YUKAWA POTENTIAL, PANHARMONIC MEASURE AND
BROWNIAN MOTION

ANTTI RASILA AND TOMMI SOTTINEN

ABSTRACT. The panharmonic measure is a generalization of the har-
monic measure for the solutions of the Yukawa partial differential equa-
tion. We show that the panharmonic measure shares many of the im-
portant properties of the classical harmonic measure. In particular, we
show that there are natural stochastic definitions for the panharmonic
measure in terms of the Brownian motion and that the harmonic and
the panharmonic measures are all mutually equivalent. Furthermore,
we calculate their Radon—Nikodym derivatives explicitly for some balls,
yielding algorithms for numerical approximations of the solutions to the
Yukawa PDE. We discuss how to simulate the Yukawa PDE with ran-
dom walk on spheres and random walk on moving spheres.

1. INTRODUCTION AND PRELIMINARIES

The harmonic measure is a fundamental tool in geometric function the-
ory, and it has interesting applications in the study of bounded analytic
functions, quasiconformal mappings and potential theory. For example, the
harmonic measure has proven very useful in study of quasidisks and re-
lated topics (see e.g. [1, 13, 18]). Results involving the harmonic measure
have been given by numerous authors since 1930’s (see [12] and references
therein). In this paper we shall consider the panharmonic measure, which is
a natural counterpart of the classical harmonic measure, where the harmonic
functions related are replaced with the smooth solutions to the Yukawa equa-
tion
(1.1) Au(z) = pu(z), p@*>0.

The equation (1.1) first arose from the work of the Japanese physicist Hideki
Yukawa in particle physics. Here u: D — R is a two times differentiable
function and D C R™, n > 2, is a domain. The Yukawa equation was first
studied in order to describe the nuclear potential of a point charge. This
model led to the concept of the Yukawa potential (also called a screened
Coulomb potential), which satisfies an equation of the type (1.1). The
Yukawa equation also arises from certain problems related to optics, see
[15]. Obviously, when p = 0 we have the Laplace equation and, indeed, the
results given in this paper reduce to the classical ones.

Using the terminology of Duffin [9, 10], we call a function u: D — R
panharmonic in a domain D if its second derivatives are continuous and
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it satisfies the Yukawa equation (1.1) for all z € D. The function w is
called panharmonic at xg € D if there is a neighborhood of xy where u is
panharmonic.

The panharmonic, or g-panharmonic measure, is a generalization of the
harmonic measure:

1.2. Definition. Let D C R"™ be a regular domain and let uz > 0. The
w-panharmonic measure on a boundary 0D with a pole at € D is the
measure Hﬁ(D; -) such that any p-panharmonic function u on D that is
bounded on dD admits the representation

u(z) = / _ul) B (Didy),

The existence and uniqueness of panharmonic measure, and the notion of
regularity of a domain, will be established by Theorem 2.5 later.

In Definition 1.2 above, and in all that follows, we shall always assume
that n > 2, although some results are true in the dimension n = 1, also.

Note that if we replace the ‘killing parameter’ p? in the Yukawa equa-
tion (1.1) with a ‘creation parameter’ A < 0 we obtain another important
partial differential equation, the Helmholtz equation. In principle, the sto-
chastic approaches taken in this paper can be applied to the solutions of
the Helmholtz equation if the domain D is small enough compared to the
parameter A. For details, we refer to Chung and Zhao [3]. If we replace
u? by a (positive) function, we obtain the Schridinger equation. Again, the
stochastic approaches taken in this paper can be applied, in principle, to
the Schrodinger equation, but the results may not be mathematically very
tractable. Again, we refer to Chung and Zhao [3] for details.

The rest of the paper is organized as follows: In Section 2 we show three
different connections between the panharmonic measures and the Brown-
ian motion. The first two (Theorem 2.5 and Corollary 2.11) are essentially
well-known. The third one (Corollary 2.15) is new. In Section 3 we show
that the panharmonic measures and the harmonic measures are all mutually
equivalent (Theorem 3.2) and provide some corollaries, viz. we provide a
domination principle for the Dirichlet problem related to the Yukawa equa-
tion (Corollary 3.5) and analogs of theorems of Riesz—Riesz, Makarov and
Dahlberg for the panharmonic measures (Corollary 3.6). In section 4 we
consider the panharmonic measures on balls and prove an analogue of the
Gauss mean value theorem, or the average property, for the panharmonic
functions (Theorem 4.2) and as a corollary we obtain the Liouville theorem
for panharmonic functions (Corollary 4.5). Finally, in Section 5 we list some
open problems and avenues for further research.

2. YUKAWA EQUATION AND BROWNIAN MOTION

Let us first recall the celebrated connection between the harmonic measure
and the Brownian motion first noticed by Kakutani [16] in the 1940’s: Let W
be a n-dimensional standard Brownian motion for some n > 2. A domain
D C R" is regular if the Brownian motion does not dwell on its boundary;
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more precisely, D is regular if
P*[tpe =0l =1, forall z € 0D,
where P? is the probability measure under which P*[W(0) = z] =1 and
p = inf {t > 0; W (t) € D}

is the first hitting time of the Brownian motion in the set D¢. Then the
harmonic measure is the hitting measure:

(2.1) H*(D;dy) =P* [W(rp) € dy, 7p < o]

Theorem 2.5 below is a variant of the Kakutani connection (2.1). A
key ingredient in the variant is the following disintegration of the harmonic
measure on the time the associated Brownian motion hits the boundary 0D

2.2. Lemma. Let D CR"™ be a reqular domain and x € D. Then

H®(D;dy) = h*(D;dy,t) dt,
t=0
where
" " dP*
(2.3) h*(D;dy,t) =P* [W(rp) € dy | Tp = {] i [Tp < ]

1s the harmonic kernel.

Proof. First, we show the existence of the regular conditional distribution
(2.4) pi(dy|t) =P" [W(rp) €dy | 0 =1].

For this, we note that the random vector (W (7p),7p) can be considered
as a function from a space of continuous functions that are the Brownian
trajectories equipped with the metric

d(f,g) = i 2_THfl[T—LT) - gl[T—lyT)HOO'
T=1

For Brownian trajectories the metric d is almost surely finite due to the inde-
pendent increments of the Brownian motion and the Borel-Cantelli lemma.
Also, with the metric d, the space of Brownian paths is a Polish space. Now,
by Theorem A1.2 of [19] Polish spaces are Borel spaces. Consequently, for
any fixed € D, by Theorems 6.3 and 6.4 of [19], the probability kernel
(2.4) exist and is measurable with respect to t. Consequently, the harmonic
kernel is measurable with respect to t.

Second, we show that the distribution of the hitting time 7p is absolutely
continuous with respect to the Lebesgue measure. Let € > 0 be small
enough so that B = B(x,e) C D. Then 7p = 75 + (7p — 7). Now, the
distribution of 75 is absolutely continuous; see, e.g., the section of Bessel
processes in Borodin and Salminen [2]. Also, due to the rotation symmetry
of the Brownian motion, 7 and 7p — 7p are independent. Hence, by
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disintegration and independence, we obtain that

Pm[TDEdt] = Px[TBJr(TDfTB) Edt]

= / P*[t + (tp — 7B) € ds| T = t|P*[rp € di]
5=0

o0
— / [P’x[t + (TD — TB) € ds] Px[TB S dt]
s=0
= ¢"(t)P[rp € dt].
Thus, the distribution of 7p is absolutely continuous, when the distribution
of 7p is absolutely continuous.

Third, we show that the formula (2.3) holds. By disintegrating and con-
ditioning, and by using the continuity of the distribution of 7p, we obtain
that

P* [W(TD> edy,7p < OO]

_ / P* W (rp) € dy, 7 € di]
t=0

_ / P* [W(rp) € dy | mp = 8] P* [p € di]
t=0

_ / P* [W(rp) € dy | b = 1] = [rp < £] dt.
t=0 dt

The claim follows now from the Kakutani connection (2.1). O

2.5. Theorem. Let D C R" be a reqular domain and let f : 0D — R be
bounded. Then

(2.6 ulz) = B2 [e-‘fmﬂvv(m)); rp < 00

is a solution to the Yukawa equation Au = wu on D and u = f on
OD. Moreover, if u € C?(D) then (2.6) is the only solution to the Yukawa
equation.

As a consequence, the harmonic measure admits the representation

(2.7) Hﬁ(D;dy) :/
t=0

where h*(D;-,-) is the harmonic kernel defined in (2.3).

[e.e]

2
et h*(D;dy,t)dt,

Proof. The first paragraph of Theorem 2.5 is classical; see, e.g., [3] or [11].

To see the representation (2.7), we condition on {rp = t} and use the
law of total probability:

wz) = E° [e—“fm FOW () 70 < o

[e.9] 2
_ / ) / 5t 1 (D; dy, 1) dt
yedD t=0

_ / f(y) HE(D; dy).
yedD
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2.8. Remark. Unfortunate, even for very simple D the harmonic kernel (2.3)
is quite difficult to find out. The same is true for the regular conditional
distribution (2.4). For smooth boundaries 9D one can try the following
approach: If 0D is smooth, then the harmonic kernel h*(D;dy,t) is abso-
lutely continuous with respect to the Lebesgue measure dy. Indeed, define
p: Ry xR® = R4 by

1 [EdS
(2.9) p(t,z) = Wexp (— 5 ) :

Then p is the Brownian transition kernel:

p(t,x —y)dy =P* [W(t) € dy]

and, due to [14, Theorem 1] the harmonic kernel can be written as

1 dp

h*(D;dy,t) = 2.
Y

where n, is the inward normal at y € 0D and p(D;-,-) is the transition
density of a Brownian motion that is killed when it hits the boundary 0D,
which can be written as

(210)  p(D;t,x—y) =p(t,z —y) — E [p(t —1p,W(rp) —y); 70 < t}

due to [23, formula (3) on page 34].

Consequently, for C3 boundaries the harmonic measure admits a Pois-
son kernel representation and therefore, due to the representation (2.7) the
panharmonic measure also admits a Poisson kernel representation:

oo 2
HI(D;dy) = / e~ Tth®(D;dy,t) dt
t=0

2,10
= / e_%tf—p(D;t,:U—y)dydt
t=0

2 On,
= 1 > _ﬁt 8p )
N [2 /to © on, (Dst,z —y)dt| dy.

Theorem 2.5 gives an interpretation of the panharmonic measure in terms
of exponentially discounted Brownian motion. Let us give a second interpre-
tation in terms of exponentially killed Brownian motion. Indeed, exponential
discounting is closely related to exponential killing. The exponentially killed
Brownian motion W, is

Wu(t) = W) gy, > + Tliv,<ey
where 1 is a coffin state' and Y, is an independent exponential random

2
variable with mean 2/42, ie. P[Y, > t] = et Let
mh =1inf {t > 0; W,(t) € D}.

Then we have the following representation of the panharmonic measure:

1By convention f(1) =0 for all functions f.
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2.11. Corollary. Let D C R™ be a reqular domain. Then the panharmonic
measure admits the representation

(2.12) H;f(D;dy) =P* [WM(Tg) € dy; Tg < oo} .

Proof. Let f: 9D — R be bounded. Then, by Theorem 2.5 and the inde-
pendence of W and Y,

[tz
yeOD
= E* [e_u;TDf (W(tp));mp < 00

(0.9} 2
_ / 1w / V) € dy.rp €
ye =

_ / @) / P [Y, > ] P* [W(t) € dy, 7p € df]
yeoD t=0

- [ sw TB Y, > W) € dy,p € di]
yeOD t=0

- / fy) /OO P* [Wu(t) € dy,Tg € dt]
yedD t=0
= E* [f (Wu(rh));7h < o0] .

Since f was arbitrary, the claim follows. O

The two representations, Theorem 2.5 and Corollary 2.11, for the pan-
harmonic measures are, at least in spirit, classical. Now we give a third rep-
resentation for the panharmonic measure in terms of an escaping Brownian
motion. This representation is apparently new in spirit. The representation
is due to the following Duffin correspondence [9]: Let D C R™ be a regular
domain and let u : D — R. Let I C R be any open interval that contains
0. Set D = D x I and define 4 : D — R by

(2.13) u(z) = u(z, z) = u(z) cos(uT).
2.14. Theorem. The function u defined by (2.13) is harmonic on D if and
only if u is p-panharmonic on D.
Proof. Let us first show that D is regular if and only if D is regular. Let
W = (W, W) be (n+ 1)-dimensional Brownian motion. Denote

T = inf{t >0; W(t) € DY},

7 o= inf{t >0; W(t) € I},

7 = inf{t >0; W(t) € DY.

Note that for {7 = Z} to happen, & must be an endpoint of the interval I.
Then, by independence of W and W,

PTF=0] = P"*[r=0,7=0]
= P%[r = 0|P*[7 = 0]
= P*[r =0]
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since I is obviously regular. This shows that D is regular if and only if D
is regular.
Let us then show that u satisfies the Laplace equation if and only if u
satisfies the Yukawa equation. But this is straightforward calculus:
Azu(T) = Agg[u(z)cos(ui)]
2

= cos(uZ)Azu(x) + u(a:)@ cos(u)

= cos(uz)Ayu(z) — p? cos(u)

= cos(uz) (Agu(z) — pPu(z))
= 0

if and only if Aju(z) = p?u(z). O

Let W bea 1-dimensional standard Brownian motion that is independent
of W. Then W = (W,W) is a (n + 1)-dimensional standard Brownian
motion.

Now the idea how to use the Duffin correspondence is clear. We start
the Brownian particle W and count the boundary data on the side of the
cylinder D = D x I, if the Brownian motion does not escape the cylinder
from the bottom or from the top. In that case we count zero in the boundary.
Whence the name escaping Brownian motion.

2.15. Corollary. Let D C R™ be a reqular domain. Then the panharmonic
measure admits the representation

Hy(D;dy)
7 [cos (4l¥ (r0)) s W) € iy sup 170 < -]
t<tp 2:“’
(2.16) = /QN cos (pij) H*° <D X (—TF, 7r> ; dy ®dgj> .
- 20 2u
2p
Here we have chosen I = (—ﬁ, ﬁ) in the Duffin correspondence.

Proof. The claim follows by combining the Kakutani connection (2.1) with
the Duffin correspondence (2.13) by noticing that it is enough to inte-
grate over 9D x (—m/(2u),7/(2n)) since cos(ug) = 0 on the boundary

O(—=m/(2p),m/(2u))- O
2.17. Remark. Representation (2.16) is exceptionally well-suited for calcu-
lations of the panharmonic measures on upper half-spaces H'} = {z €

R™; 2, > 0}. Indeed, Duffin [9, Theorem 5] used it to calculate the Poisson
kernel representation for panharmonic measures in the dimension n = 2.
Similar calculations can be carried out for the general case n > 2, also.

3. EQUIVALENCE OF HARMONIC AND PANHARMONIC MEASURES

The probabilistic interpretation provided by Corollary 2.11 implies that
the harmonic measure and the panharmonic ones are equivalent. Indeed, the
harmonic measure counts the Brownian particles on the boundary and the
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panharmonic measures count the killed Brownian particles on the boundary.
But the killing happens with independent exponential random variables. So,
if the Brownian motion can reach the boundary with positive probability, so
can the killed Brownian motion; and vice versa. Also, it does not matter,
as far as the equivalence is concerned, what is the starting point of the
Brownian motion, killed or not.

Theorem 3.2 below makes the heuristics above precise. As corollaries of
Theorem 3.2 we obtain a domination principle for the Dirichlet problem
related to the Yukawa equation (Corollary 3.5) and analogs of theorems of
Riesz—Riesz, Makarov and Dahlberg for the panharmonic measures (Corol-
lary 3.6).

The same arguments that give the existence of the regular conditional law
(2.4) in the proof of Lemma 2.2 also give the existence and measurability of
the following conditional Radon-Nikodym derivative

L2

(31) Z5(Diy) =B [ 570 | W(rm) = .

3.2. Theorem. Let D be a regular domain. Then all the panharmonic
measures Hff(D; ), u > 0,2 € D, are mutually equivalent. The Radon-
Nikodym derivative of Hj;(D;-) with respect to H®(D;-) is the function
Z3(D;-) given by (5.1). Moreover Zj(D;y) is strictly decreasing in p, and
0<Zi(D;y) <1.

3.3. Remark. By Corollary 2.11 the Radon-Nikodym derivative Z(D;-) in
(3.1) can be interpreted as the probability that a Brownian motion killed
with intensity ©?/2, that would exit the domain D at y € 9D, survives to
the boundary 9D:

(3.4) Z(D;y) =P [Y, > 7mp [W(rD) = 9],

where Y}, is exponentially distributed random variable with mean 2/ ©? that
is independent of the Brownian motion W'.

Proof of Theorem 3.2. Let x,y € D and let Dy C D be a subdomain of
D such that x € Dy and y € 0Dg. Then, the Markov property of the
Brownian motion and the Kakutani connection (2.1), we have

H*(D; A) = / HY(D: AYH*(Dy; dy)
y€I Dy

for all measurable A C dD. This shows the harmonic measures H*(D;-),
x € D, are mutually equivalent.
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To see that Zj;(D; -) is the Radon-Nikodym derivative, note that, by the
representation (2.7) and the Kakutani connection (2.1),

oo 2
HY(D;dy) = / e~ Tt h*(D;dy, t) dt
t=0

oo 2
= / e~ 'TtPT [W(rp) € dy, 7p € di]
=0

_ /y w [e—’fw Wirp) - y] P (I (rp) € dy]

= / Z5(D;y) H*(D; dy).
yedD

Finally, the fact that 0 < Zj(D;-) <1 is obvious from the representation
(3.1). The fact that Z7(D;-) is strictly decreasing follows immediately from
the representation (3.4). O

From Theorem 3.2 we obtain immediately the following domination prin-
ciple for the Dirichlet problem related to panharmonic functions:

3.5. Corollary. Let D be a regular domain and let u, by p-panharmonic
and w, be v-panharmonic, respectively, on D with v < . Then, u, < uy,
on 0D implies u, < uy, on D.

Since domains with rectifiable boundary are regular, we obtain immedi-
ately from Theorem 3.2 the following analogs of the theorems of F. Riesz
and M. Riesz, Makarov and Dalhberg (see [24], [21] and [5], respectively).

3.6. Corollary. Let H*(D;-) be the s-dimensional Hausdorff measure on
oD.

(i) Let D C R? be a simply connected planar domain bounded by a
rectifiable curve. Then HZ(D;-) and H'(D;-) are equivalent for
all w>0and z € D.

(i) Let D C R? be a simply connected planar domain. If E C 0D and
H*(D; E) = 0 for some s < 1, then Hj(D;E) =0 for all 4 >0
and x € D. Moreover, H}(D;-) and H'(D;-) are singular for all
p>0and xeD ift>1.

(iii) Let D C R™ is a bounded Lipschitz domain. Then H;(D;-) and
H"Y(D;-) are equivalent for all 4 >0 and x € D.

4. THE AVERAGE PROPERTY FOR PANHARMONIC MEASURES AND
FUNCTIONS

By using the representation (2.7) one can calculate the panharmonic mea-
sures if one can calculate the corresponding harmonic kernels. Or, equiv-
alently, one can calculate the panharmonic measures if one can calculate
the corresponding harmonic measures and the Radon—Nikodym derivatives
given by (3.1).

The harmonic kernels for balls are calculated in [14]. We do not, how-
ever, present the general formula here. Instead, we confine ourselves in the
case where the center of the ball and the pole of the panharmonic measure
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coincide, and give the Gauss mean value theorem, or the average property,
for panharmonic measures. As a corollary we have the Liouville theorem for
the panharmonic measures.

Let D C R” be a regular domain. For the harmonic measure the Gauss
mean value theorem states that a function w : D — R is harmonic if and
only if for all balls By, (z,r) C D we have the average property

u(x) = / u(y) on(r; dy),
yEI By, (z,r)

where
I'(n/2)
271'”/2

is the uniform probability measure on the sphere 9B, (x,r).

on(r;dy) = ri dy

For the panharmonic measures the situation is similar to the harmonic
measure: the only difference is that the uniform probability measure has
to be replaced by a uniform sub-probability measure that depends on the
killing parameter u and the radius of the ball r. Indeed, denote

v

W

(4.1) Pn(p) = 2T (v + 1)1, (p)

p >0,

where v = (n —2)/2 and

L(@) = Z m!l(m :— v+1) <§>2m+y

m=0

is the modified Bessel function of the first kind of order v.

4.2. Theorem. Let D C R" be a regular domain and let > 0. A function
u: D — R is p-panharmonic if and only if it has the average property:

u(z) = o (ur) / uly) on(r; dy).

yEO By (z,r)

for all open balls By, (x,r) C D. Equivalently,
Hi (Bu(z,7); dy) = Yn(pr) on(r; dy).

4.3. Remark. Theorem 4.2 states that 1, (ur) is the Radon—Nikodym deriv-
ative:

2
bn(ur) = Z% (Ba(z,r);y) = E7 {e—‘;mw

w (TBn(x,r)) =Y -

Proof of Theorem 4.2. Note that we may assume that x = 0.

Denote by 7' the first hitting time of the Brownian motion W on the
boundary 0B, (0,r). Le., 7" is identical in law with the first hitting time
of the Bessel process with index v = (n — 2)/2 reaches the level r when it

starts from zero.

From the rotation symmetry of the Brownian motion it follows that the
hitting place is uniformly distributed on 9B, (0,7) for all hitting times ¢.
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Consequently, by Theorem 2.5 and the independence of the hitting time 7.
and place W (1)

B 2
HO (Bo(0,r):dy) = E° e*‘sz;W<rﬁ>edy]

= E° |e”

= E° E_QT’ZL:| on(r;dy).

The hitting time distributions for the Bessel process are well-known. By,
e.g., Wendel [25, Theorem 4],

E° [G_M;T?] N QVF(V(ﬁrl))VIV(MT).

The claim follows from this. O

4.4. Remark. The Radon-Nikodym derivative, or the ‘killing constant’,
¥n(p) is rather complicated. However, some of its properties are easy to
see:

i) 1 (p) is continuous in p,

(i1) ¢ (p) is strictly decreasing in p,
(iii) Yn(p) — 0 as u — oo,
(iv) n(n)
(v) ¥n(n)

—
=

The items (i)—(iv) are clear since ¥, (u) is the probability that an exponen-
tially killed Brownian motion started from the origin with killing intensity
u?/2 is not killed before it hits the boundary of the umit ball. A non-
probabilistic argument for (i)—(iv) is to note that

n

Un(pr) = E [6_”22”} :

and use the monotone convergence. The item (v) is somewhat surprising:
the higher the dimension n, the more likely it is for the killed Brownian
motion to survive to the boundary of the unit ball. A possible intuitive
explanation is that the higher the dimension the more transitive the unit
ball is combined with the remarkable result by Ciesielski and Taylor [4]
that probability distribution for the total time spent in a ball by (n + 2)-
dimensional Brownian motion is the same as the probability distribution of
the hitting time of n-dimensional Brownian motion on the boundary of the
ball.
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1 2 3 4 5 6 7
Function v,, with (from bottom to top) n = 2,3,4,10.

4.5. Corollary. Let u be panharmonic on the entire space R™. If u is
bounded, then u is constant.

Proof. By Theorem 4.2
|u(z) — u(0)]

() /8 o ) (i) ) /8 w(y) on(r;dy)

B, (0,r)

=< +

() /8 ) oalrsd)

< 20 (pr)||ull,
which tends to 0 as » — oo by property (iii) or Remark 4.4. O

() /8 o H) )

5. Di1scussioN AND OPEN PROBLEMS
Let us list some open problems and avenues for further studies:

I. Schrédinger equation. The Yukawa equation (1.1) is a special case of
the Schrodinger equation

(5.1) Au(z) = q(z)u(x).

The Schrodinger equation and its connection to the Brownian motion has
been studied e.g. by Chung and Zhao [3]. Our investigation here can be
seen as a special case of the topic of their studies. For example, analogs
of Theorem 2.5 and Corollary 2.11 are known for the Schrédinger equa-
tion. However, the Duffin correspondence (2.13) and Corollary 2.15 are not
known. Moreover, the results given here cannot easily be calculated for the
Schrédinger equation. The problem is that the prospective Radon—Nikodym
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derivate of the measure associated with the solutions of the Schrodinger
equation with respect to the harmonic measure take the form

(5.2) Zg(Dyy) = E [eq(1p)|W (1p) = 9] ,
where L

eq(t) =e2 Jo a(W(s)) ds
is the so-called Feynman-Kac functional. Thus, we see that in order to
calculate the Radon—Nikodym derivative we need to know the joint density of
the Feynman—Kac functional and the Brownian motion when the Brownian
motion hits the boundary 9D. If ¢ is constant, i.e., we have either the
Yukawa equation or the Helmholtz equation, then it is enough to know the
joint distribution of the hitting time and place of the Brownian motion on
the boundary dD. These distributions are well-studied, see e.g. [2, 4, 8, 14,
17, 20], but few joint distributions involving the Feynman—Kac functionals
are known.

It would be interesting to calculate the Radon-Nikodym derivative (5.2)
for, say, balls and half-spaces, and thus reproduce the related results of this
paper to the Schrodinger equation.

II. Helmholtz equation. In addition to the Yukawa equation, the other
important special case of the Schrédinger equation (5.1) is the Helmholtz
equation,

(5.3) Au(z) = —du(z), A >0.

It is possible to provide a Duffin correspondence for the Helmholtz equation
also. Indeed, e.g., setting

u(z) = u(z, ) = u(x) cosh(\7)

provides a correspondence. Thus, it is reasonable to assume that our results
can be extended to the Helmholtz equation (5.3) for domains that are small
enough with respect to the creation parameter A so that the associated
Feynman—Kac functional is finite:

(5.4) E* [eém} < o0.

It would be interesting to see if one can reproduce the results of this paper
to the Helmholtz equation (5.3) for domains satisfying (5.4).

ITI. Panharmonic Measures on Balls. Let B, = B,(0,1) be the n-
dimensional unit ball. The harmonic measure has a nice tractable formula
for (unit) balls:

1—|a*
‘iL‘ _ y‘n on(1;dy)

To have a tractable formula for the panharmonic measures on balls we need
a tractable formula for the exit time and place distribution

P* [W(TBH) S dy, B, € dt].
There is a formula for this joint distribution due to Hsu [14]. The formula
is rather complicated, so the calculations for the panharmonic measures

Hj(Bp;dy) may turn out to be rather demanding and it is unclear if a
tractable formula can be found.

H” (Bm dy) =
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IV. Kelvin Transformation. The Kelvin transformation is
Ky [u)(z) = [2]* "u(a*),
where
z/|z|?, if z # 0,00,
xt = 0, ifz=o0,
oo, ifx=0.
The Kelvin transformation preserves the harmonic functions and it can be

used, e.g., to calculate harmonic measures for balls from the harmonic mea-
sures for half-spaces, and vice versa.

It would be interesting to find out a similar transformations K, ,, for the
panharmonic functions. In principle, this should be possible by using the
Radon-Nikodym derivative (3.1).

V. Simulation. Theorem 2.5, Corollary 2.11 and Corollary 2.15 give three
different ways to simulate the panharmonic measures. It would be interest-
ing to investigate their relative strengths and weaknesses in different domains
(where explicit tractable formulas are difficult or impossible to obtain).

Trivial simulation is possible, but that would require simulating the tra-
jectories with very fine time-mesh to ensure that the Brownian motion has
not crossed the boundary between the simulated time-steps. To overcome
this problem, Muller [22] introduced the random walk on spheres (WOS)
algorithm that can be used to simulate the Laplace equation. The WOS
algorithm generates spheres inside the domain and lets the Brownian mo-
tion reach the boundary of the domain in those spheres. Unfortunately, the
classical WOS cannot be used to simulate the Yukawa equation in conjunc-
tion with Theorem 2.5, since it does not provide the time it takes for the
Brownian motion to reach the boundary. Recently, this problem has been
solved in [6, 7] where a moving walk on spheres (WOMS) algorithm was
presented. This algorithm generates spheres inside the domain that let the
Brownian motion reach the boundary just like the WOS algorithm, but the
size of the spheres move in time. This lets the algorithm to simulate not
only the exit position but also the exit time of the Brownian motion. The
classical WOS can be used in conjunction with Corollary 2.15 since in this
case the exit time is not needed. This provides an interesting connection
between the WOS and WOMS algorithms.

Finally, let us note that in the simulations one would like to use impor-
tance sampling in order to have more Brownian paths in the target set in the
boundary, and thus speeding up the convergence of the simulation. To use
importance sampling in the three different simulation schemes provided by
Theorem 2.5, Corollary 2.11 and Corollary 2.15, respectively, one must have
a Girsanov-type theorem for the killed, discounted and escaping Brownian
motion, respectively. This in turn would involve knowing the hitting time
and place distribution of a Brownian motion with drift, which is studied e.g.
in Yin and Wang [26].
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