk−1
∆Wtk =

m∑
k=1

hk∆Wtk , (2.1)

where ∆Wtk = Wtk −Wtk−1
.

Exercise 2.1. Calculate the expectations of the following sums

m∑
k=1

W k−1
m

(
W k

m
−W k−1

m

)
,

m∑
k=1

W k− 1
2

m

(
W k

m
−W k−1

m

)
,

m∑
k=1

W k
m

(
W k

m
−W k−1

m

)
.

Conclude that Riemann–Stieltjes integration with respect to Brownian motion is practically

impossible.

The following, elementary version of Itô isometry is the key ingredient in extending the

simple Itô-intergral (2.1) beyond E . We leave the following details of the proof as an exercise.
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Exercise 2.2. Let H ∈ E . Show that∑
tk,tℓ:

∑
tk<tℓ

E
[
Htk−1

Htℓ−1
∆Wtk∆Wtℓ

]
= 0

and

E
[
(∆Wtk)

2
∣∣Ftk−1

]
= ∆tk.

Lemma 2.1 (Simple Itô Isometry). Let H ∈ E . Then

E

[(∫ ∞

0

Hs dWs

)2
]

=

∫ ∞

0

E[H2
s ] ds

Proof. Now,

E

[(∫ ∞

0

Hs dWs

)2
]

= E

(∑
tk

Htk−1
∆Wtk

)2


= E

[(∑
tk

Htk−1
∆Wtk

)(∑
tℓ

Htℓ−1
∆Wtℓ

)]
=

∑
tk

∑
tℓ

E
[
Htk−1

Htℓ−1
∆Wtk∆Wtℓ

]
= 2

∑
tk,tℓ:

∑
tk<tℓ

E
[
Htk−1

Htℓ−1
∆Wtk∆Wtℓ

]
+
∑
tk

E
[
H2

tk−1
(∆Wtk)

2
]

=
∑
tk

E
[
H2

tk−1
(∆Wtk)

2
]

=
∑
tk

E
[
E
[
H2

tk−1
(∆Wtk)

2
∣∣Ftk−1

]]
=

∑
tk

E
[
H2

tk−1
E
[
(∆Wtk)

2
∣∣Ftk−1

]]
=

∑
tk

E
[
H2

tk−1

]
∆tk

=

∫ ∞

0

E[H2
s ] ds,

which proves the claim.

Now we extend the Itô integral from E to a space we call L 2 . The idea is the following.

Let L2 be the space of (centered) square-integrable random variables endowed with the norm

∥X∥2 = E[X2] . Let us endow E with the norm

∥H∥2 =

∫ ∞

0

E[H2
s ] ds. (2.2)
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Then the Itô isometry of Lemma 2.1 states that the mapping

H 7→
∫ ∞

0

Hs dWs

is an isometry from E to L2 . Now, it follows immediately that this mapping extends to the

closure Ē under the norm (2.2), and the Itô-isometry of Lemma 2.1 holds for this extended Itô

integral. In other words we have the following

Definition 2.2 (Itô Integral). Let H ∈ L 2 = Ē . Let H(m) ∈ E approximate H . Then∫ ∞

0

Hs dWs = lim
m→∞

∫ ∞

0

H(m)
s dWs.

The following is immediate from the definition.

Theorem 2.1 (Itô Isometry). Let H ∈ L 2 . Then

E

[(∫ ∞

0

Hs dWs

)2
]

=

∫ ∞

0

E
[
H2

s

]
ds.

We end this subsection by characterizing, the space L 2 = Ē .

Proposition 2.1 (The Space L 2 ). A stochastic process H ∈ L 2 if and only if

(i) (t, ω) 7→ Ht(ω) is jointly measurable.

(ii) Ht is Ft -measurable.

(iii) For all T > 0,

E
[∫ T

0

H2
s ds

]
< ∞.

Proof. See Øksendal [4], Section 3.1.

2.2 Properties of Itô Integral

The Itô integral
∫∞
0

Hs dWs is linear in terms of the integrator H , this is obvious. It is also

linear in terms of the integration limits. Indeed, let us define∫ b

a

Hs dWs =

∫ ∞

0

Hs1(a,b](s) dWs,

then we have the following.
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Proposition 2.2. Let H ∈ L 2 . Then for all t < T we have∫ T

0

Hs dWs =

∫ t

0

Hs dWs +

∫ T

t

Hs dWs

Exercise 2.3. Prove Proposition 2.2.

Theorem 2.2 (Martingale Property). Let H ∈ L 2 . Then the process∫ ·

0

Hs dWs

is a continuous square-integrable martingale

The main part of the proof of Theorem 2.2 is left as an exercise.

Exercise 2.4. Let H ∈ E . Show that the process∫ ·

0

Hs dWs

is a square-integrable martingale continuous Martingale.

Proof of Theorem 2.2. Let H(m) ∈ E approximate H in L 2 . Then X(m) =
∫ ·
0
H

(m)
s dWs is a

square-integrable martingale by Exercise 2.4. The martingale property follows by the dominated

convergence theorem for conditional expectations (see Proposition 1.1). For the continuity we

need the Doob maximal inequality (see Theorem 2.3 later). The continuity then follows from

the following estimates:

P
[
sup
t≤T

∣∣∣∣∫ t

0

(Hn
s −Hs) dWs

∣∣∣∣ > ε

]
=

1

ε2
E

[
sup
t≤T

∣∣∣∣∫ t

0

(Hn
s −Hs) dWs

∣∣∣∣2
]

≤ 4

ε2
E

[∣∣∣∣∫ T

0

(Hn
s −Hs) dWs

∣∣∣∣2
]

=
4

ε2
E
[∫ T

0

|Hn
s −Hs|2 dWs

]
→ 0.

This means that
∫ ·
0
Hn

s dWs converges to
∫ ·
0
Hs dWs uniformly in probability. By passing to a

subsequence (n′) we obtain that

sup
t≤T

∣∣∣∣∫ t

0

Hn′

s dWs −
∫ t

0

Hs dWs

∣∣∣∣→ 0

almost surely. The continuity now follows from the fact that uniform limit of continuous

functions is continuous.
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We end this subsection by a version of the so-called Doob maximal inequality that we need

later in the course in Section 4 in connection to existence and uniqueness of the solutions

of stochastic differential equations. We consider n-dimensional processes. We denote the

Euclidean norm |b|2 =
∑

i b
2
i for vectors and the Frobenius norm |σ|2 =

∑
i

∑
k σ

2
ik for matrices.

Let W = (W 1, . . . ,W d) be a d-dimensional Brownian motion and let H be Rn×d -valued L 2 -

process meaning that H ik ∈ L 2 for all i and k . By

Xt =

∫ t

0

Hs dWs

we mean the n-dimensional stochastic process X = (X1, . . . , Xn) whose ith component is given

by

X i
t =

d∑
k=1

∫ t

0

H ik
s dW k

s ,

so that formally

Xt =

∫ t

0

Hs dWs =

∫ t

0


H11

s H12
s · · · H1d

s

H22
s H22

s · · · H1d
s

...
...

...

Hn1
t Hn2

t · · · Hnd
s




dW 1
s

dW 2
s

...

dW d
s

 .

Theorem 2.3 (Doob Maximal Inequality). Let X = (X1, X2, . . . , Xn) be a continuous mar-

tingale. Then

E
[
sup
t≤T

|Xt|2
]

≤ 4E
[
|XT |2

]
The proof of Theorem 2.3 is very technical. So we omit it. (The interested reader should

consult Revuz and Yor [5].) Let us just note that if

Xt =

∫ t

0

Hs dWs

then by using the Itô isometry, we can rewrite the Doob maximal inequality as

E

[
sup
t≤T

∣∣∣∣∫ t

0

Hs dWs

∣∣∣∣2
]

≤ 4

∫ T

0

E
[
|Hs|2

]
ds (2.3)
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3 Itô Formula

The main tool, indeed the only tool, we have for Itô integrals is the so-called Itô formula. This

is a change-of-variables formula for Itô integrals. We begin by stating and proving the formula

for the simple case of 1-dimensional Brownian motion is Subsection 3.1 and in Subsection 3.2

we state and prove the Itô formula for n-dimensional Itô diffusions.

3.1 Homogeneous 1-Dimensional Itô Formula

The change-of-variables formula for classical calculus states that

df(Xt) =
df

dx
(Xt) dXt (3.1)

This formula is true if X is differentiable. Indeed, in this case the formula can be rewritten in

a more familiar form as

df(Xt)

dt
=

df(Xt)

dx

dXt

dt
.

Setting x(t) = Xt we get an even more familiar form

df

dt
=

df

dx

dx

dt
.

If X = W is the Brownian motion, then the formula (3.1) is no longer true, and dWt

dt
does

not make classical sense. Informally, the reason is that as dt tends to zero (dWt)
2 tends to dt

and not to zero. This implies that we have the formula

df(Wt) =
df

dx
(Wt) dWt +

1

2

d2f

dx2
(Wt) (dWt)

2

=
df

dx
(Wt) dWt +

1

2

d2f

dx2
(Wt) dt (3.2)

Of course, the differential equation (3.2) has to be understood as an integral equation. The

precise statement of formula (3.2) is given below in Theorem 3.1. For that we recall as an

exercise a version of Taylor formula

Exercise 3.1 (2nd Order Taylor formula). Let f be smooth enough. Show that

f(x)− f(a) =
df

dx
(a)(x− a) +

1

2

d2f

dx2
(a)(x− a)2 +R(x, a),

where R(a, x) ≤ ε(|a− x|)(x− y)2 and ε(y) → 0 as y → 0.

Theorem 3.1 (Itô Formula for 1-Dimensional Brownian motion). Let f : R → R be smooth

enough. Then

f(Wt) = f(W0) +

∫ t

0

df

dx
(Ws) dWs +

1

2

∫ t

0

d2f

dx2
(Ws) ds. (3.3)
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Proof. Let Π = {0 = t0 < t1 < · · · < tm = t} be a partition of [0, t] . Let ∆Wtk = Wtk −Wtk−1

and ∆f(Wtk) = f(Wtk)− f(Wtk−1
). Then, by Taylor formula,

∆f(Wtk) ≃ df

dx
(Wtk−1

)∆Wtk +
1

2

d2f

dx2
(Wtk−1

)(∆Wtk)
2 + ε(∆Wtk−1

)(∆Wtk)
2

Summing over the partition Π this yields

f(Wt)− f(W0) ≃
∑
tk∈Π

df

dx
(Wtk−1

)∆Wtk +
1

2

∑
tk∈Π

d2f

dx2
(Wtk−1

)(∆Wtk)
2

+
∑
tk∈Π

ε(∆Wtk−1
)(∆Wtk)

2

= I1(Π) + I2(Π) + I3(Π).

Now, by the definition of Itô integral

I1(Π) →
∫ t

0

df

dx
(Ws) dWs

as |Π| → 0.

Let us then consider the sum I2(Π). By the quadratic variation of Brownian motion (The-

orem 1.1) we have informally

(∆Wtk)
2 → (dWt)

2 = dt.

Consequently,

I2(Π) =
1

2

∑
tk∈Π

d2f

dx2
(Wtk−1

)(∆Wtk)
2

→ 1

2

∫ t

0

d2f

dx2
(Ws) (dWs)

2

=
1

2

∫ t

0

d2f

dx2
(Ws) ds

as |Π| → 0.

It remains to show that I3(Π) → 0 as |Π| → 0. Since W has (uniformly) continuous paths

we have, by using the quadratic variation Theorem 1.1 that

I3(Π) =
∑
tk∈Π

ε(∆Wtk−1
)(∆Wtk)

2

≤ sup
tk∈Π

ε(∆Wtk−1
)
∑
tk∈Π

(∆Wtk)
2

→ 0.

This finishes the proof.
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Remark 3.1 (Itô Formula and Quadratic Variation). It should be noted that the process W in

the Itô formula (3.3) need not be Brownian motion. Indeed, only things that were needed in the

proof where (i) the process W is continuous and (ii) (dWt)
2 = dt . We refer to Föllmer [2] (see

Sondermann [7] of English translation) on further discussion on how to construct stochastic

calculus for quadratic variation processes.

Exercise 3.2. Calculate by using Itô formula∫ t

0

Ws dWs.

We end this subsection by showing that a continuous Lévy process (i.e. the Brownian

motion) is Gaussian.

Proposition 3.1. The Brownian motion is Gaussian.

Proof. We only give the proof in 1-dimensional case. The multidimensional case follows simply

by considering the independent components separately.

Let f(x) = eiθx . Then, by the 1-dimensional Itô formula we have

df(Wt) =
df

dx
(Wt) dWt +

1

2

d2f

dx2
(Wt) dt

= iθf(Wt)dWt −
1

2
θ2f(Wt) dt. (3.4)

Now we note that

ϕt(θ) = E
[
eiθWt

]
= E [f(Wt)] .

Consequently, by taking the expectation in (3.4), we obtain the integral equation

ϕt(θ) = 1− 1

2
θ2
∫ t

0

ϕs(θ) ds.

The solution of this integral equation is the Gaussian characteristic function

ϕt(θ) = e−
1
2
θ2t,

which shows the claim.

3.2 Itô Formula for Itô Diffusions

Let W = (W 1, . . . ,W d) be a d-dimensional Brownian motion. Let b : [0,∞) × Rn → Rn and

σ : [0,∞)× Rn → Rn×d .

We consider the stochastic differential equation that is defined componentwise as

dX i
t = bi(t,Xt) dt+

d∑
k=1

σik(t,Xt) dW
k
t , X i

0 = ξi, (3.5)
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for each i = 1, . . . , n . Of course, to be precise, the stochastic differential equation (3.5) should

be understood as the componentwise integral equation

X i
t = ξi +

∫ t

0

bi(s,Xs) ds+
d∑

k=1

∫ t

0

σik(s,Xs) dW
k
s ,

for each i = 1, . . . , n . In the above the initial value ξ is F0 -measurable and the filtration

F = (Ft)t≥0 is such that the Brownian motion W is an F-martingale. In practice, this typically

means that the sigma-algebra F0 and the Brownian motion W are independent.

Sometimes we write (3.5) shortly as

dXt = b(t,Xt) dt+ σ(t,Xt) dWt

or

Xt = ξ +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs

Solutions X of the stochastic differential equations (3.5) are called Itô diffusions. In this

subsection we simply assume that the solution X of (3.5) exists. We will prove the existence

and uniqueness later in Section 4.

The proof of multidimensional Itô formula for Itô diffusions is, like in the simple Brownian

motion case, based on Taylor formula. Therefore we give a version of the Taylor formula as an

exercise.

Exercise 3.3 (Multidimensional 2nd Order Taylor Formula). Let f be smooth enough. Show

the following multidimensional second order Taylor formula:

f(x)− f(a)

=
n∑

i=1

∂f

∂xi

(a)(xi − ai) +
1

2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj

(a)(xi − ai)(xj − aj) +R(x, a), (3.6)

where R(x, a) ≤ ε(x − a)|x − a|2 and ε(y) → 0 as y → 0, and | · | is the Euclidean norm

|y|2 =
∑n

i=1 y
2
i .

Below is the Itô formula for Itô diffusions in differential form.

Theorem 3.2 (Itô Formula for Itô Diffusions). Let X be the Itô diffusion (3.5). Let f : [0,∞)×
Rn → R be smooth enough. Then

df(t,Xt) =
∂f

∂t
(t,Xt) dt+

n∑
i=1

∂f

∂xi

(t,Xt) dX
i
t +

1

2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj

(t,Xt) dX
i
tdX

j
t , (3.7)

where dX i
tdX

j
t is calculated according to the quadratic variation rules dW i

tdW
j
t = δijdt and

dW i
tdt = dtdW i

t = (dt)2 = 0. Here δij is the Kronecker delta: δii = 1 and δij = 0 if i ̸= j .

16



Proof. The formula (3.7) follows from the Taylor formula (3.6) an the proof of the one-

dimensional simple Itô formula. The calculation rules dW i
tdW

j
t = δijdt , dW

i
tdt = dtdW i

t = 0

follow from quadratic variation calculus. We omit the details.

Remark 3.2. As in the 1-dimensional Brownian case, the multidimensional Itô diffusion Itô

formula (3.7) remains true, if we only assume that (i) X is continuous (ii) X is quadratic

covariation process meaning that

⟨X i, Xj⟩t = lim
|Π|→0

∑
tk∈Π

∆X i
tk
∆Xj

tk

exists. Indeed, then

dX i
tdX

j
t = d⟨X i, Xj⟩t.

Remark 3.3. The Itô formula (3.7) can be written in many ways in terms of the underlying

Brownian motion. We have, for example,

df(t,Xt) =
∂f

∂t
(t,Xt) dt+

n∑
i=1

∂f

∂xi

(t,Xt)dX
i
t

+
1

2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj

(t,Xt)(σσ
⊤)ij(t,Xt) dt

=
∂f

∂t
(t,Xt) dt+

n∑
i=1

∂f

∂xi

(t,Xt)bi(t,Xt) dt+
d∑

k=1

n∑
i=1

∂f

∂xi

(t,Xt)σik(t,Xt)dW
k
t

+
1

2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj

(t,Xt)(σσ
⊤)ij(t,Xt) dt.

Indeed, we have

dX i
tdX

j
t = (σσ⊤)ij(t,Xt) dt,

since according to the rules dW i
tdW

j
t = δijdt, dW i

tdt = dtdW i
t = (dt)2 = 0,

dX i
tdX

j
t =

[
bi(t,Xt) dt+

d∑
k=1

σik(t,Xt)dW
k
t

][
bj(t,Xt) dt+

d∑
ℓ=1

σjℓ(t,Xt)dW
ℓ
t

]

=
d∑

k=1

d∑
ℓ=1

σik(t,Xt)σjℓ(t,Xt) dW
k
t dW

ℓ
t

=
d∑

k=1

σik(t,Xt)σjk(t,Xt) dt

= (σσ⊤)ij(t,Xt) dt.

Exercise 3.4 (Integration-by-Parts). Let X and Y be 1-dimensional Itô diffusions. Show the

following integration-by-parts formula:

d(XtYt) = Xt dYt + Yt dXt + dXt dYt.
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4 Stochastic Differential Equations

In this section we consider stochastic differential equations driven by a d-dimensional Brownian

motion. We begin with examples in the 1-dimensional case and end with proving an existence

and uniqueness theorem in the multivariate case.

4.1 Examples

In general stochastic differential equations cannot be solved analytically. This is not surprising.

Indeed, ordinary differential equations cannot usually be solved analytically. However, in this

section we give a few examples (and exercises) where analytical solutions can be found. In this

subsection we only consider the 1-dimensional case.

Example 4.1 (Geometric Brownian motion). Let W be a 1-dimensional Brownian motion

and let µ and σ be constants. Consider the stochastic differential equation

dSt = µSt dt+ σSt dWt. (4.1)

We want to solve this by using Itô formula. An educated guess is to consider the function

f(t, x) = exp

{(
µ− σ2

2

)
t+ σx

}
.

Then

∂f

∂t
(t, x) =

(
µ− σ2

2

)
f(t, x),

∂f

∂x
(t, x) = σf(t, x),

∂2f

∂x2
(t, x) = σ2f(t, x).

Then, by Itô formula, we have that

df(t,Wt) =
∂f

∂t
(t,Wt) dt+

∂f

∂x
(t,Wt) dWt +

1

2

∂2f

∂x2
(t,Wt) (dWt)

2

=

(
µ− σ2

2

)
f(t,Wt) dt+ σf(t,Wt) dWt +

σ2

2
f(t,Wt) dt

= µf(t,Wt) dt+ σf(t,Wt) dWt.

So, we see that the process

St = f(t,Wt) = S0 exp

{(
µ− σ2

2

)
t+ σWt

}
solves the stochastic differential equation (4.1).
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Exercise 4.1. Solve the stochastic differential equation

dXt = Xt dt+ dWt.

Example 4.2 (Ornstein–Uhlenbeck Process). Let θ > 0 a constant. Let σ ∈ R be a constant.

The Ornstein–Uhlenbeck process U is the solution of the Langevin equation

dUt = −θUt dt+ σ dWt, U0 = ξ. (4.2)

To solve the Langevin equation (4.2) one can mimic he solution of linear ordinary differential

equation. Indeed, let Ẇt =
d
dt
Wt be the (nonexistent) time derivative of the Brownian motion

W . Then, at least informally, we can rewrite (4.2) as the linear equation

d

dt
Ut = −θUt + σẆt.

This is a linear first order non-homogeneous equation and classical theory of ordinary differential

equations suggests the solution

Ut = ξe−θt + e−θt

∫ t

0

eθsσẆs ds.

Since, informally Ẇt dt = dWt , this suggests that the solution of (4.2) is

Ut = ξe−θt + σ

∫ t

0

e−θ(t−s) dWs. (4.3)

This is indeed the solution.

Another way to find the solution is to use the Itô formula (or rather integration by parts

formula) with the function

f(t, x) = eθtx.

Indeed,

df(t, Ut) = d
(
eθtUt

)
= eθtdUt + θUte

θt dt

= eθt (−θUt dt+ σdWt + θUt dt)

= eθtσdWt.

Integrating this differential gives us

eθtUt = ξ +

∫ t

0

eθs dWs,

i.e, we obtain the solution (4.3).

Exercise 4.2 (Ornstein–Uhlenbeck with Drift). Consider the Ornstein–Uhlenbeck process with

constant drift µ :

dVt = θ(µ− Vt) dt+ σ dWt. (4.4)

Solve the stochastic differential equation (4.4).
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4.2 Existence and Uniqueness

Let W = (W 1, . . . ,W d) be a d-dimensional Brownian motion. Let b : [0,∞) × Rn → Rn and

σ : [0,∞) × Rn → Rn×d . In this section we provide existence and uniqueness result for the

stochastic differential equation

dXt = b(t,Xt) dt+ σ(t,Xt) dWt (4.5)

In this section |·| will denote the Euclidean norm |b|2 =
∑

j b
2
j for vectors and the Frobenius

norm |σ|2 =
∑

j

∑
k σ

2
jk for matrices.

Remark 4.1. We note that if σ ≡ 0 then the stochastic differential equation (4.5) is just a

deterministic differential equation

d

dt
Xj

t = bj(t,Xt), Xj
0 = ξj,

j = 1, . . . n . The theory of ordinal differential equations suggests we need growth and Lipschitz

conditions for b . Then the solution of the differential equation can be then constructed by

using Picard iterations.

Assumption 4.1 (Growth and Lipschitz). We assume the following growth condition for the

coefficients b and σ

|b(t, x)|2 + |σ(t, x)|2 ≤ MT (1 + |x|)2 (4.6)

for all x ∈ Rn and t ∈ [0, T ] .

We also assume the following Lipschitz condition for the coefficients b and σ :

|b(t, x)− b(t, y)|2 + |σ(t, x)− σ(t, y)|2 ≤ LT |x− y|2 (4.7)

for all x, y ∈ Rn and and t ∈ [0, T ] .

We begin by proving a stability result for the stochastic differential equations (4.5) that

implies the uniqueness of the results.

Theorem 4.1 (Stability). Let X and X̃ be two solutions of (4.5) with X0 = ξ ∈ L2(P) and

X̃0 = ξ̃ ∈ L2(P). Assume that the Lipschitz condition (4.7) hold. Then

E
[
sup
t≤T

|Xt − X̃t|2
]

≤ CTE
[
|ξ − ξ̃|2

]
.

Before going to the proof of Theorem 4.1 we give an auxiliary result called Grönwall in-

equality needed in the proof as an exercise.

Exercise 4.3 (Grönwall Lemma). Suppose u, a, b : [0,∞) → [0,∞) satisfy

u(T ) ≤ a(T ) +

∫ T

0

b(t)u(t) dt.

Show that

u(T ) ≤ a(T ) +

∫ T

0

a(t)b(t)e
∫ T
t b(s)dsdt
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Proof of Theorem 4.1. Let us first note that

Xt − X̃t = ξ − ξ̃ +

∫ t

0

[
b(s,Xs)− b(s, X̃s)

]
ds+

∫ t

0

[
σ(s,Xs)− b(s, X̃s)

]
dWs

Since

(a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2,

we obtain

E
[
sup
t≤T

|Xt − X̃t|2
]

≤ 3E
[
|ξ − ξ̃|2

]
+3E

[
sup
t≤T

∣∣∣∣∫ t

0

[
b(s,Xs)− b(s, X̃s)

]
ds

∣∣∣∣2
]

+3E

[
sup
t≤T

∣∣∣∣∫ t

0

[
σ(s,Xs)− σ(s, X̃s)

]
dWs

∣∣∣∣2
]

Let us consider the second term above. The supremum is eliminated by noticing that

sup
t≤T

∣∣∣∣∫ t

0

[
b(s,Xs)− b(s, X̃s)

]
ds

∣∣∣∣ ≤
∫ T

0

∣∣∣b(s,Xs)− b(s, X̃s)
∣∣∣ ds

Then we can use the Cauchy–Schwarz (or Jensen) inequality to obtain(∫ T

0

∣∣∣b(s,Xs)− b(s, X̃s)
∣∣∣ ds)2

≤ T

∫ T

0

∣∣∣b(s,Xs)− b(s, X̃s)
∣∣∣2 ds

Finally, by using the Lipschitz condition (4.7) and taking expectations, we obtain

E

[
sup
t≤T

∣∣∣∣∫ t

0

[
b(s,Xs)− b(s, X̃s)

]
ds

∣∣∣∣2
]

≤ L2
TT

∫ T

0

E
[
|Xs − X̃s|2

]
ds

Let us consider the third term. Here we need the maximal inequality for stochastic integrals

(Theorem 2.3) and the Lipschitz condition (4.7). We obtain

E

[
sup
t≤T

∣∣∣∣∫ t

0

[
σ(s,Xs)− σ(s, X̃s)

]
dWs

∣∣∣∣2
]

≤ 4

∫ T

0

E
[∣∣∣σ(s,Xs)− σ(s, X̃s)

∣∣∣2] ds
≤ 4L2

T

∫ T

0

E
[∣∣∣Xs − X̃s

∣∣∣2∣∣∣∣ ds
Plugging in the estimates for the second and third term we obtain

E
[
sup
t≤T

|Xt − X̃t|2
]

≤ 3E
[
|ξ − ξ̃|2

]
+ 3L2

T (T + 4)

∫ T

0

E
[
|Xs − X̃s|2

]
ds

≤ 3E
[
|ξ − ξ̃|2

]
+ 3L2

T (T + 4)

∫ T

0

E
[
sup
r≤s

|Xr − X̃r|2
]
ds
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Now, we denote

u(T ) = E
[
sup
t≤T

|Xt − X̃t|2
]
,

a(t) = 3E
[
|ξ − ξ̃|2

]
,

b(t) = 3L2(T + 4)

and apply the Grönwall lemma of Exercise 4.3. The claim follows from this.

Corollary 4.1 (Uniqueness). Suppose (4.7) holds. Then the solution of the stochastic differ-

ential equation (4.5) is unique.

Let us then show the existence of the solution to (4.5) by using Picard iterations. Again,

we leave some technical details as an exercise.

Exercise 4.4. Let X(m) be the Picard iteration defined as

X
(0)
t = ξ,

X
(m+1)
t = ξ +

∫ t

0

b(s,X(m)
s ) ds+

∫ t

0

σ(s,X(m)
s ) dWs.

(i) Assume the growth condition (4.6). Show, as in the proof of Theorem 4.1, that

E
[
sup
t≤T

|X(m+1)
t − ξ|2

]
≤ CTE

[
sup
t≤T

(
1 +X

(m)
t

)2]
.

(ii) Assume the Lipschitz condition (4.7). Show, as in the proof of Theorem 4.1, that

E
[
sup
t≤T

|X(m+1)
t −X

(m)
t |2

]
≤ CT

∫ T

0

E
[
sup
u≤s

|X(m)
u −X(m−1)

u |2
]
ds.

Theorem 4.2 (Existence). Assume the growth condition (4.6) and the Lipschitz conditions

(4.7) hold. Then the stochastic differential equation (4.5) admits a solution X .

Proof. We set the Picard iterations as

X
(0)
t = ξ,

X
(m+1)
t = ξ +

∫ t

0

b(s,X(m)
s ) ds+

∫ t

0

σ(s,X(m)
s ) dWs.

By Exercise 4.4 we have

E
[
sup
t≤T

|X(m+1)
t − ξ|2

]
≤ CTE

[
sup
t≤T

(
1 +X

(m)
t

)2]
. (4.8)

This shows that the iterations X(m) are well-defined.
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Let us then consider the convergence of the iterations. By Exercise 4.4 we have

E
[
sup
t≤T

|X(m+1)
t −X

(m)
t |2

]
≤ CT

∫ T

0

E
[
sup
u≤s

|X(m)
u −X(m−1)

u |2
]
ds. (4.9)

Set

αm(T ) = E
[
sup
t≤T

|X(m+1)
t −X

(m)
t |2

]
.

Then, the inequality (4.9) takes the form

αm(T ) ≤ CT

∫ T

0

αm−1(s)ds.

Iterating this with m and noticing that Cs ≤ CT we see that

αm(T ) ≤ cmT
Tm

m!
α0(T ).

By the estimate (4.8) we have

α0(T ) = CTE
[
(1 + |ξ|)2

]
< ∞.

Consequently, αm(T ), m ∈ N , converges exponentially fast. This means that the uniform L2

limit

X = lim
m→∞

X(m)

exists in the sense that

lim
m→∞

E
[
sup
t≤T

|Xt −X
(m)
t |2

]
= 0.

Finally, by using the dominated convergence theorem, we see that the limit X satisfies the

stochastic differential equation (4.5).
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5 Itô Diffusions and Partial Differential Equations

5.1 Dynkin Formula

In this subsection we consider the homogneus n dimensional Itô diffusion as a Markov process

and consider its generator and its connection to partial differential equations. A homogeneous

Itô diffusion is the solution X of the following time-independent stochastic differential equation

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x. (5.1)

As before (5.1) should be understood as the componentwise integral equations

X i
t = xi +

∫ t

0

bi(Xs) ds+
d∑

k=1

∫ t

0

σik(Xs) dW
k
s ,

i = 1, . . . , n . Here we have written xi instead of ξi to emphasize the fact that the initial point

X0 = x of the Itô diffusion is deterministic.

Recall that a process is Markovian intuitively if its past is independent of the future given

the present. A rigorous definition is the following.

Definition 5.1 (Markov Process). A process X = (Xt)t≥0 is a time-homogeneous strong

Markov process if for all bounded Borel functions f : Rn → R and stopping times τ

E
[
f(Xτ+h)

∣∣FX
τ

]
= EXτ [f(Xh)]

Here we have written EXτ = E[ · |Xτ ] .

Proposition 5.1. Let f : Rn → R be bounded Borel function. Let τ be stopping time. Let X

be given by (5.1). Then

Ex
[
f(Xτ+h)

∣∣FX
τ

]
= EXτ [f(Xh)] ,

i.e., X is a time-homogeneous strong Markov process.

Proof. See Øksendal [4] Theorem 7.1.2 and Theorem 7.2.4

Since the Itô diffusion (5.1) is Markovian, its probability law can be described by the tran-

sition semigroup (Pt)t≥0 given by

Ptf(x) = Ex [f(Xt)] ,

where f : Rn → R is smooth. The transition semigroup itself can be written by using its

generator A formally as

Pt = etA,

where

Af(x) = lim
t↓0

Ptf(x)− f(x)

t
.
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Exercise 5.1. Let B be d-dimensional Brownian motion. Show that its generator is given by

the Laplacian as

Af(x) =
1

2
△f(x) =

1

2

d∑
k=1

∂2f

∂x2
k

(x).

The generator of time-homogeneous Itô diffusion (5.1) is

Af(x) =
n∑

i=1

bi(x)
∂f

∂xi

(x) +
1

2

n∑
i=1

d∑
k=1

(σσ⊤)ik(x)
∂2f

∂xi∂xk

(x). (5.2)

Indeed, the claim follows from the following Dynkin formula.

Theorem 5.1 (Dynkin Formula). Let X be the Itô diffusion given by (5.1). Let τ be stopping

time such that Ex[τ ] < ∞. Let f : Rn → R be a bounded Borel function. Then

Ex [f(Xτ )] = f(x) + Ex

[∫ τ

0

Af(Xs) ds

]
. (5.3)

Proof. By Itô formula (see Theorem 3.2 and Remark 3.3) we have

df(Xt) =
n∑

i=1

∂f

∂xi

(Xt) dX
i
t +

1

2

n∑
j=1

n∑
i=1

∂2f

∂xi∂xj

(Xt) dX
i
tdX

j
t

=
n∑

i=1

bi(Xt)
∂f

∂xi

(Xt) dt+
1

2

n∑
i=1

n∑
j=1

(σσ⊤)ij(Xt)
∂2f

∂xj∂xj

(Xt) dt

+
n∑

i=1

∂f

∂xi

(Xt)
d∑

k=1

σik(Xt)dW
k
t

= Af(Xt)dt+ martingale.

The claim follows by integrating and taking expectations.

Exercise 5.2. Let U be the 1-dimensional Ornstein–Uhlenbeck process, i.e.,

dUt = −θUt dt+ σ dWt.

Find its generator.

We end this section by giving a Monte Carlo type of method for solving Dirichlet boundary

problem for partial differential equations.

Example 5.1. Suppose we have a domain D ⊂ Rn and given boundary data f(x) = φ(x) on

∂D and we assume that Af(x) = 0 on D . Here A is the differential operator (5.2). Then

Dynkin formula (5.3) gives us immediately a way to simulate the solution of the equation

Af(x) = 0. Indeed, we have

f(x) = Ex [φ(XτD)] ,

where τD is the first time the Itô diffusion X exits the domain D .
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5.2 Feynman–Kac Formula

In this subsection we consider time-dependent n-dimensional Itô diffusion

dXt = b(t,Xt) dt+ σ(t,Xt) dWt, X0 = x (5.4)

and its connection to deterministic partial differential equations. The generator of such time-

inhomogeneous Itô diffusion is

Af(x) =
n∑

j=1

bj(t, x)
∂f

∂xj

(x) +
1

2

d∑
k=1

n∑
j=1

(σσ⊤)jk(t, x)
∂2f

∂xj∂xk

(x).

Theorem 5.2 (Feynman–Kac Formula). Let u = u(t, x), V = V (t, x) and f = f(t, x) be

real-valued. Consider the backward partial differential equation

∂u

∂t
+ Au− V u+ f = 0 (5.5)

with boundary condition u(T, x) = ϕ(x). The solution of (5.5) can be written as

u(t, x) = Et,x

[∫ T

t

e−
∫ r
t V (u,Xu)duf(r,Xr) dr + e−

∫ T
t V (u,Xu)duϕ(XT )

]
, (5.6)

where Ex,t = E[ · |Xt = x] and X is the Itô diffusion (5.4).

Proof. We only prove that if the solution to (5.5) exists, then it is necessarily of the form (5.6).

The key idea is to use integration-by-parts and Itô formula to the process (s ≥ t)

Ys = e−
∫ s
t V (u,Xu)duu(s,Xs) +

∫ s

t

e−
∫ r
t V (u,Xu)duf(r,Xr) dr (5.7)

After some simplifications that are left as an exercise, we obtain

dYs = e−
∫ s
t V (u,Xu)du

(
−V (s,Xs)u(s,Xs) + f(s,Xs) +

∂u

∂s
(s,Xs) + Au(s,Xs)

)
ds

+e−
∫ s
t V (u,Xu)duσ(s,Xs)

∂u

∂x
(s,Xs) dWs. (5.8)

Since the terms in the parentheses sum up to zero, we obtain

dYs = e−
∫ s
t V (u,Xu)duσ(s,Xs)

∂u

∂x
(s,Xs) dWs

Now, by integrating we obtain

YT − Yt =

∫ T

t

e−
∫ s
t V (u,Xu)duσ(s,Xs)

∂u

∂x
(s,Xs) dWs.

Taking conditonal expectations we obtain, since the right hand side above is an Itô integral,

E [YT |Xt = x] = E [Yt|Xt = x] = u(t, x),

which finishes the proof.
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Exercise 5.3. Finalize the proof of Theorem 5.2, i.e., let Y be given by (5.7). Show that (5.8)

holds.

Exercise 5.4 (Black–Scholes Partial Differential Equation). Let V = V (t, x). Let r and σ be

constants. Consider the so-called Black–Scholes partial differential equation

∂V

∂t
+

1

2
σ2x2∂

2V

∂x2
+ rx

∂V

∂x
− rV = 0,

with boundary condition V (T, x) = (x−K)+ . Show that the solution of this partial differential

equation is

V (t, x) = N(d1)x+N(d2)Ke−r(T−t),

where

N(z) =
1√
2π

∫ z

−∞
e−

1
2
w2

dw

and

d1 =
1

σ
√
T − t

[
ln
( x

K

)
+

(
r +

σ2

2

)
(T − t)

]
,

d2 = d1 − σ
√
T − t.
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