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Power series expansions for fractional Brownian
Motions 1

Fractional Brownian Motions (FBM) are selfsimilar Gaussian pro-
cesses with hölder-continuous paths, that can be represented as frac-
tional integrals (H > 1

2) or derivatives (H < 1
2) of Brownian Motions

(BM), allow an stochastic calculus, have long-range memory and are
of interest in finance and network traffic. For the theory and for the
numerical simulation of FBM series expansions are of interest. The
authors present one approach for series expansions which bases on
series expansions of BM.
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1. Introduction

The Fractional Brownian Motion (FBM) is a Gaussian process ZH =
(ZH(t), t ≥ 0 ) whose covariance function is

RH(t, s) := E[ZH(t)ZH(s)] =
1

2
(t2H + s2H− | t− s |2H).

Here H ∈ (0, 1) is the Hurst index. If H = 1
2

then FBM is the BM.
The FBM has some characteristic properties. First, it is H-selfsimilar,

i.e. for any α > 0

(Z(αt), t ≥ 0)
d
=

(
αHZ(t), t ≥ 0

)
.

Second, it admits various integral representations. The Mandelbrot–
Van-Ness-representation (cf. [7]) shows that the FBM is fractionally

1 This work is financially supported by DYNSTOCH, DFG and SFB 373.
Invited lecture.
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integrated (H ≥ 1
2
) or differentiated (H ≤ 1

2
) BM. Another integral repre-

sentation is (cf. [8])

ZH(t) =
∞∫
0

zH(t, s)dZ1/2(s) t ∈ [0,∞)

zH(t, s) = cH sH− 1
2

d
ds

t∫
s

uH− 1
2 (u− s)H− 1

2 du, t, s ∈ [0,∞),

cH =

√
(2H+ 1

2
) Γ( 1

2
−H)

Γ(H+ 1
2
) Γ(2−2H)

(1)

Here zH is a square integrable Volterra kernel with singularities at 0 for H ∈
(0, 1) and also at t for H < 1

2
. Third, from the Kolmogorov-Čentsov theorem

one concludes that the FBM admits a version with Hölder-continuous
trajectories of order γ < H. Fourth, it is possible to define integrals with
respect to the FBM. As the FBM is not a semimartingale the common
Itô-calculus does not apply. But a FBM has sufficient properties which allow
to define meaningful integrals (see e.g. [2] and [3] for different approaches).

The mentioned properties make the FBM interesting for applications,
e.g. in the modeling of network traffic and financial time series. Series
expansions of the FBM are of interest for two reasons. They provide a basis
for simulation methods of an FBM and are a useful theoretical tool.

2. Series expansions

2.1. Reproducing Kernel Hilbert Spaces (RKHS) and series
expansions of Gaussian processes

We shall consider series expansions on a compact interval. Since the FBM
is selfsimilar we may (and shall) as well take that interval to be [0, 1].

Let us start with some generalities of series expansions of Gaussian pro-
cesses. Let X = (X(t), t ∈ [0, 1]) be a centered Gaussian process with co-
variance function K. Its linear space H1

X is the closure in L2(Ω,P) of

span{X(t) | t ∈ [0, 1]} .

If H1
X is separable then we have an expansion of X(t) in L2(Ω,P), viz.

X(t) =
∞∑

n=0

E [X(t)Yn] Yn. (2)

Here the Yn’s form a CONS of H1
X , i.e. they are independent standard

Gaussian random variables. The independence of the summands yields that
(2) also converges almost surely for all t ∈ [0, 1].
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So, to construct an L2(Ω,P) and almost sure expansion of a separable
Gaussian process we only need to find the functions E [X( )Yn] . To do this
we introduce a space isometric to H1

X by linearly expanding the relation

Θ : X(t) 7→ K(t, ).

More precisely, set

SK := span{K(t, ) | t ∈ [0, 1] }
and define an inner product on SK by expanding the relation

〈K(t, ), K(s, )〉K := K(t, s).

The reproducing kernel Hilbert space (RKHS) of X with covariance
K, denoted by HK , is the closure of SR with respect to 〈 , 〉R .

Now Θ is an isometry from H1
X onto HK . If K is continuous then HK

(and hence H1
X) is separable. Thus, there exists an expansions (2) of X.

The inner product 〈 , 〉K has a reproducing property: for f ∈ HK

f(t) = 〈f,K(t, )〉K .

So, if { ψk }k∈N is a CONS in HK then the reproducing property yields

K(t, ) =
∞∑

k=0

〈K(t, )ψk〉K ψk =
∞∑

k=0

ψk(t)ψk. (3)

Thus, the application of the isometry Θ together with (3) yields that in
L2(Ω,P) and almost surely for all t ∈ [0, 1] we have

X(t) = Θ (K(t, )) = Θ

( ∞∑

k=0

ψk(t)ψk

)
=

∞∑

k=0

ψk(t)Yk, (4)

where {Yk}k∈N = {Θ(ψk)}k∈N is a CONS in H1
X , i.e. they are independent

standard Gaussian random variables. So, we have found a series expansion
of the Gaussian process X if we know a CONS in HK . Moreover, by Itô–
Nisio theorem (cf. [1], Theorem 3.8) the series (4) converge also almost
surely uniformly on [0, 1] if and only if X has continuous paths.

2.2. Series expansions of a Fractional Brownian Motion

Using the kernel zH the covariance of the FBM may be written as

RH(t, s) =

∫ t∧s

0

zH(t, x)zH(s, x) dx.

Let us define an operator acting on L2([0, 1]) by expanding the relation

ΨH : zH(t, ) 7→ RH(t, )
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i.e.
(ΨHf)(t) =

∫ t

0

zH(t, s)f(s) ds.

Now ΨH is injective (cf. [9]). Thus, it is an isometry from L2([0, 1]) onto
HR. So, combining (4) with ΨH and the continuity of the FBM we have:

Theorem 2.1. The FBM admits the representation

ZH(t) =
∞∑

k=0

∫ t

0

zH(t, s)ψ′k(s) ds · Yk, (5)

where {ψ′k}k∈N is any CONS in L2([0, 1]) and {Yk}k∈N = {(Θ◦ΨH)(ψ′k)}k∈N
are independent standard Gaussian random variables. The series (5) con-
verge in L2(Ω,P) and almost surely uniformly on [0, 1].

Remark. Heuristically one obtains (5) as follows: the RKHS of the BM is

{f =
∫ ( )

0
f ′(t) dt : f ′ ∈ L2([0, 1])}. Then (1) yields

ZH(t) =

∫ t

0

zH(t, s) dZ1/2(s)

=

∫ t

0

zH(t, s) d

[ ∞∑

k=0

ψk(s) · Yk

]

=
∞∑

k=0

∫ t

0

zH(t, s)ψ′k(s) ds · Yk.

An unfortune fact is that for a given function in L2([0, 1]) it is not easy
to calculate the integral in (5). Nevertheless, we have the following.
Lemma 2.2. Let β > H − 1

2
and denote by B the Beta function. Then∫ t

0

zH(t, s)sβ ds = cH,βtβ+H+ 1
2 (6)

where

cH,β =
1
2
−H

β + H + 1
2

B(H +
1

2
, β −H +

1

2
).

Proof. Integrating by parts, changing the order of integration and setting
u = s/x we obtain
∫ t

0

zH(t, s)sβ ds = −cH

∫ t

0

s
1
2
−H d

ds

∫ t

s

xH− 1
2 (x− s)H− 1

2 dx sβ ds

= (
1

2
−H)cH

∫ t

0

∫ t

s

xH− 1
2 (x− s)H− 1

2 dx sβ−H− 1
2 ds

= (
1

2
−H)cH

∫ t

0

∫ x

0

(x− s)H− 1
2 sβ−H− 1

2 ds xH− 1
2 dx

= (
1

2
−H)cH

∫ t

0

∫ 1

0

(1− u)H− 1
2 uβ−H− 1

2 du xβ+H− 1
2 dx
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= (
1

2
−H)cH

∫ t

0

B(H +
1

2
, β −H +

1

2
)xβ+H− 1

2 dx.

The claim follows. ¤
By using the lemma above we obtain concrete expansions of the FBM by

using polynomial expansions (or bases) in L2([0, 1]). We give two examples.
Polynomial representation: The shifted Legendre polynomials

ψ̃poly
k (t) =

k∑

`=0




b(k−`)/2c∑

j=0

dk,`,j



 t`

where

dk,`,j =
(−1)k−j−`

2k−`

(
k

j

)(
2k−2j

k

)(
k−2j

`

)

form a CONS of L2([0, 1]). So, we obtain a concrete series expansion

ZH(t) =
∞∑

k=0

ψpoly
k (t) · Yk (7)

with

ψpoly
k (t) = tH+ 1

2

k∑

`=0

cH,`




b(k−`)/2c∑

j=0

dk,`,j



 t`.

Let us note that the expansion (7) is not suitable for simulation as it is
computationally unstable.

Trigonometric representation: Expanding the cosine function

ψ̃trig
k (t) =

√
2 cos(kπt) =

√
2

∞∑

`=0

(−1)` (kπt)2`

(2`)!

we obtain the expansion

ZH(t) =
∞∑

k=0

ψtrig
k (t) · Yk (8)

with

ψtrig
k (t) =

cHΓ(1
2
−H)

H + 1
2

tH+ 1
2 FH

(
−1

4
(kπt)2

)

where FH is the Hypergeometric function (see [6] for definition)

FH(z) = 3F4

(
5− 2H

4
,
3 + 2H

4
,
3− 2H

4
; 1,

5 + 2H

4
,
1

2
,
1

2
; z

)
.
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Using asymptotic expansions of 3F4 (cf. [6], p. 199) one obtains that

ψtrig
k (t) = b(H, t, k)k−(H+ 1

2
)

where b(H, t, k) is bounded. Note the analogue to the BM case, when

ψtrig
k (t) =

√
2 sin(kπt)(kπ)−1.

The fact that the rate in (8) is better with larger H was expected. Indeed,
the paths of the FBM grow more erratic as H decreases.
Remark. By Kühn and Linde [5] the optimal rate of convergence in series
expansions like (4) of the FBM is

E

[
sup

t∈[0,1]

∣∣∣∣∣
∞∑

k=N+1

ψk(t)Yk

∣∣∣∣∣

]
∼ N−H

√
log N.

There is an expansion due to Dzhaparidze and van Zanten [4] that obtains
this optimal rate. It involves calculations of zeros of certain Bessel functions.
In our case the convergence rate of course depends on the particular CONS
used. Unfortunately, we do not know if e.g. the polynomial expansion (7)
or the trigonometric expansion (8) is optimal in this sense.

3. Numerical aspects of approximations of FBM

Due to the applications mentioned in the introduction it is necessary to
consider the numerical simulation of FBM. The direct way to simulate
a FBM is to exploit its Gaussianity and to compute it exactly, i.e.:




ZH(t0)
. . .
ZH(tn)


 = LH(t0, . . . , tn)




ε(t0)
. . .
ε(tn)


 , n ∈ N (9)

where

RH(t0, . . . , tn) = LH(t0, . . . , tn) (LH(t0, . . . , tn))>

RH(t0, . . . , tn) = ( RH(ti, tj) )i,j∈Nn = ( t2H
i + t2H

j − | t2H
i − t2H

j | )i,j=0,...n

LH(t0, . . . , tn) = ( LH(ti, tj) )i,j∈Nn

(ε(t0), . . . , ε(tn))> ∼ N((0, . . . , 0)>, diag(t0, t1 − t0, . . . , tn − tn−1)).

This approach has two disadvantages:
1) The required LL>-decomposition of RH is computationally expensive.
2) The computation of ZH(t̃i) at a new lattice point t̃i ∈ (ti−1, ti) in a grid
{ti}i∈Nn of already computed path values {ZH(ti)}i∈Nn can be computation-
ally expensive. It requires appropriate LL>-decomposition, too.

One way to overcome the resource problems is to work with truncated
covariances. In this approach one takes the covariance with a fixed num-
ber k of points and hence a restricted time-dependence into consideration.
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Z̃H(tj) =

j∑

i=j−k∨0

LH(tj, tl)ε(tl). (10)

Introducing the mean values

m̄(ZH(ti), . . . , ZH(tj)) =

√√√√E[| 1

j + 1− i

j∑

k=i

ZH(tk) |2], (11)

and the denotation

LH(i1, i2; j1, j2)) = ( LH(ti, tj) )i=i1,...,i2;j=j1,...,j2

RH(i1, i2; j1, j2)) = ( RH(ti, tj) )i=i1,...,i2;j=j1,...,j2

one can compute the mean quotient:
m̄(Z̃H(tn−k),...,Z̃H(tn))

m̄(ZH(tn−k),...,ZH(tn))

=
√

1>RH(n−k+1,n;n−k+1,n)1−1>RH(n−k+1,n;1,n−k)RH(1,n−k;1,n−k)−1RH(n−k+1,n;1,n−k)>1
1>RH(n−k+1,n;1,n−k)1

.

(12)
Considering the special case of H = 0.5, ti = ih, h > 0, i ∈ Nn, straightfor-
ward calculations show that

m̄(Z̃0.5(tn−k),...,Z̃0.5(tn))

m̄(Z0.5(tn−k),...,Z0.5(tn))
=

√
k+2

3n−2k+2
= O( 1√

n
) −→

n→∞
0 . (13)

This clearly indicates a lack in accuracy for growing n. Hence this approach
seems not to be suitable for a simulation of FBM at many time values.

Truncated series approximations of FBM. The truncation of series
representations of FBM is an approximation method which is an alternative
to the exact simulation and to other approximation methods. Truncated
series (TSR) have the following advantage:
1. TSR do not use time step discretizations of the process.
2. A FBM can be approximated at new lattice points.
However, the benefit of this approximation method depends crucially on the
right truncation point. In this part we want to treat some questions which
arise in this context.

The next definitions are required for the coming parts.
Definition. Let Z(t) =

∑∞
k=0 ψk(t) Yk be a series expansion of Z, Yk ∼

N(0, 1) i.i.d., N ∈ N, p ∈ [1,∞]. We call:

ẐN
H :=

∑N
k=0 ψk Yk Approximation of Z at the truncation point N ,

∆ẐN
H := ZN

H − ẐN
H Truncation error of ẐN

H .

Errp,u(∆ẐN
H ) := E[ sup{ |∆ẐN

H |p } ] uniform approximation error,

Errp(∆ẐN
H ) := E[ ‖∆ẐN

H ‖Lp([0,1]) ] Lp-approximation error.
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Next we want to extend slightly our approach of constructing series ex-
pansions to restrict not only to ONS in L2([0, 1]) but to include com-
plete systems as well. Let ϕ = {ϕk}k∈N be an arbitrary complete system
in L2([0, 1]). Denote ~ϕ = (ϕ0, . . . , ϕN , . . .)>, C(~ϕ) = (〈ϕi, ϕj〉)i,j∈N and
L(~ϕ) the Cholesky factor of C(~ϕ). Then from section 2 it follows that
~̃ϕ = L(~ϕ)−1~ϕ is an ONS in L2([0, 1]) and

∞∑

k=0

ψk(t)Yk

is a series expansion for a FBM where

~ψ(t) = (ψ0(t), . . . , ψN(t), . . .)> =
t∫
0

zH(t, s) L(ϕ)−1~ϕ(s) ds

= L(~ϕ)−1
t∫
0

zH(t, s) ~ϕ(s) ds = L(~ϕ)−1 ~̃ψ(t)

~̃ψ(t) = (
∫ t

0
zH(t, s) ϕ0(s) ds, . . . ,

∫ t

0
zH(t, s) ϕN(s) ds, . . .)>.

Now we can see that the usage of truncated series depends on three factors:
1. The computational costs for the orthonormalization.

These are fixed initial costs of this method.

2. The computational costs for the FBM-coefficient functions.
This are running costs of this method.

3. The determination of the truncation point.
This affects the error control.

In the rest of this section we deal with these questions in order to determine
how to choose best an appropriate complete system for numerical purposes.
The question 1 and 2 are related. This is because the choice of a complete
systems is a degree of freedom which can be used in order to make the com-

putations of ~̃ψ(t) as easy as possible. On the other hand, a complete system
in L2([0, 1]) is not necessarily an ONS. Hence the initial orthonormalization
affects the numerical method. The next two examples illustrate the tradeoff
between question 1 and 2.

Example. Consider the complete system ϕ = {tk}k∈N. Then ψ̃k(t) =

cH,kt
k+H+ 1

2 can be computed easily. It holds C(ϕ) = ( 1
i+j+1

)i,j∈N. It can be

observed that the LL>-factorization of C(ϕ)N is numerically unstable: due
to rounding errors the algorithm detects negative definite matrix. With an
algorithm basing on Gram-Schmidt orthonormalization the problem can be
overcome. But the structural problems remain as the elements l−1

i,j , i, j ∈ N,

of L(ϕ)−1 have alternating signs and as min
i,j∈N{ |l

−1
ij | | l−1

ij 6= 0 } ¿ max
i,j∈N{ |l

−1
ij | }.

Example. Consider the ϕtrig. Being an ONS ϕtrig does not require an

orthonormalization. However, ψ̃k(t) =
cH Γ( 1

2
−H)

H+ 1
2

tH+ 1
2 FH(−1

4
(kπt)2), and so

far no satisfying method for an efficient computation of FH has been found.
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From the preceding two examples we have seen that it is hard to find com-
plete systems having low orthonormalization costs and ψ which are easy
to compute. Hence a hybrid method seems to be recommendable: 1) to
determine a truncation point N such that a given error bound ε

2
is guaran-

teed, 2) to choose a ONS ϕ which can be represented as power series, 3) to
truncate the power series of first N basis functions to ϕ̂k, k ∈ N, such that
the error by using ϕ̂k instead of the exact basis functions ϕk, k ∈ N, does
not exceed ε

2
, 4) to use the fast computation for the approximation as the

zH-transforms of {tk}k∈N are known.

The dependence on the truncation points leads us to the question 3
which we treat in the rest of this section. One would like to determine the
truncation point such that a given error bound ε ∈ (0,∞) is guaranteed.
The desirable error measure would be Err2,u. But as this is often hard to
achieve Err2 is considered to be sufficient for practical purposes. That is it
is necessary to find estimates for

E[ ‖∆ẐN
H ‖L2([0,1]) ] =

∞∑
k=N

‖ψk‖2
L2([0,1]) =

1∫
0

~̃ψ>N,∞(t)C(~ϕ)−1
N,∞

~̃ψN,∞(t) ds

where
~̃ψ>N,∞ = (ψ̃N , . . .)>, C(~ϕ)N,∞ = (C(~ϕ)i,j)i,j=N,....

The above error representation shows that the orthonormalization has an
impact on the estimation of the truncation error too. This is either due
to the matrix C(~ϕ)−1

N,∞ in the second equality or due to ψ = L(ϕ)−1
∞ ψ̃ in

the first equality. So for the determination of a truncation point explicit
knowledge about the possibly ill-conditioned matrix C(~ϕ) is necessary.

Remark. For the complete system {tk}k∈N used as test case this did not
lead to satisfying estimates of the truncation error.

If ϕ is already an ONS then C(~ϕ) = I∞. In this case one can use the
following inequality

‖ψk‖2
L2([0,1]) ≤ sup

t∈[0,1]

{ |
∫ 1

0

zH(t, s) ϕk(s) ds | }2

for the determination of the truncation point by finding good upper esti-
mates for | ∫ 1

0
zH(t, s) ϕk(s) ds |.

Remark. For ϕtrig this approach lead to a the convergence rate N−(H+ 1
2
) in

terms of Err2 but not to satisfying results concerning an error estimation.

For cases where it is hard to estimate explicitely | ∫ 1

0
zH(t, s) ϕk(s) ds | a

different approach relying on partial integration can be chosen for H > 1
2
.

This is what we present now. In the following the essential proofs are de-
ferred to the end of this section. For technical convenience we introduce the
following functions

Definition. GH(u) :=
∫ 1

u
(1− v)H− 3

2 v−2Hdv u ∈ [0, 1],
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GH(u) :=





1
2(H− 1

2
)

u = 0 ,

1R
u

(1−v)H− 3
2 v−2Hdv

(1−u)H− 1
2 u−2(H− 1

2 )
u ∈ (0, 1) ,

1
H− 1

2

u = 1 .

Lemma 3.1. It holds:
(i) GH ∈ C((0, 1],R+) ∩ C∞((0, 1),R+) ,

(ii) GH has a pole of order 2(H − 1
2
) at 0 ,

(iii) lim
u↑1

GH(u)

(1−u)H− 1
2

= 1
H− 1

2

, GH(u) = O((1− u)H− 1
2 ) .

Furthermore, we shall make use of fractional derivatives and integrals.

Definition. Let f ∈ L([0, 1]2,R), α ∈ (0, 1), t, s ∈ [0, 1].

(i) Dα
±(s)f(t, s) = 1

Γ(1−α)
d
ds

∫ 1

0
f(t, u) (s− u)−α

∓ du,
(ii) Iα

±(s)f(t, s) = 1
Γ(α)

∫ 1

0
f(t, u)(s− u)α−1

∓ du,

Now we are prepared to characterize the poles and integrability of zH and
its respective s−derivatives.

Lemma 3.2. For t > s it holds:
(i) zH(t, s) = cH sH− 1

2 GH( s
t
) 1[0,t](s) = cH tH−

1
2 s−(H− 1

2
) (t− s)H− 1

2 GH( s
t
) 1[0,t](s) ,

∀t ∈ (0, 1]: zH(t, s) has a pole of order H − 1
2

at s = 0 ,

(ii) ∂
∂s

zH(t, s) = cH ((H − 1
2
) sH− 3

2 GH( s
t
)− tH+ 1

2 s−(H+ 1
2
) (t− s)H− 3

2 ) 1[0,t](s)

= cH tH−
1
2 s−(H+ 1

2
) (t− s)−( 3

2
−H) ( (H − 1

2
) (t− s) GH( s

t
)− t ) 1[0,t](s),

∀t ∈ (0, 1]: ∂
∂s

zH(t, s) has a pole of order H + 1
2

at s = 0 and a pole of
order 3

2
−H at s = t ,

(iii) ∀ β ∈ (1,∞): ∂
∂s

zH(t, s) ∈/ Lβ([0, 1]) ,

(iv) ∀α ∈ (0, 1): Dα
+(s) zH(t, s) = cHt2(H− 1

2
)s−(H− 1

2
)−α

1∫
0

v−(H− 1
2
)(1− v)−α·

((H + 1
2
− α)(t− s)

3
2
−H(1− s

t
v)H− 1

2 ḠH( s
t
v)− t

3
2
−H(1− s

t
v)H− 3

2 )dv,
Dα

+(s) zH(t, s) has a pole of order (H− 1
2
)+α at 0, for α ∈ [H− 1

2
, 3

2
−H)

it has a pole at s = t. The pole is ( 1
α−(H− 1

2
)
∧ 2

3
2
−H+α

-integrable.

(v) For α ∈ [H + 1
2
, 5

2
− 3H) ∀ q ∈ (1, 2

3
2
−H+α

) : Dα
+(s) zH(t, s) ∈ Lq([0, 1]),

Otherwise, ∀ q ∈ (1, (H − 1
2

+ α)−1) : Dα
+(s) zH(t, s) ∈ Lq([0, 1]),

∀ q ∈ [(H − 1
2

+ α)−1,∞) : Dα
+(s) zH(t, s) ∈/ Lq([0, 1]).

The previous lemma allows us to derive integration by parts formulas.

Lemma 3.3. Let t ∈ [0, 1], f ∈ C([0, 1]).

(i)
t∫
0

zH(t, s) f(s) ds = −
t∫
0

∂
∂s

zH(t, s)
s∫
0

f(u) du ds,

(ii)
t∫
0

zH(t, s) f(s) ds =
t∫
0

Dα
+(s)zH(t, s) Iα

−(s) f(s) ds, ∀α ∈ (0, 1).

The integration by parts formulas imply the next convergence criterion.
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Note, that the weight function w compensates a non-integrable pole of
Dα

+(s)zH(t, ) at s = 0.

Lemma 3.4. Let w( ; β) ∈ C([0, 1], (0, 1)) s.t. ∀β ∈ (0, 1) lim
s↓0

w(s)s−β ∈ R,

f ∈ C([0, 1]), MH = {(α, q)|α ∈ [H − 1
2
, 3

2
−H), q ∈ (1, 1

H− 1
2
+α
∧ 2

3
2
−H+α

} ∪
(0, H − 1

2
)× (1,∞), Mw

H = (0, 3
2
−H)× (1,∞) \MH .

(i) ∀ (α, q) ∈ MH , p = q
q−1

:

|
t∫
0

zH(t, s) f(s) ds | ≤ sup
t∈[0,1]

{
∥∥Dα

+zH(t, )
∥∥
Lq([0,1])

}
∥∥Iα

+ f
∥∥
Lp([0,1])

,

(ii) ∀ (α, q) ∈ Mw
H , β ∈ (0, α) : (α− β, q) ∈ MH , p = q

q−1
:

|
t∫
0

zH(t, s) f(s) ds | ≤ sup
t∈[0,1]

{
∥∥∥Dα

+zH(t,s)

w(s;β)

∥∥∥
Lq([0,1])

}
∥∥w( ; β) Iα

+ f
∥∥
Lp([0,1])

,

Example. Consider 0 = α0 < α1 < . . . < αN < . . . such that αk ↑∞. Then
ϕ with ϕk = tαk , k ∈ N, is a complete system. One observes then that for

all k ∈ N:
t∫
0

zH(t, s)ϕk ds = − 1
1+αk

t∫
0

∂
∂s

zH(t, s) s1+αk ds

Err2(
∞∑

i=N

ψiYi) = ˜̃ψ>N,∞DN,∞C(ϕ)−1DN,∞
˜̃ψN,∞

where ˜̃ψN,∞ = − ∫ t

0
s ∂

∂s
zH(t, s)ϕN,∞(s) ds has finite components and DN,∞ =

diag( 1
1+αN+1

, . . .) contains convergence information. However, this error rep-

resentation could not be exploited to find an explicite error rate.

We want to conclude this section with the remark that finding an com-
plete system which allows the explicite computation of truncation points
for given error bounds is not easy and will be object of further studies.

Proof lemma 3.1.
(1) Let fH(v) := (1 − v)H− 3

2 , gH(v) := v−2H . As H − 3
2

> −1 ∀ ε ∈ (0, 1) :
fH , fHgH ∈ L([ε, 1]). As fH , gH ∈ C1((0, 1),R+), GH ∈ C1((0, 1]) and
G′

H(v) = −fH(v)gH(v). fH , gH ∈ C1((0, 1),R+) and the Leibnitz-rule
show (i).

(2) Let β ∈ R \ {0}. (ii), (iii) follow from limit considerations (l’Hospital).

Proof lemma 3.2.

(1) zH(t, s) = cH sH− 1
2

t∫
s

(
u
s
− 1

)H− 3
2

(
u
s

)H− 1
2 1

s
du 1[0,t](s).

Apply the variable transformation v = s/u and the definition of GH .
(2) ∂

∂s
zH(t, s) =

(ii)
cH ( (H − 1

2
) sH− 3

2 GH( s
t
) + sH− 1

2 G′
H( s

t
) ) 1[0,t](s)

Then trivial term manipulations and the definition of G, G show (ii).
(3) ∂

∂s
zH(t, s) has a pole of order H + 1

2
> 1 at s = 0.

(4)
s∫
0

vH− 1
2 GH(v

t
)(s− v)−αdv =

v=sv̄
sH+ 1

2
−α

1∫
0

v̄H− 1
2 (1− v̄)−αGH( s

t
v̄)dv̄,
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Use the product rule, G′
H( s

t
v̄) = (1− s

t
v̄)H− 3

2

(
s
t
v̄
)−2H

, collect terms.

(5) vH− 1
2 (1 − v)−α (1 − s

t
v)H− 3

2 determines the pole at s = t. Its product
representation (Beta-kernels), Hölder-inequalities restrict the integrabil-
ity order q: α − 1 < δ, 1 ∧ 1

1−α+δ
< q < 2

3
2
−H+δ

, q < 1
δ

iff 0 < δ. Shows

(iv).
(6) Checking the poles and integrability condition from (8) shows (v).
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