
WEAKLY SELF-SIMILAR STATIONARY INCREMENTPROCESSES FROM THE SPACE SSub'(
)YU. KOZACHENKO, T. SOTTINEN, AND O. VASYLYKAbstrat. We onsider weakly self-similar proesses with stationary inre-ments that belong to the spae SSub'(
): We prove that all separable modi�-ations of these proesses are ontinuous with probability one on ompats. Weprovide estimates for the probabilities of large deviations and assumptions underwhih these proesses belong to the weighted spaes C(R+; ): The results holdtrue for the frational Brownian motion with the hoie '(x) = x22 :1. IntrodutionWe onsider a entred square integrable proess Z� = (Z�(t) : t � 0) that hasthe ovariane funtionR�(t; s) = 12 �t2� + s2� � jt� sj2��and belongs to the spae SSub'(
) (to be de�ned later in Setion 2). We shallassume that � 2 (0; 1) the other ases being either uninteresting or impossibe (f.Beran [2℄). For short, we shall say that Z� is wsssi-SSub'(
) (the aronym wsssiis explained below).The motivation for the ovariane funtion R� is the following. Suppose thatZ� in self-similar with index � and has stationary inrements (sssi, for short). By� -self-similarity we mean that(Z�(t) : t � 0) d= �x��Z�(xt) : t � 0�for all x > 0: Here d means equality in distributions. Assume further that theproess Z� is entred and square integrable. Then it is easy to see that Z� hasR� as its ovariane funtion. Note that the inverse is not true even in the ase ofstationary inrements (for an example we refer to Benassi et al. [1℄). Whene thename �weakly sssi� or �wsssi�.The parameter � 2 (0; 1) has the following role. If � 6= 12 then Z� is a proesswith dependent inrements. (However, there are � -self-similar proesses with in-dependent inrements. These are proesses with no variane, or ourse. For detailsof we refer to Samorodnitsky and Taqqu [12℄) If � > 12 then the proess Z� ex-hibits the so-alled long-range dependeny property. The ase � < 12 orrespondsto short-range dependene. For details of long-range dependene see Beran [2℄.In the Gaussian ase the properties sssi and wsssi of ourse oinide. In this aseZ� is alled the frational Brownian motion. This proess was originally de�ned andDate: Marh 11, 2002.1991 Mathematis Subjet Classi�ation. Primary 60G07; Seondary 60G70.1



2 YU. KOZACHENKO, T. SOTTINEN, AND O. VASYLYKstudied by Kolmogorov [4℄ within a Hilbert spae framework where it was alleda �Wiener helix�. It was further studied by Yaglom [15℄. The name �frationalBrownian motion� omes from Mandelbrot and Van Ness [9℄. They de�ned it asa stohasti integral with respet to the standard Brownian motion. The self-similarity property of the frational Brownian motion has made it a popular modelin teleommuniations [11℄ and in mathematial �nane [10, 13, 14℄. The frationalBrownian motion belongs to the spae SSub'(
) if '(x) = x22 ; i.e. it is (w)sssi-SSubx22 :The paper is organised as follows. In Setion 2 we reall some fats about thespaes Sub'(
) and SSub'(
) and the onept of metri entropy. In Setion 3we onsider the proess Z� on ompat sets. We show that their separable modi�-ations are ontinuous with probability one and provide estimates for probabilitiesof large deviations. In Setion 4 we provide assumption under whih Z� belongsto the weighted spaes C([0;1); ) and provide an estimate for the supremum of(t)Z�(t): 2. Preliminaries2.1. Spae SSub'(
) . We reall brie�y some basi fats about the generalisedsub-Gaussian spaes Sub'(
) and SSub'(
): For details and proofs we refer toBuldygin and Kozahenko [3℄.De�nition 2.1. A ontinuous even onvex funtion u is an Orlitz N-funtion ifit is inreasing for x > 0 , u(x)x ! 0 as x! 0 and u(x)x !1 as x!1:For details of onvex funtions in Orlitz spaes we refer to Krasnoselskii andRutitskii [8℄.Let (
;F ;P) be a standard probability spae.De�nition 2.2. Let ' be an Orlitz N-funtion suh that there exist some positiveonstants  and x0 sut that '(x) = x2 for all jxj < x0: A zero mean randomvariable � belongs to the spae Sub'(
) if there exists a positive onstant a suhthat the inequality E exp (��) � exp ('(a�))holds for all � 2 R .The spae Sub'(
) is a Banah spae with respet to the norm�'(�) = sup�6=0 '�1 (lnE exp (��))j�jand the inequalities E exp (��) � exp ('(��'(�))) ;(2.1) (E�2) 12 � �'(�):hold for all � 2 R:If �'(�) = (E�2) 12 then � is alled strong Sub'(
):



WSSSI- SSub'(
) PROCESSES 3De�nition 2.3. A family of random variables � from the spae Sub'(
) is alledstrong Sub'(
) if the equality�' Xi2I �i�i! = 0�E Xi2I �i�i!21A 12holds for all ountable subsets I � �:If � is a strong Sub'(
) family of random variables then the linear losure of� in L2(
) is also a strong Sub'(
) family. Linearly losed families of strongSub'(
) random variables form a spae of strong Sub'(
) random variables. Thisspae is denoted by SSub'(
) .Remark 2.4. The spae of jointly Gaussian random variables belongs to the spaeSSub'(
) if '(x) = x22 :De�nition 2.5. Let T be some parameter spae. A proess X = (X(t); t 2 T )belongs to the spae SSub'(
) if the orresponding family of random variablesbelongs to the spae SSub'(
) .The next examples follow from Kozahenko and Kovalhuk [5℄.Example 2.6. Let ' be suh an Orlitz N-funtion that the funtion '(p�) isonvex. Let X(t) = 1Xk=1 �k k(t);where the series onverge in mean square for all t 2 T and the family f�k : k =1; 2; : : :g belongs to the spae SSub'(
) (e.g. the �k 's are independent strongSub'(
) random variables). Then X is a stohasti proess from SSub'(
):Example 2.7. Let k be a deterministi kernel and suppose that X = (X(t) : t 2 T )is given by X(t) = ZT k(t; s) d�(s);where � is a random proess from SSub'(
) and the integral above is de�ned inthe mean square sense. Then X is a stohasti proess from SSub'(
) .Let us now give an example of a proess that is wsssi-SSub' but not the frationalBrownian motion. The example is rather impliit, admittedly.Example 2.8. Let Z� = (Z�(t) : t 2 [0; T ℄) be a frational Brownian motion.Then Z� may be presented in the form of a sum that is uniformly onvergent inmean square, viz. Z�(t) = 1Xn=1�n�n n(t):Here the �n 's are independent Gaussian random variables with E�n = 0 and E�2n =1: The �2n 's are eigenvalues and the  n 's are the orresponding eigenfuntions ofthe integral equation  (s) = 1�2 Z T0 R�(t; s) (t) dt:



4 YU. KOZACHENKO, T. SOTTINEN, AND O. VASYLYKNow, let �n; n = 1; 2; : : : ; be independent random variables suh that E�n = 0 ,E�2n = 1 and �n 2 SSub'(
); where the funtion ' satis�es the assumptions ofExample 2.6. Then the proess~Z�(t) = 1Xn=1 �n�n n(t)is entered with the ovariane funtion R�: From Example 2.6 it follows that thisproess belongs to the spae SSub'(
) , i.e. ~Z� = ( ~Z�(t); t 2 [0; T ℄) is wsssi-SSub' :2.2. Metri entropy. Let us reall the onept of metri entropy. For details seee.g. [3℄.De�nition 2.9. Let (T; �) be a pseudometri spae. The metri entropy isH(u) := lnN(T;�)(u)where N(T;�)(u) denotes the least number of losed � -balls whose diameter do notexeed 2u needed to over T:Remark 2.10. It should be noted that usually one does not de�ne the metri en-tropy in terms of the pseudometri � but rather with respet to a pseudometriindued by the inremental variane of a stohasti proess. In our ase this pseu-dometri would be ��(t; s) = �(t� s) = jt� sj�: We hoose to use the underlying(pseudo)metri in our formulations, however.Let us elaborate Remark 2.10 above.Example 2.11. Let T be the interval [a; b℄ equipped with the metri �(t) = t�indued by the proess Z�: ThenH(u) = H0(��1(u)) = H0(u��);where H0 is the Eulidian metri entropy of [a; b℄:Example 2.12. If T is the interval [a; b℄ and � is the Eulidian distane thenln�b� a2u _ 1� � H(u) � ln�b� a2u + 1�where _ denotes the maximum.Remark 2.13. The metri entropy is used to provide the ontinuity of the wsssi-SSub'(
) proesses. It should be noted that for the sssi-SSub'(
) ase, e.g. thease of frational Brownian motion, the ontinuity follows easily from the Kol-mogorov riterion. Indeed, for any n � 1 we haveE��Z�(t)� Z�(s)��n = E��jt� sj�Z�(1)��n = jt� sjn�n;where n; the nth absolut moment of Z�(1); exists by virtue of the inequality(2.1). So, a sssi-SSub'(
) proess has a version with � -Hölder ontinuous samplepaths with any index � < �: In the general ase we annot use the self-similarityproperty or the strit stationarity of the inrements, however. Moreover, the metrientropy provides us estimates for the probabilities of large deviations. Nothing anbe said about the Hölder ontinuity of the wsssi-SSub'(
) proesses, though.



WSSSI-SSub'(
) PROCESSES 53. Wsssi-SSub' on ompat setsLet us reall two lemmas. Lemma 3.1 is a modi�ation of Lemma 3.1 ofKozahenko and Vasilik [6℄. Lemma 3.2 is presented in [7℄ as Theorem 2.4. It maybe proved like Theorem 3.5.1 of [3℄.Lemma 3.1. Let (T; �) be a metri separable ompat spae and let X = (X(t); t 2T ) is a separable proess from the spae Sub'(
) . Suppose that there exists astritly inreasing ontinuous funtion � with �(0) = 0 suh that(3.1) sup�(t;s)�h �' (X(t)�X(s)) � �(h)and for some " > 0 we have(3.2) Z "0 �(u) du < 1where �(u) := H(��1(u))'�1(H(��1(u)))and H is the metri entropy on (T; �): Then for all p 2 (0; 1) and � > 0 we haveE exp�� supt2T X(t)� � �(�; p; �);(3.3) E exp��� inft2T X(t)� � �(�; p; �);(3.4)where �(�; p; �) = exp '� �0(1� p)� (1� p) + '� ��(1 � p)� p+2��0�(p�) + 1(1� p)p Z �p20 �(u) du�!:Here � is any positive number suh that � � �(infs2T supt2T �(t; s)) and 0 =supt2T �'(X(t)) .Lemma 3.2. The assumption (3.2) provides ontinuity with probability one of theproess X on (T; �): Moreover, we haveP�� sup�(t;s)<" jX(t)�X(s)j > Æ� � exp � �Æ + (1� p)'���(")1� p�+2p'� 2��(")p(1� p)�+ 8�p(1� p) Z p�(")0 �(u) du!for any Æ > 0 and � � 0:The following theorem is an appliation of the lemmas above.



6 YU. KOZACHENKO, T. SOTTINEN, AND O. VASYLYKTheorem 3.3. Let Z� = (Z�(t); t 2 [a; b℄) be a separable wsssi-SSub'(
) proess.Then Z� is ontinuous and bounded with probability one. Moreover,P� supt2T Z�(t) > "� � �(";�; p; �);(3.5) P� inft2T Z�(t) < �"� � �(";�; p; �);(3.6) P� supt2T jZ�(t)j > "� � 2�(";�; p; �);(3.7)for any " > 0; � � �b�a2 �� ; p 2 (0; 1) and � > 0; where�(";�; p; �) = exp � �"+ '� �b�(1� p)� (1� p) + '� ��(1� p)� p+2��b��(p�)� 1(1� p)p Z �p20 �(u) du�!and(3.8) �(u) = ln� b�a2u1=� + 1�'�1 �ln� b�a2u1=� + 1�� :Proof. In our ase the the ondition (3.1) is satis�ed with an equality with thehoie �(u) = u�: Now, it is easy to see thatH(��1(u)) � ln� b� a2u1=� + 1�and for small enough u we have the inequality H(��1(u)) � C ln 1u , where C > 0is some onstant.The funtion v 7! v'�1(v) is stritly inreasing (f. Lemma 2.2.3 of [3℄). So,the integral (3.2) onverges if the integral R "0 �(C ln 1v ) dv onverges. But if v islarge, then �(v) � v and the integral (3.2) onverges sine R "0 ln 1u du onverges if" is small enough. Therefore the assumption (3.2) of Lemma 3.1 is satis�ed andthe proess Z� is ontinuous and bounded with probability one by Lemma 3.2.The inequalities (3.5) � (3.6) follow from the inequalities (3.3) � (3.4) by using theChebyhev inequalityP� supt2[a;b℄Z�(t) > "� � exp(��")E exp�� supt2[a;b℄Z�(t)�and notiing that 0 = b�: �Let us denote by f� the Young�Fenhel transform of the funtion f; i.e.f�(x) = supy>0(xy � f(y)); x > 0:



WSSSI-SSub'(
) PROCESSES 7The next orollary is now evident.Corollary 3.4. Under the assumptions of Theorem 3.3 for any " > D(p; �) andp 2 (0; 1); we have P� supt2[a;b℄Z�(t) > "� � W (";�; p);P� inft2[a;b℄Z�(t) < �"� � W (";�; p);P� supt2[a;b℄ jZ�(t)j > "� � 2W (";�; p);where W (";�; p) = exp�� y� ("�D(p; �)) �;y(�) = '� �b�(1� p)� (1� p)� '� ��(1� p)� p;D(p; �) = 2�b��(p�) + 1(1� p)p Z �p20 �(u)du�and � is de�ned in (3.8).Corollary 3.5. Under the assumptions of Theorem 3.3 we have for any " > ~D(p)and p 2 (0; 1) the inequalitiesP� supt2T Z�(t) > "� � ~W ("; p);P� inft2T Z�(t) < �"� � ~W ("; p);P� supt2T jZ�(t)j > "� � 2 ~W ("; p);where ~W ("; p) = exp��'��1� pb� ("� ~D(p))��~D(p) = 2b��(1� p)p Z 1p�1=� a(ln(u+ 1))u�+1 du;a(v) = v'�1(v) :



8 YU. KOZACHENKO, T. SOTTINEN, AND O. VASYLYKProof. Let � = � b�a2 �� : Sine 0� = � 2bb�a�� > 1 we haveD(p; �) � 2b���(1 � p)p Z �p0 �(u) du= 2b���(1 � p)p �b� a2 �� Z p0 a(ln( 1t 1� + 1)) dt= 2b��(1� p)p Z 1p�1� a(ln(u+ 1))u�+1 du= ~D(p):Moreover, '� �b�1�p� (1 � p) + '���p � p � '� �b�1�p� . Therefore, the assertion of theorollary follows from (3.5) � (3.7). �Corollary 3.6. Let u0 � (e'(1) � 1)� be suh a number that for any u � u0 wehave u � 1 + ( 1� + ln(1 + u1=�)) Then, under the assumptions of Theorem 3.3 wehave for any " > b�u0 P� supt2T Z�(t) > "� � W0(");P� inft2T Z�(t) < �"� � W0(");P� supt2T jZ�(t)j > "� � 2W0(");where W0(") = exp�� '�� "b� � 1� 2(1� b�" )� 1� + ln �1 + ( "b� ) 1� ����:Proof. If '�1(ln(p� 1� + 1)) > 1 then~D(p) � 2b��(1� p)p Z 1p�1� ln(u+ 1)u�+1 du � 2b�(1� p) � 1� + ln(p� 1� + 1)� = D̂(p)Now, sine " > D̂(p); it follows from Corollary 3.5 that~W (p; ") � exp �'� "b� � p"b� � D̂(p)b� !!So, the laim follows from this by setting p = b�" : �



WSSSI-SSub'(
) PROCESSES 9Example 3.7. If '(x) = x22 then '�(x) = x22 andW0(") = exp � 12� "b� � 1� 2(1� b�" )� 1� + ln �1 + ( "b� ) 1� ���!� exp � 12 "2b2� +O� ln�1 + "b���!:Of ourse, this is also an estimate for the frational Brownian motion.Example 3.8. If '(x) = xpp , p > 1 , for x > x0 > 0 , then for large enough " wehave W0(") = exp � 1q� "b� � 1� 2(1� b�" )� 1� + ln �1 + ( "b� ) 1� ���q!;where q is suh number that 1p + 1q = 1 . �Remark 3.9. The estimates of this setion an be improved by using of othertheorems from the book [3℄. Also, if Z� is stritly sssi then the estimates an beimproved by using the obvious equalityP� supt2[0;b℄Z�(t) > "� = P� supt2[0;1℄Z�(t) > "b���:4. Wsssi-SSub' on R+ .In this setion we suppose that the proess Z� is de�ned on R+ and onsiderits weighted supremum.De�nition 4.1. Let  be a stritly positive ontinuous funtion on R+ : ThenC(R+ ; ) is the spae of ontinuous funtions f over R+ suh that we havesupt�0 (t)jf(t)j <1:Spae C0(R+ ; ) is the spae of ontinuous funtions f over R+ suh that wehave supt�0 (t)f(t)!1 as t!1 .Remark 4.2. Let us note here that for a wsssi-SSub'(
) proess Z� to havesample paths in C(R+ ; ) it is neessary that (t)! 0 as t!1 sine VarZ�(t) =t2� !1 as t!1:We shall use the next lemma from Kozahenko and Vasilik [6℄.Lemma 4.3. Let (T; �) be a pseudometri separable spae and X = (X(t) : t 2T ) be a separable random proess from the spae Sub'(
): Suppose there exists astritly inreasing ontinuous funtion � suh that �(h) > 0 as h > 0 , �(h) ! 0as h! 0 and sup�(t;s)�h �' (X(t)�X(s)) � �(h):



10 YU. KOZACHENKO, T. SOTTINEN, AND O. VASYLYKLet T = [1̀=1B` , where the B` 's are ompat sets and let  be a ontinuous funtionsuh that j(t)j � 1: DenoteÆ` = supt2B` j(t)j;�` = �( inft2B` sups2B` �(t; s));` = supt2B` �'(X(t));� = inf`�1 �`` :Suppose that the following onditions holdd = 1X̀=1 Æ`` < 1;(4.1) Z �0 �`(u) du < 1;(4.2)where �`(u) = H`(��1(u))'�1(H`(��1(u))) and H` is the metri entropy of the set B` , and forany p 2 (0; 1)(4.3) 1X̀=1 Æ``�`(p�`) + Æ`(1� p)p Z �`p20 �`(u)du! < 1:Then for all � > 0 and p 2 (0; 1) we haveE exp�� supt2T j(t)x(t)j� � �(�; p);where �(�; p) = 2 exp '� �d1� p� (1� p) + '� �d�1� p� p+2�� 1X̀=1 �Æ``�`(p�`) + Æ`(1� p)p Z �`p20 �`(u)du��!:The following theorem is an appliation of Lemma 4.3 above.Theorem 4.4. Let Z� = (Z�(t); t � 0) be a separable wsssi-SSub'(
) proess.Suppose there exists a sequene (x` : ` = 1; 2; : : :) inreasing to in�nity suh that



WSSSI-SSub'(
) PROCESSES 11x1 = 0 and C = sup`�1 x`x`+1 < 1;(4.4) 1X̀=1 (x`)x�̀ < 1:(4.5)Then for any " > 0 and p 2 (0; 1) we have(4.6) P�supt2T j(t)Z�(t)j > "� � 2 exp��A�("� L(p))�;where A(y) = '� yd1� p� (1� p) + '� yd�1� p� p;L(p) = 21���(1� p)pd1I(p);I(p) = Z p0 a�ln t� 1� + 1� dt;a(v) = v'�1(v) ;d1 = 1X̀=1 (x`)(x`+1 � x`)�:In partiular, the proess Z� has sample paths in C(R+ ; ) almost surely.Proof. Set B` = [x`; x`+1℄; ` = 1; 2; : : : : Sine in our ase �(h) = h� we have` = x�̀+1 , �` = (x`+1�x`2 )�; �`` = 12� �1� x`x`+1�� and � = 12� (1� C)�: From theassumption (4.5) follows that d = (x`)x�̀+1 is �nite.Sine `�`(�p`) � 1�p(1� p) Z �`p�`p2 �`(u) duand � < 1 we have1X̀=1 Æ``�`(p�l) + Æ`(1� p)p Z �`p20 �`(u) du � 1�p(1� p) 1X̀=1 Æ` Z �`p0 �`(u) du:As for the metri entropy of [x`; x`+1℄ we haveH`(��1(u)) � ln�x`+1 � x`2��1(u) + 1� = ln�x`+1 � x`2u1=� + 1� :



12 YU. KOZACHENKO, T. SOTTINEN, AND O. VASYLYKSet a(v) = v'�1(v) : So, we haveZ �`p0 �`(u) du = Z �`p0 a�ln�x`+1 � x`2u1=� + 1�� du= (x`+1 � x`)�2� Z �`p2�(x`+1�x`)�0 a�ln� 1t1=� + 1�� dt:Sine �`p2�(x`+1 � x`)� = � x�̀+12�(x`+1 � x`)�= �2� 1(1� x`x`+1 )�� �2� 1(1� C)�= 1we have Z �`p0 �`(u) du � (x`+1 � x`)�2� Z p0 a�ln� 1t1=� + 1�� dt:Combining the bounds above we obtain1X̀=1 Æ``�`(p�`) + Æ`(1� p)p Z �`p20 �`(u) du� 12��p(1� p)  1X̀=1 (x`)(x`+1 � x`)�!Z p0 a�ln� 1t1=� + 1�� dt(4.7) � 12��p(1� p) Z p0 a�ln� 1t1=� + 1�� dt 1X̀=1 (x`)x�̀+1< 1:So, we proved that the onditions (4.1) � (4.3) of Lemma 4.3 hold. Therefore, Z�belongs to the spae C(R+ ; ) almost surely and for all � > 0 we have, by (4.7),(4.8) E exp�� supt2T j(t)x(t)j� � ~�(�; p)



WSSSI- SSub'(
) PROCESSES 13where ~�(�; p) = 2 exp '� �d1� p� (1� p) + '� �d�1� p� p+2� 12��p(1� p) Z p0 a�ln� 1t1=� + 1�� dtd1!and d = 1X̀=1 (x`)x�̀+1; d1 = 1X̀=1 (x`)(x`+1 � x`)�Finally, the inequality (4.6) follows from (4.8) and the Chebyshev inequality. �Remark 4.5. It is easy to obtain from Theorem 4.4 the same orollaries as fromTheorem 3.3.Example 4.6. Let x` = e`: Obviously (x` : ` = 1; 2; : : :) grows fast enough toin�nity to satisfy the ondition (4.4). Now, it is easy to see that the ondition (4.5)is sati�ed for the following funtions(t) = t�(�+"); " > 0; t > 1;(t) = t��(ln t)�(1+"); " > 0; t > e;(t) = t��(ln t)�1(ln ln t)�(1+"); " > 0; t > ee:Remark 4.7. If a proess belongs to the spae C(R+ ; ) then it belongs to thespae C0(R+ ; g) , where g = (g(t); t 2 R+) is a funtion satisfying g(t) � 0 andg(t) ! 0 as t ! 1: Therefore, the proess Z� belongs to the spae C0(R+ ; ) ,where  is a funtion from Example 4.6 above.AknowledgementsT. Sottinen was �naned by the Finnish Graduate Shool in Stohastis.Referenes[1℄ Benassi, A., Cohen, S. and Istas, J. Identi�ation and properties of moving average frationalLévy motions. Preprint, Otober 2001, 24 pages.[2℄ Beran, J. Statistis for Long-Memory Proesses. Chapman & Hall, New York, 1994.[3℄ Buldygin, V. V. and Kozahenko, Yu. V. Metri Charaterization of Random Variables andRandom Proesses. Amerian Mathematial Soiety, Providene, RI, 2000.[4℄ Kolmogorov, A. N. Loal struture of turbulene in �uid for very large Reynolds numbers.Transl. in Turbulene. S. K. Friedlander and L. Topper (eds.), pp. 151�155, IntersienePublishers, New York, 1961.[5℄ Kozahenko, Yu. V. and Kovalhuk, Yu. A. Boundary value problems with random initialonditions, and funtional series from Sub'(
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