
WEAKLY SELF-SIMILAR STATIONARY INCREMENTPROCESSES FROM THE SPACE SSub'(
)YU. KOZACHENKO, T. SOTTINEN, AND O. VASYLYKAbstra
t. We 
onsider weakly self-similar pro
esses with stationary in
re-ments that belong to the spa
e SSub'(
): We prove that all separable modi�-
ations of these pro
esses are 
ontinuous with probability one on 
ompa
ts. Weprovide estimates for the probabilities of large deviations and assumptions underwhi
h these pro
esses belong to the weighted spa
es C(R+; 
): The results holdtrue for the fra
tional Brownian motion with the 
hoi
e '(x) = x22 :1. Introdu
tionWe 
onsider a 
entred square integrable pro
ess Z� = (Z�(t) : t � 0) that hasthe 
ovarian
e fun
tionR�(t; s) = 12 �t2� + s2� � jt� sj2��and belongs to the spa
e SSub'(
) (to be de�ned later in Se
tion 2). We shallassume that � 2 (0; 1) the other 
ases being either uninteresting or impossibe (
f.Beran [2℄). For short, we shall say that Z� is wsssi-SSub'(
) (the a
ronym wsssiis explained below).The motivation for the 
ovarian
e fun
tion R� is the following. Suppose thatZ� in self-similar with index � and has stationary in
rements (sssi, for short). By� -self-similarity we mean that(Z�(t) : t � 0) d= �x��Z�(xt) : t � 0�for all x > 0: Here d means equality in distributions. Assume further that thepro
ess Z� is 
entred and square integrable. Then it is easy to see that Z� hasR� as its 
ovarian
e fun
tion. Note that the inverse is not true even in the 
ase ofstationary in
rements (for an example we refer to Benassi et al. [1℄). When
e thename �weakly sssi� or �wsssi�.The parameter � 2 (0; 1) has the following role. If � 6= 12 then Z� is a pro
esswith dependent in
rements. (However, there are � -self-similar pro
esses with in-dependent in
rements. These are pro
esses with no varian
e, or 
ourse. For detailsof we refer to Samorodnitsky and Taqqu [12℄) If � > 12 then the pro
ess Z� ex-hibits the so-
alled long-range dependen
y property. The 
ase � < 12 
orrespondsto short-range dependen
e. For details of long-range dependen
e see Beran [2℄.In the Gaussian 
ase the properties sssi and wsssi of 
ourse 
oin
ide. In this 
aseZ� is 
alled the fra
tional Brownian motion. This pro
ess was originally de�ned andDate: Mar
h 11, 2002.1991 Mathemati
s Subje
t Classi�
ation. Primary 60G07; Se
ondary 60G70.1



2 YU. KOZACHENKO, T. SOTTINEN, AND O. VASYLYKstudied by Kolmogorov [4℄ within a Hilbert spa
e framework where it was 
alleda �Wiener helix�. It was further studied by Yaglom [15℄. The name �fra
tionalBrownian motion� 
omes from Mandelbrot and Van Ness [9℄. They de�ned it asa sto
hasti
 integral with respe
t to the standard Brownian motion. The self-similarity property of the fra
tional Brownian motion has made it a popular modelin tele
ommuni
ations [11℄ and in mathemati
al �nan
e [10, 13, 14℄. The fra
tionalBrownian motion belongs to the spa
e SSub'(
) if '(x) = x22 ; i.e. it is (w)sssi-SSubx22 :The paper is organised as follows. In Se
tion 2 we re
all some fa
ts about thespa
es Sub'(
) and SSub'(
) and the 
on
ept of metri
 entropy. In Se
tion 3we 
onsider the pro
ess Z� on 
ompa
t sets. We show that their separable modi�-
ations are 
ontinuous with probability one and provide estimates for probabilitiesof large deviations. In Se
tion 4 we provide assumption under whi
h Z� belongsto the weighted spa
es C([0;1); 
) and provide an estimate for the supremum of
(t)Z�(t): 2. Preliminaries2.1. Spa
e SSub'(
) . We re
all brie�y some basi
 fa
ts about the generalisedsub-Gaussian spa
es Sub'(
) and SSub'(
): For details and proofs we refer toBuldygin and Koza
henko [3℄.De�nition 2.1. A 
ontinuous even 
onvex fun
tion u is an Orlit
z N-fun
tion ifit is in
reasing for x > 0 , u(x)x ! 0 as x! 0 and u(x)x !1 as x!1:For details of 
onvex fun
tions in Orlit
z spa
es we refer to Krasnoselskii andRutitskii [8℄.Let (
;F ;P) be a standard probability spa
e.De�nition 2.2. Let ' be an Orlit
z N-fun
tion su
h that there exist some positive
onstants 
 and x0 su
t that '(x) = 
x2 for all jxj < x0: A zero mean randomvariable � belongs to the spa
e Sub'(
) if there exists a positive 
onstant a su
hthat the inequality E exp (��) � exp ('(a�))holds for all � 2 R .The spa
e Sub'(
) is a Bana
h spa
e with respe
t to the norm�'(�) = sup�6=0 '�1 (lnE exp (��))j�jand the inequalities E exp (��) � exp ('(��'(�))) ;(2.1) (E�2) 12 � �'(�):hold for all � 2 R:If �'(�) = (E�2) 12 then � is 
alled strong Sub'(
):



WSSSI- SSub'(
) PROCESSES 3De�nition 2.3. A family of random variables � from the spa
e Sub'(
) is 
alledstrong Sub'(
) if the equality�' Xi2I �i�i! = 0�E Xi2I �i�i!21A 12holds for all 
ountable subsets I � �:If � is a strong Sub'(
) family of random variables then the linear 
losure of� in L2(
) is also a strong Sub'(
) family. Linearly 
losed families of strongSub'(
) random variables form a spa
e of strong Sub'(
) random variables. Thisspa
e is denoted by SSub'(
) .Remark 2.4. The spa
e of jointly Gaussian random variables belongs to the spa
eSSub'(
) if '(x) = x22 :De�nition 2.5. Let T be some parameter spa
e. A pro
ess X = (X(t); t 2 T )belongs to the spa
e SSub'(
) if the 
orresponding family of random variablesbelongs to the spa
e SSub'(
) .The next examples follow from Koza
henko and Koval
huk [5℄.Example 2.6. Let ' be su
h an Orlit
z N-fun
tion that the fun
tion '(p�) is
onvex. Let X(t) = 1Xk=1 �k k(t);where the series 
onverge in mean square for all t 2 T and the family f�k : k =1; 2; : : :g belongs to the spa
e SSub'(
) (e.g. the �k 's are independent strongSub'(
) random variables). Then X is a sto
hasti
 pro
ess from SSub'(
):Example 2.7. Let k be a deterministi
 kernel and suppose that X = (X(t) : t 2 T )is given by X(t) = ZT k(t; s) d�(s);where � is a random pro
ess from SSub'(
) and the integral above is de�ned inthe mean square sense. Then X is a sto
hasti
 pro
ess from SSub'(
) .Let us now give an example of a pro
ess that is wsssi-SSub' but not the fra
tionalBrownian motion. The example is rather impli
it, admittedly.Example 2.8. Let Z� = (Z�(t) : t 2 [0; T ℄) be a fra
tional Brownian motion.Then Z� may be presented in the form of a sum that is uniformly 
onvergent inmean square, viz. Z�(t) = 1Xn=1�n�n n(t):Here the �n 's are independent Gaussian random variables with E�n = 0 and E�2n =1: The �2n 's are eigenvalues and the  n 's are the 
orresponding eigenfun
tions ofthe integral equation  (s) = 1�2 Z T0 R�(t; s) (t) dt:



4 YU. KOZACHENKO, T. SOTTINEN, AND O. VASYLYKNow, let �n; n = 1; 2; : : : ; be independent random variables su
h that E�n = 0 ,E�2n = 1 and �n 2 SSub'(
); where the fun
tion ' satis�es the assumptions ofExample 2.6. Then the pro
ess~Z�(t) = 1Xn=1 �n�n n(t)is 
entered with the 
ovarian
e fun
tion R�: From Example 2.6 it follows that thispro
ess belongs to the spa
e SSub'(
) , i.e. ~Z� = ( ~Z�(t); t 2 [0; T ℄) is wsssi-SSub' :2.2. Metri
 entropy. Let us re
all the 
on
ept of metri
 entropy. For details seee.g. [3℄.De�nition 2.9. Let (T; �) be a pseudometri
 spa
e. The metri
 entropy isH(u) := lnN(T;�)(u)where N(T;�)(u) denotes the least number of 
losed � -balls whose diameter do notex
eed 2u needed to 
over T:Remark 2.10. It should be noted that usually one does not de�ne the metri
 en-tropy in terms of the pseudometri
 � but rather with respe
t to a pseudometri
indu
ed by the in
remental varian
e of a sto
hasti
 pro
ess. In our 
ase this pseu-dometri
 would be ��(t; s) = �(t� s) = jt� sj�: We 
hoose to use the underlying(pseudo)metri
 in our formulations, however.Let us elaborate Remark 2.10 above.Example 2.11. Let T be the interval [a; b℄ equipped with the metri
 �(t) = t�indu
ed by the pro
ess Z�: ThenH(u) = H0(��1(u)) = H0(u��);where H0 is the Eu
lidian metri
 entropy of [a; b℄:Example 2.12. If T is the interval [a; b℄ and � is the Eu
lidian distan
e thenln�b� a2u _ 1� � H(u) � ln�b� a2u + 1�where _ denotes the maximum.Remark 2.13. The metri
 entropy is used to provide the 
ontinuity of the wsssi-SSub'(
) pro
esses. It should be noted that for the sssi-SSub'(
) 
ase, e.g. the
ase of fra
tional Brownian motion, the 
ontinuity follows easily from the Kol-mogorov 
riterion. Indeed, for any n � 1 we haveE��Z�(t)� Z�(s)��n = E��jt� sj�Z�(1)��n = jt� sjn�
n;where 
n; the nth absolut moment of Z�(1); exists by virtue of the inequality(2.1). So, a sssi-SSub'(
) pro
ess has a version with � -Hölder 
ontinuous samplepaths with any index � < �: In the general 
ase we 
annot use the self-similarityproperty or the stri
t stationarity of the in
rements, however. Moreover, the metri
entropy provides us estimates for the probabilities of large deviations. Nothing 
anbe said about the Hölder 
ontinuity of the wsssi-SSub'(
) pro
esses, though.



WSSSI-SSub'(
) PROCESSES 53. Wsssi-SSub' on 
ompa
t setsLet us re
all two lemmas. Lemma 3.1 is a modi�
ation of Lemma 3.1 ofKoza
henko and Vasilik [6℄. Lemma 3.2 is presented in [7℄ as Theorem 2.4. It maybe proved like Theorem 3.5.1 of [3℄.Lemma 3.1. Let (T; �) be a metri
 separable 
ompa
t spa
e and let X = (X(t); t 2T ) is a separable pro
ess from the spa
e Sub'(
) . Suppose that there exists astri
tly in
reasing 
ontinuous fun
tion � with �(0) = 0 su
h that(3.1) sup�(t;s)�h �' (X(t)�X(s)) � �(h)and for some " > 0 we have(3.2) Z "0 �(u) du < 1where �(u) := H(��1(u))'�1(H(��1(u)))and H is the metri
 entropy on (T; �): Then for all p 2 (0; 1) and � > 0 we haveE exp�� supt2T X(t)� � �(�; p; �);(3.3) E exp��� inft2T X(t)� � �(�; p; �);(3.4)where �(�; p; �) = exp '� �
0(1� p)� (1� p) + '� ��(1 � p)� p+2��
0�(p�) + 1(1� p)p Z �p20 �(u) du�!:Here � is any positive number su
h that � � �(infs2T supt2T �(t; s)) and 
0 =supt2T �'(X(t)) .Lemma 3.2. The assumption (3.2) provides 
ontinuity with probability one of thepro
ess X on (T; �): Moreover, we haveP�� sup�(t;s)<" jX(t)�X(s)j > Æ� � exp � �Æ + (1� p)'���(")1� p�+2p'� 2��(")p(1� p)�+ 8�p(1� p) Z p�(")0 �(u) du!for any Æ > 0 and � � 0:The following theorem is an appli
ation of the lemmas above.



6 YU. KOZACHENKO, T. SOTTINEN, AND O. VASYLYKTheorem 3.3. Let Z� = (Z�(t); t 2 [a; b℄) be a separable wsssi-SSub'(
) pro
ess.Then Z� is 
ontinuous and bounded with probability one. Moreover,P� supt2T Z�(t) > "� � �(";�; p; �);(3.5) P� inft2T Z�(t) < �"� � �(";�; p; �);(3.6) P� supt2T jZ�(t)j > "� � 2�(";�; p; �);(3.7)for any " > 0; � � �b�a2 �� ; p 2 (0; 1) and � > 0; where�(";�; p; �) = exp � �"+ '� �b�(1� p)� (1� p) + '� ��(1� p)� p+2��b��(p�)� 1(1� p)p Z �p20 �(u) du�!and(3.8) �(u) = ln� b�a2u1=� + 1�'�1 �ln� b�a2u1=� + 1�� :Proof. In our 
ase the the 
ondition (3.1) is satis�ed with an equality with the
hoi
e �(u) = u�: Now, it is easy to see thatH(��1(u)) � ln� b� a2u1=� + 1�and for small enough u we have the inequality H(��1(u)) � C ln 1u , where C > 0is some 
onstant.The fun
tion v 7! v'�1(v) is stri
tly in
reasing (
f. Lemma 2.2.3 of [3℄). So,the integral (3.2) 
onverges if the integral R "0 �(C ln 1v ) dv 
onverges. But if v islarge, then �(v) � v and the integral (3.2) 
onverges sin
e R "0 ln 1u du 
onverges if" is small enough. Therefore the assumption (3.2) of Lemma 3.1 is satis�ed andthe pro
ess Z� is 
ontinuous and bounded with probability one by Lemma 3.2.The inequalities (3.5) � (3.6) follow from the inequalities (3.3) � (3.4) by using theCheby
hev inequalityP� supt2[a;b℄Z�(t) > "� � exp(��")E exp�� supt2[a;b℄Z�(t)�and noti
ing that 
0 = b�: �Let us denote by f� the Young�Fen
hel transform of the fun
tion f; i.e.f�(x) = supy>0(xy � f(y)); x > 0:



WSSSI-SSub'(
) PROCESSES 7The next 
orollary is now evident.Corollary 3.4. Under the assumptions of Theorem 3.3 for any " > D(p; �) andp 2 (0; 1); we have P� supt2[a;b℄Z�(t) > "� � W (";�; p);P� inft2[a;b℄Z�(t) < �"� � W (";�; p);P� supt2[a;b℄ jZ�(t)j > "� � 2W (";�; p);where W (";�; p) = exp�� y� ("�D(p; �)) �;y(�) = '� �b�(1� p)� (1� p)� '� ��(1� p)� p;D(p; �) = 2�b��(p�) + 1(1� p)p Z �p20 �(u)du�and � is de�ned in (3.8).Corollary 3.5. Under the assumptions of Theorem 3.3 we have for any " > ~D(p)and p 2 (0; 1) the inequalitiesP� supt2T Z�(t) > "� � ~W ("; p);P� inft2T Z�(t) < �"� � ~W ("; p);P� supt2T jZ�(t)j > "� � 2 ~W ("; p);where ~W ("; p) = exp��'��1� pb� ("� ~D(p))��~D(p) = 2b��(1� p)p Z 1p�1=� a(ln(u+ 1))u�+1 du;a(v) = v'�1(v) :



8 YU. KOZACHENKO, T. SOTTINEN, AND O. VASYLYKProof. Let � = � b�a2 �� : Sin
e 
0� = � 2bb�a�� > 1 we haveD(p; �) � 2b���(1 � p)p Z �p0 �(u) du= 2b���(1 � p)p �b� a2 �� Z p0 a(ln( 1t 1� + 1)) dt= 2b��(1� p)p Z 1p�1� a(ln(u+ 1))u�+1 du= ~D(p):Moreover, '� �b�1�p� (1 � p) + '���p � p � '� �b�1�p� . Therefore, the assertion of the
orollary follows from (3.5) � (3.7). �Corollary 3.6. Let u0 � (e'(1) � 1)� be su
h a number that for any u � u0 wehave u � 1 + ( 1� + ln(1 + u1=�)) Then, under the assumptions of Theorem 3.3 wehave for any " > b�u0 P� supt2T Z�(t) > "� � W0(");P� inft2T Z�(t) < �"� � W0(");P� supt2T jZ�(t)j > "� � 2W0(");where W0(") = exp�� '�� "b� � 1� 2(1� b�" )� 1� + ln �1 + ( "b� ) 1� ����:Proof. If '�1(ln(p� 1� + 1)) > 1 then~D(p) � 2b��(1� p)p Z 1p�1� ln(u+ 1)u�+1 du � 2b�(1� p) � 1� + ln(p� 1� + 1)� = D̂(p)Now, sin
e " > D̂(p); it follows from Corollary 3.5 that~W (p; ") � exp �'� "b� � p"b� � D̂(p)b� !!So, the 
laim follows from this by setting p = b�" : �



WSSSI-SSub'(
) PROCESSES 9Example 3.7. If '(x) = x22 then '�(x) = x22 andW0(") = exp � 12� "b� � 1� 2(1� b�" )� 1� + ln �1 + ( "b� ) 1� ���!� exp � 12 "2b2� +O� ln�1 + "b���!:Of 
ourse, this is also an estimate for the fra
tional Brownian motion.Example 3.8. If '(x) = xpp , p > 1 , for x > x0 > 0 , then for large enough " wehave W0(") = exp � 1q� "b� � 1� 2(1� b�" )� 1� + ln �1 + ( "b� ) 1� ���q!;where q is su
h number that 1p + 1q = 1 . �Remark 3.9. The estimates of this se
tion 
an be improved by using of othertheorems from the book [3℄. Also, if Z� is stri
tly sssi then the estimates 
an beimproved by using the obvious equalityP� supt2[0;b℄Z�(t) > "� = P� supt2[0;1℄Z�(t) > "b���:4. Wsssi-SSub' on R+ .In this se
tion we suppose that the pro
ess Z� is de�ned on R+ and 
onsiderits weighted supremum.De�nition 4.1. Let 
 be a stri
tly positive 
ontinuous fun
tion on R+ : ThenC(R+ ; 
) is the spa
e of 
ontinuous fun
tions f over R+ su
h that we havesupt�0 
(t)jf(t)j <1:Spa
e C0(R+ ; 
) is the spa
e of 
ontinuous fun
tions f over R+ su
h that wehave supt�0 
(t)f(t)!1 as t!1 .Remark 4.2. Let us note here that for a wsssi-SSub'(
) pro
ess Z� to havesample paths in C(R+ ; 
) it is ne
essary that 
(t)! 0 as t!1 sin
e VarZ�(t) =t2� !1 as t!1:We shall use the next lemma from Koza
henko and Vasilik [6℄.Lemma 4.3. Let (T; �) be a pseudometri
 separable spa
e and X = (X(t) : t 2T ) be a separable random pro
ess from the spa
e Sub'(
): Suppose there exists astri
tly in
reasing 
ontinuous fun
tion � su
h that �(h) > 0 as h > 0 , �(h) ! 0as h! 0 and sup�(t;s)�h �' (X(t)�X(s)) � �(h):



10 YU. KOZACHENKO, T. SOTTINEN, AND O. VASYLYKLet T = [1̀=1B` , where the B` 's are 
ompa
t sets and let 
 be a 
ontinuous fun
tionsu
h that j
(t)j � 1: DenoteÆ` = supt2B` j
(t)j;�` = �( inft2B` sups2B` �(t; s));
` = supt2B` �'(X(t));� = inf`�1 �`
` :Suppose that the following 
onditions holdd = 1X̀=1 Æ`
` < 1;(4.1) Z �0 �`(u) du < 1;(4.2)where �`(u) = H`(��1(u))'�1(H`(��1(u))) and H` is the metri
 entropy of the set B` , and forany p 2 (0; 1)(4.3) 1X̀=1 Æ`
`�`(p�
`) + Æ`(1� p)p Z �
`p20 �`(u)du! < 1:Then for all � > 0 and p 2 (0; 1) we haveE exp�� supt2T j
(t)x(t)j� � �(�; p);where �(�; p) = 2 exp '� �d1� p� (1� p) + '� �d�1� p� p+2�� 1X̀=1 �Æ`
`�`(p�
`) + Æ`(1� p)p Z �
`p20 �`(u)du��!:The following theorem is an appli
ation of Lemma 4.3 above.Theorem 4.4. Let Z� = (Z�(t); t � 0) be a separable wsssi-SSub'(
) pro
ess.Suppose there exists a sequen
e (x` : ` = 1; 2; : : :) in
reasing to in�nity su
h that



WSSSI-SSub'(
) PROCESSES 11x1 = 0 and C = sup`�1 x`x`+1 < 1;(4.4) 1X̀=1 
(x`)x�̀ < 1:(4.5)Then for any " > 0 and p 2 (0; 1) we have(4.6) P�supt2T j
(t)Z�(t)j > "� � 2 exp��A�("� L(p))�;where A(y) = '� yd1� p� (1� p) + '� yd�1� p� p;L(p) = 21���(1� p)pd1I(p);I(p) = Z p0 a�ln t� 1� + 1� dt;a(v) = v'�1(v) ;d1 = 1X̀=1 
(x`)(x`+1 � x`)�:In parti
ular, the pro
ess Z� has sample paths in C(R+ ; 
) almost surely.Proof. Set B` = [x`; x`+1℄; ` = 1; 2; : : : : Sin
e in our 
ase �(h) = h� we have
` = x�̀+1 , �` = (x`+1�x`2 )�; �`
` = 12� �1� x`x`+1�� and � = 12� (1� C)�: From theassumption (4.5) follows that d = 
(x`)x�̀+1 is �nite.Sin
e 
`�`(�p
`) � 1�p(1� p) Z �
`p�
`p2 �`(u) duand � < 1 we have1X̀=1 Æ`
`�`(p�
l) + Æ`(1� p)p Z �
`p20 �`(u) du � 1�p(1� p) 1X̀=1 Æ` Z �
`p0 �`(u) du:As for the metri
 entropy of [x`; x`+1℄ we haveH`(��1(u)) � ln�x`+1 � x`2��1(u) + 1� = ln�x`+1 � x`2u1=� + 1� :



12 YU. KOZACHENKO, T. SOTTINEN, AND O. VASYLYKSet a(v) = v'�1(v) : So, we haveZ �
`p0 �`(u) du = Z �
`p0 a�ln�x`+1 � x`2u1=� + 1�� du= (x`+1 � x`)�2� Z �
`p2�(x`+1�x`)�0 a�ln� 1t1=� + 1�� dt:Sin
e �
`p2�(x`+1 � x`)� = � x�̀+12�(x`+1 � x`)�= �2� 1(1� x`x`+1 )�� �2� 1(1� C)�= 1we have Z �
`p0 �`(u) du � (x`+1 � x`)�2� Z p0 a�ln� 1t1=� + 1�� dt:Combining the bounds above we obtain1X̀=1 Æ`
`�`(p�
`) + Æ`(1� p)p Z �
`p20 �`(u) du� 12��p(1� p)  1X̀=1 
(x`)(x`+1 � x`)�!Z p0 a�ln� 1t1=� + 1�� dt(4.7) � 12��p(1� p) Z p0 a�ln� 1t1=� + 1�� dt 1X̀=1 
(x`)x�̀+1< 1:So, we proved that the 
onditions (4.1) � (4.3) of Lemma 4.3 hold. Therefore, Z�belongs to the spa
e C(R+ ; 
) almost surely and for all � > 0 we have, by (4.7),(4.8) E exp�� supt2T j
(t)x(t)j� � ~�(�; p)



WSSSI- SSub'(
) PROCESSES 13where ~�(�; p) = 2 exp '� �d1� p� (1� p) + '� �d�1� p� p+2� 12��p(1� p) Z p0 a�ln� 1t1=� + 1�� dtd1!and d = 1X̀=1 
(x`)x�̀+1; d1 = 1X̀=1 
(x`)(x`+1 � x`)�Finally, the inequality (4.6) follows from (4.8) and the Chebyshev inequality. �Remark 4.5. It is easy to obtain from Theorem 4.4 the same 
orollaries as fromTheorem 3.3.Example 4.6. Let x` = e`: Obviously (x` : ` = 1; 2; : : :) grows fast enough toin�nity to satisfy the 
ondition (4.4). Now, it is easy to see that the 
ondition (4.5)is sati�ed for the following fun
tions
(t) = t�(�+"); " > 0; t > 1;
(t) = t��(ln t)�(1+"); " > 0; t > e;
(t) = t��(ln t)�1(ln ln t)�(1+"); " > 0; t > ee:Remark 4.7. If a pro
ess belongs to the spa
e C(R+ ; 
) then it belongs to thespa
e C0(R+ ; 
g) , where g = (g(t); t 2 R+) is a fun
tion satisfying g(t) � 0 andg(t) ! 0 as t ! 1: Therefore, the pro
ess Z� belongs to the spa
e C0(R+ ; 
) ,where 
 is a fun
tion from Example 4.6 above.A
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