WEAKLY SELF-SIMILAR STATIONARY INCREMENT
PROCESSES FROM THE SPACE SSub, ()

YU. KOZACHENKO, T. SOTTINEN, AND O. VASYLYK

ABsTRACT. We consider weakly self-similar processes with stationary incre-

ments that belong to the space SSub, (). We prove that all separable modifi-

cations of these processes are continuous with probability one on compacts. We

provide estimates for the probabilities of large deviations and assumptions under

which these processes belong to the weighted spaces C(R4,c). The results hold
2

true for the fractional Brownian motion with the choice p(z) = 5.

1. INTRODUCTION

We consider a centred square integrable process Z, = (Z4(t) : t > 0) that has
the covariance function

1
Ro(t;s) = 5 (2> + 82 — |t — s|**)

and belongs to the space SSub,(£2) (to be defined later in Section 2). We shall
assume that a € (0,1) the other cases being either uninteresting or impossibe (cf.
Beran [2]). For short, we shall say that Z, is wsssi- SSub,(£2) (the acronym wsssi
is explained below).

The motivation for the covariance function R, is the following. Suppose that
Zq in self-similar with index a and has stationary increments (sssi, for short). By
a-self-similarity we mean that

(Za(t): £>0) £ (27 Za(at): t>0)

for all £ > 0. Here d means equality in distributions. Assume further that the
process Z, is centred and square integrable. Then it is easy to see that Z, has
R, as its covariance function. Note that the inverse is not true even in the case of
stationary increments (for an example we refer to Benassi et al. [1]). Whence the
name “weakly sssi” or “wsssi”.

The parameter « € (0,1) has the following role. If a # % then Z, is a process
with dependent increments. (However, there are «-self-similar processes with in-
dependent increments. These are processes with no variance, or course. For details
of we refer to Samorodnitsky and Taqqu [12]) If a > % then the process Z, ex-
hibits the so-called long-range dependency property. The case a < % corresponds
to short-range dependence. For details of long-range dependence see Beran [2].

In the Gaussian case the properties sssi and wsssi of course coincide. In this case
Zq is called the fractional Brownian motion. This process was originally defined and
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studied by Kolmogorov [4] within a Hilbert space framework where it was called
a “Wiener helix”. It was further studied by Yaglom [15]. The name “fractional
Brownian motion” comes from Mandelbrot and Van Ness [9]. They defined it as
a stochastic integral with respect to the standard Brownian motion. The self-
similarity property of the fractional Brownian motion has made it a popular model
in telecommunications [11] and in mathematical finance [10, 13, 14]. The fractional
Brownian motion belongs to the space SSub,(Q) if ¢(z) = "’“’2—2, ile. it is (w)sssi-
SSub,2 .
2

The paper is organised as follows. In Section 2 we recall some facts about the
spaces Suby,(2) and SSuby,(£2) and the concept of metric entropy. In Section 3
we consider the process Z, on compact sets. We show that their separable modifi-
cations are continuous with probability one and provide estimates for probabilities
of large deviations. In Section 4 we provide assumption under which Z, belongs
to the weighted spaces C([0,00),c¢) and provide an estimate for the supremum of

c(t)Za(t).

2. PRELIMINARIES

2.1. Space SSub,(£2). We recall briefly some basic facts about the generalised
sub-Gaussian spaces Suby,(£2) and SSuby(£2). For details and proofs we refer to
Buldygin and Kozachenko [3].

Definition 2.1. A continuous even convex function w« is an Orlitcz N-function if

it is increasing for x > 0, @ — 0 as x — 0 and u(mm) — 00 as T — Q.

For details of convex functions in Orlitcz spaces we refer to Krasnoselskii and
Rutitskii [8].
Let (©,.%#,P) be a standard probability space.

Definition 2.2. Let ¢ be an Orlitcz N-function such that there exist some positive
constants ¢ and zg suct that ¢(z) = cx? for all |z| < xg. A zero mean random
variable ¢ belongs to the space Suby, (1) if there exists a positive constant a such
that the inequality

Eexp (X) < exp(p(ar))
holds for all \ € R.

The space Sub,(f2) is a Banach space with respect to the norm

¢~ (InEexp (X))

S S

and the inequalities

(2.1) Eexp (A) < exp (p(A7,(8)))
(BT < 7,(6).

hold for all A € R.
If 7,(¢) = (EfQ)% then ¢ is called strong Sub,(€2).
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Definition 2.3. A family of random variables A from the space Sub,,(£2) is called
strong Sub,(2) if the equality

() (1))

icl il
holds for all countable subsets I C A.

If A is a strong Suby,(£2) family of random variables then the linear closure of
A in L*(Q) is also a strong Suby,(f2) family. Linearly closed families of strong
Suby, (2) random variables form a space of strong Sub,(€2) random variables. This
space is denoted by SSub,,(2).

Remark 2.4. The space of jointly Gaussian random variables belongs to the space
2

SSuby,(Q) if p(z) = %
Definition 2.5. Let T be some parameter space. A process X = (X(¢),t €T)

belongs to the space SSub,(§2) if the corresponding family of random variables
belongs to the space SSub,(€2).

The next examples follow from Kozachenko and Kovalchuk [5].

Example 2.6. Let ¢ be such an Orlitcz N-function that the function ¢(y/) is
convex. Let

X(t) = > &n(t),
k=1

where the series converge in mean square for all ¢ € T' and the family {& : k =
1,2,...} belongs to the space SSub,(f2) (e.g. the &;’s are independent strong
Suby,(2) random variables). Then X is a stochastic process from SSub,(12).
Example 2.7. Let k be a deterministic kernel and suppose that X = (X (¢) : t € T')
is given by

X(t) = /T K(t,3) dE(s),

where ¢ is a random process from SSub,,(£2) and the integral above is defined in
the mean square sense. Then X is a stochastic process from SSuby(2).

Let us now give an example of a process that is wsssi- SSub,, but not the fractional
Brownian motion. The example is rather implicit, admittedly.

Example 2.8. Let Z, = (Z4(t):t€[0,T]) be a fractional Brownian motion.

Then Z, may be presented in the form of a sum that is uniformly convergent in
mean square, Viz.

Za(t) = Z)\ngnd)n(t)
n=1

Here the &, s are independent Gaussian random variables with E¢, = 0 and E¢2 =
1. The A2’s are eigenvalues and the 1), s are the corresponding eigenfunctions of
the integral equation

1 T

d’(s) = 2 o Ra(tvs)’(/)(t)dt'
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Now, let n,, n =1,2,..., be independent random variables such that En, =0,
En2 =1 and 7, € SSuby(2), where the function ¢ satisfies the assumptions of
Example 2.6. Then the process

Za(t) = Z A n (t)
n=1

is centered with the covariance function R,. From Example 2.6 it follows that this
process belongs to the space SSub,(Q), ie. Z, = (Za(t),t € [0,T]) is wsssi-
SSub,, .

2.2. Metric entropy. Let us recall the concept of metric entropy. For details see
e.g. [3].
Definition 2.9. Let (7, p) be a pseudometric space. The metric entropy is

H(u) := InNe,(u)

where N7 ,)(u) denotes the least number of closed p-balls whose diameter do not
exceed 2u needed to cover T.

Remark 2.10. It should be noted that usually one does not define the metric en-
tropy in terms of the pseudometric p but rather with respect to a pseudometric
induced by the incremental variance of a stochastic process. In our case this pseu-
dometric would be pq(t,s) = o(t —s) = [t — s|*. We choose to use the underlying
(pseudo)metric in our formulations, however.

Let us elaborate Remark 2.10 above.

Example 2.11. Let T be the interval [a,b] equipped with the metric o(t) = t¢
induced by the process Z,. Then

H(u) = Ho(o '(u)) = Ho(u ®),

where Hj is the Euclidian metric entropy of [a, b].
Example 2.12. If T is the interval [a,b] and p is the Euclidian distance then

1n<b2_ua\/1> < H(u) < 1n<b2_—ua+1>

where V denotes the maximum.

Remark 2.13. The metric entropy is used to provide the continuity of the wsssi-
SSub, (€2) processes. It should be noted that for the sssi-SSuby,(£2) case, e.g. the
case of fractional Brownian motion, the continuity follows easily from the Kol-
mogorov criterion. Indeed, for any n > 1 we have

E|Za(t) = Za(s)|" = E|ft—s|*Za(1)|" = [t — 3",

where 7,, the nth absolut moment of Z,(1), exists by virtue of the inequality
(2.1). So, a sssi- SSub,,(€2) process has a version with 3-Hélder continuous sample
paths with any index 8 < «. In the general case we cannot use the self-similarity
property or the strict stationarity of the increments, however. Moreover, the metric
entropy provides us estimates for the probabilities of large deviations. Nothing can
be said about the Holder continuity of the wsssi- SSuby,(€2) processes, though.
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3. WsssI-SSub, ON COMPACT SETS

Let us recall two lemmas. Lemma 3.1 is a modification of Lemma 3.1 of
Kozachenko and Vasilik [6]. Lemma 3.2 is presented in [7] as Theorem 2.4. It may
be proved like Theorem 3.5.1 of [3].

Lemma 3.1. Let (T, p) be a metric separable compact space and let X = (X(t),t €
T) is a separable process from the space Suby(2). Suppose that there ezists a
strictly increasing continuous function o with o(0) =0 such that

(3.1) sup 7, (X(t) — X(s)) < o(h)
p(t,s)<h

and for some € > 0 we have

(3.2) /UEC(u)du < oo

where

H(o™ ' (u))
Clu) = — -
U Cal0)
and H is the metric entropy on (T, p). Then for all p € (0,1) and X\ > 0 we have

(3.3) Eexp (Asupxm) < T(up.A),
teT

(3.4) Eexp (—A;Q;X<t>) < T(up.h),

where

I'(A;p,B) = exp (¢<(1Ajop>(1—p)+<ﬁ< Aﬁp>p+

2A<70C(pﬁ) " ﬁ /0 " e du))

Here 8 is any positive number such that § < o(infsersup,cq p(t,s)) and vy =
supyer o (X (1)) -

Lemma 3.2. The assumption (3.2) provides continuity with probability one of the
process X on (T, p). Moreover, we have

P(x sup [X()-X(s)|>5) < exp<—m+<1—p>so(*"(5))+

p(t,s)<e l—p
2Xo (¢) > 8\ /ME)
2 + u) du
P (p(l -p)) p(1—-p)Jo ()
for any § >0 and X > 0.

The following theorem is an application of the lemmas above.
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Theorem 3.3. Let Z, = (Za(t),t € [a,b]) be a separable wsssi-SSub,, () process.
Then Z, is continuous and bounded with probability one. Moreover,

(3.5) P<supZa(t)>€> < A(eg; B,p, M),
teT

(3.6) <;£:£Z 8) < Aeg; B,p, M),

(3.7 P(suplZ0)) > ) < 28650,
teT

forany e >0, B < (b_Ta)a, p € (0,1) and X\ > 0, where
' _ _ b B 2B
AEBp) = exp< et (o) =)+ (s ) ot

2A(b%(pﬂ) -/ ” cw du))

ln(2 /e -I—l)

o (i (et +1))

Proof. In our case the the condition (3.1) is satisfied with an equality with the
choice o(u) = u®. Now, it is easy to see that

H@”WDf§m<2:g+0

and

(3.8) C(u) =

ul/e

and for small enough u we have the inequality H(c !(u)) < Clni, where C >0
is some constant.

The function v (p+(v) is strictly increasing (cf. Lemma 2.2.3 of [3]). So,
the integral (3.2) converges if the integral [; ¢((C'Inl)dv converges But if v is
large, then ((v) < v and the integral (3.2) converges since [; InLdu converges if
e is small enough. Therefore the assumption (3.2) of Lemma 3.1 is satisfied and
the process Z, is continuous and bounded with probability one by Lemma 3.2.
The inequalities (3.5) — (3.6) follow from the inequalities (3.3) — (3.4) by using the
Chebychev inequality

P( sup Zq(t) > E) < exp(—Xe)Eexp <)\ sup Za(t)>
t€la,b) t€(a,b]
and noticing that vy = b*. O

Let us denote by f* the Young-Fenchel transform of the function f, i.e.

f(x) = sup(zy — f(y)), =z>0.
y>0
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The next corollary is now evident.

Corollary 3.4. Under the assumptions of Theorem 3.3 for any € > D(p,[3) and
p € (0,1), we have

IN

P< sup Zo(t) > s) W (e; B,p),

t€la,b]

P( inf Za(t)<—6> < Wi(gB,p),
tefa,b]

P( sup ‘Za(t)‘ > 5) S 2W(€aﬁap)a
t€(a,b]

where

W(e;B,p) = exp(—y* (e —D(p,p))),

y(A) = ¢ (%) (1-p)—v (%) 2

D(p. ) 2<b“é“(pﬁ) o fp)p /U v <(u)du)

and ¢ 1s defined in (3.8).
Corollary 3.5. Under the assumptions of Theorem 3.3 we have for any € > l~)(p)
and p € (0,1) the inequalities

P(supZa(t)>6> < W(ep),
teT

P<inf Za(t) < —E) < Wi(ep),
teT

P(sup|za(t)|>e) < oW (ep).
teT

where

Wen) = e (- (S - Do) )

b(p) - 2b%« /OO a(ln(u + 1)) du,

—1/a Ua+1
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Proof. Let 3= (”*T“)a Since %0 = (%)a > 1 we have

2%« Bp

_ ﬁ(fbjol‘))p (b;a>a/0pa(ln(t%+l))dt

Moreover, ¢ (%) (1—-p)+eo (%) P (%) . Therefore, the assertion of the
corollary follows from (3.5) — (3.7). O

Corollary 3.6. Let ug > (e‘p(l) — 1)® be such a number that for any u > ug we
have u > 1+ (L +In(1 + u'/®)) Then, under the assumptions of Theorem 3.3 we
have for any € > b%uq

P<ig¥ZQ(t)>e> < Wole),

P(tig;za(tk—s) < Wale),

P<supZa(t)>8> < 2Wy(e),
teT

where

€ 2

Wole) = exp(—gp*(b—a —1- @<é+ln(l+(ba);))>>.

€

Proof. 1f tp’l(lm(p_é +1)) > 1 then

- 2%« * In(u + 1) 2h% 1 1 A
D(p) < (1—p)p/p —arr du < = (a+ln(p a+1)> = D(p)

=1
o

Now, since € > D(p), it follows from Corollary 3.5 that

W(p,e) < exp <_¢* (bi N Db(f)>>

So, the claim follows from this by setting p = & O

c "
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Example 3.7. If p(z) = % then ¢*(z) = % and

Wole) = exp<— %(b%_l_ ﬁ(ém(u(b%)é))))

£

~ exp(—%;—i-l—O(ln(l-i-b%))).

Of course, this is also an estimate for the fractional Brownian motion.

Example 3.8. If ¢(z) =% p> 1, for z > xg > 0, then for large enough & we

p
have
Wi (e) L e 2 (Lm0
eg) = expl - -|—=——1————(—+1n —)a
0 P q \ b® (1-2)\a b ’
where ¢ is such number that I—l)—i—%:l. O

Remark 3.9. The estimates of this section can be improved by using of other
theorems from the book [3|. Also, if Z, is strictly sssi then the estimates can be
improved by using the obvious equality

P< sup Za(t) > 5) = P< sup Zq(t) > sb“).

t€[0,b] te[0,1]

4. Wsssi-SSub, oN Ry .

In this section we suppose that the process Z, is defined on Ry and consider
its weighted supremum.

Definition 4.1. Let ¢ be a strictly positive continuous function on R;. Then
C(Ry,c) is the space of continuous functions f over Ry such that we have

sup;>o c¢(t)|f ()| < oo.

Space Cy(R,,c) is the space of continuous functions f over R, such that we
have sup;qc(t)f(t) — 0o as ¢ — oo.

Remark 4.2. Let us note here that for a wsssi- SSub,(£2) process Z, to have
sample pathsin C(Ry,c) it is necessary that ¢(¢f) — 0 as t — oo since Var Z,(t) =
2% — 00 as t — oo.

We shall use the next lemma from Kozachenko and Vasilik [6].

Lemma 4.3. Let (T,p) be a pseudometric separable space and X = (X(t) : t €
T) be a separable random process from the space Suby, (). Suppose there ezists a
strictly increasing continuous function o such that o(h) >0 as h >0, o(h) =0
as h — 0 and

sup 7, (X(t) = X(s) < olh).
p(t,s)<h
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Let T'= Up2, By, where the By ’s are compact sets and let ¢ be a continuous function
such that |c(t)| < 1. Denote

5[ = sup ‘C(t)|a

teBy
a = inf su t,s

(ter sup p(t,s)),

e = sup 1,(X(1)),

teBy

. Qg

= f—.

b=

Suppose that the following conditions hold

(4.1) Zém < oo,
(4.2) / Cg du < 00,
where (p(u) = % and Hy is the metric entropy of the set By, and for
any p € (0,1)
(4.3 S (sentctomn + 2 [ g
3 —_— u)du | < oc.
2 eveCe(pBye) (1 —op ) Ce

Then for all X >0 and p € (0,1) we have

E exp ()\ %171;3 le(t)x(t) ) < ®(\p),

where

2) ( i (&w@ (pBye) + i ffp)p /0 e Cg(u)du) ) ) :

(=1

The following theorem is an application of Lemma 4.3 above.

Theorem 4.4. Let Z, = (Zo(t).t > 0) be a separable wsssi-SSub, () process.
Suppose there exists a sequence (xg: £ = 1,2,...) increasing to infinity such that
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1 =0 and

(4.4) c = supi < 1,
£>1 Te41
o

(4.5) Y elz)zf < oo

(=1

Then for any € >0 and p € (0,1) we have

(46) P (337;3 () Zat)] > ) < 2exp(— A*(e - L)),

where

91—«
L(p) = 50 _p)pdlf(p),
I(p) = /pa <1nt_é + 1) dt,
0

p=
o<

di = Y ez (wepr — m0)”.
=

—_

In particular, the process Zo has sample paths in C(Ry,c) almost surely.

Proof. Set By = [z¢,x¢+1]), £ = 1,2,.... Since in our case o(h) = h® we have
_ [0}
Yo =xf,,, op = (P, L= = (1 — mfil) and 3= 5 (1—C)®. From the
assumption (4.5) follows that d = c(z¢)zy, ;| is finite.
Since
) < ——— [
YeGe(OPye) < / o(u) du
/Bp(l_p) Byep?
and B <1 we have
io: ( ) Bryep® W 1 i Byep W
Senlopn) + o [ G < s S a [ G da
— (1—=pp Jo Bp(L —p) &=~ Jo

As for the metric entropy of [z, z¢41] we have

Hy(o™'(u)) < In (LH — T 1) — In <L“ — o 1) .
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Set a(v) = w_ﬁ’(v). So, we have

Bup Lo —
+1 — Ty
In| ———+1
[ e (m (o))
Byp2*

(Te41 —20) [Trr-=07 1
9a ; alln /a +1 dt.

S—
S
N
S
L
&
o
IS
I

Since
Byep2® _ 5 Tgy,2°
(241 — z0)® (zg41 — z0)®
1
= ﬁ2a T
(1—z5)
1
204
= 1
we have

Byep _ a rp
/ Clu)du < M/ afin(=—+1)) a
0 20 0 tl/a

Combining the bounds above we obtain

Byep?
Z@w@ (pBye) + 5é / " Ce(u) du

i
(oo c(ze)(zep1 — 20)® )/Upa<ln<tl%+l>> dt
e [P () St

< 0.

47 < mp T 7

So, we proved that the conditions (4.1) — (4.3) of Lemma 4.3 hold. Therefore, Z,
belongs to the space C'(Ry,¢) almost surely and for all A > 0 we have, by (4.7),

(48) Bexp (Ajgg c(t)x(t>) < d(np)
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where

and

Finally, the inequality (4 6) follows from (4.8) and the Chebyshev inequality. [

Remark 4.5. It is easy to obtain from Theorem 4.4 the same corollaries as from
Theorem 3.3.

Example 4.6. Let z; = e/. Obviously (z; : £ = 1,2,...) grows fast enough to
infinity to satisfy the condltlon (4.4). Now, it is easy to see that the condition (4.5)
is satified for the following functions

ct) = t7@t) > 0,t>1,
ct) = t%(nt) 1) £>0,t>e,
c(t) = t7%(Int)'(Inlnt)=F) > 0,> €

Remark 4.7. If a process belongs to the space C(R,,c) then it belongs to the
space Co(Ry,cg), where g = (g(t),t € Ry) is a function satisfying ¢(¢) > 0 and
g(t) — 0 as t — oo. Therefore, the process Z, belongs to the space Cy(Ry,c),
where c¢ is a function from Example 4.6 above.
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