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ABsTRACT. In the classical Black & Scholes pricing model the randomness
of the stock price is due to Brownian motion W. It has been suggested that
one should replace the standard Brownian motion by a fractional Brownian
motion Z. It is known that this will introduce some problems, e.g. related
to arbitrage. We give a survey of some recent work in connection to this
problem. We end by giving a suggestion how to price European options in
this fractional pricing model.
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1. CLASSICAL BLACK & SCHOLES PRICING MODEL

Recall the classical Black & Scholes pricing model with two assets, the riskless
bond and the risky stock. The randomness of the stock price S is due to Brow-
nian motion W and the bond price B is deterministic with a constant interest
rate. The dynamics of the prices are

dS; = Sy(pdt+odWy),
dBt = BtTdt

with By =1 and Sy is a positive constant. The parameters p € R, r,0 > 0 are
supposed to be known. Traditionally one assumes that there are no dividends,
no transaction costs, same interest rate r for lending and saving on the bond
and no limitations on short-selling of the stock.

Note that in what follows one can easily replace the constants p, r, and o
with deterministic functions. We consider the constant case only for notational
convenience. If, however, one allows stochasticity in the parameters r or o the
situation changes dramatically.

1.1. Completeness. As well-known the Black & Scholes model is complete (and
free of arbitrage in the class of so-called admissible strategies to be considered
later). This is due to the fact that there exists a unique risk neutral measure
Q, equivalent to the real world measure P, such that the discounted stock price
process S/B is a martingale under this measure. The measure Q is identified
by the Girsanov theorem (cf. Shiryaev [24, p. 673]) as

Q| w _ pro 1fp-r\?
P F = exp( S Wy 5\ t].
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Here %V is the o -algebra generated by the Brownian motion W, or equiva-
lently by the stock price S, upto time ¢ < T. The constant £== is often referred
to as the market price of risk.

The fair price Cr(f) of a claim f on the stock price S expiring at time T
is given by

() Crlf) = Baz-

The fairness of the price (1.1) follows from a hedging argument. Let m =
(ﬂ't)te[O’T} be a portfolio process, i.e. m; denotes the number of the shares of
the stock owned by an investor a time ¢. Assume that 7 is self-financing which
is to say that the value process V = V7™ of the portfolio 7 satisfies

(12) dVvt == WtdSt-l-(‘/t—ﬂ'tSt) dBt

It follows that the discounted value process V/B is a local Q-martingale. As-
sume that it is a (proper) Q-martingale, i.e. the corresponding portfolio 7 is
admissible. Thus, if V' replicates the claim f, we must have

Vi _ S pw
B = EQ[BT% ]

This shows that (1.1) is Vj, the capital needed to hedge, or replicate, the claim
f- Moreover, the hedging portfolio = can be constructed by using the Ito—Clark-
Ocone formula. Indeed, the martingale representation theorem (cf. Shiryaev [24,
p. 257]) tells us that

V; ¢ ~
Vi _ Vo+/vsdws,
0

By
where < is a predictable stochastic process and W is a Brownian motion under
the measure Q, i.e. (by the Girsanov theorem)

~ ILL—’]“

Wy = Wi+ t.

Plugging in the self-financing condition (1.2) we obtain

Vi bSy
— = W — dWj,.
B, 0+ 0/0 Ts B, s
Thus,
By
T = —.
t %oSt

The Ito-Clark—Ocone formula (cf. Karatzas and Shreve [10, p. 369]) gives us the
process 7y in terms of the so-called Malliavin derivative D, as

_ S gw
Yt = EQ[DtBTyt :|
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Putting everything together we have a formula for the hedging portfolio

Bt w
1.3 = Eq|D:f|.%," | .
( ) T BTUSt Q[ tf‘ t ]

1.2. Arbitrage. Let us now consider the arbitrage in the Black & Scholes pricing
model. If the portfolio, or strategy, m is admissible then the corresponding value
process is a martingale. Hence, if we start with zero capital and assume that

Vi > 0 then
Vr Vr
0 = ‘/[] = EQ—BT = EQ—BT].{VT>[]}.

So, we must have Q(Vp > 0) = 0. Since Q is equivalent to P it follows that
P(Vr > 0) = 0. Therefore, there is no free lunch with admissible strategies.

One should note that sometimes the word admissible is used in the sense that
V' is non-negative. Also, if the process V/B is bounded from below by a non-
random constant, depending possibly on 7, then the portfolio # is called tame.
In any of these cases there are no arbitrage opportunities.

One can construct arbitrage opportunities with the so-called doubling strategy,
however. The following example is from Karatzas and Shreve [10, p. 9]. Let
r=u =0 and o = 1. Consider the stochastic integral

A
I, = dWs.
! /0 T-s W

The process I is a martingale with the bracket

= ()

The time-changed stochastic integral

Iy = Ip qe-t

has the bracket (I); =¢. Thus, it is a Brownian motion. Consequently,

limsupl; = limsupl; = oo.
t—T t—o0

Therefore, for any « > 0
7o = Inf{t€[0,T): ;=a} AT
satisfies 7, € (0,7) almost surely. Let us define a self-financing portfolio = as

1

1.4 — 1D
( ) T St\/m (0, a]()

Then the value process V' satisfies

t
Vi = /WsSdes = Iinr,.
0



4 T. SOTTINEN AND E. VALKEILA

So, Vi = a almost surely. Since Vj = 0 we have constructed arbitrage. It
should be noted that the strategy (1.4) is not bounded from below.

1.3. Problems. The Black & Scholes pricing model is very satisfactory from the
theoretical point of view. Claims can be priced fairly and (in principle) one can
even calculate the corresponding hedging portfolios by using the formula (1.3).
Also, there are no arbitrage opportunities is the class of admissible portfolios.
However, there is a problem with this model. It stipulates that the log-returns

Ry, = log—o—

Sy,
Stk—l

2
o
= (u— 7)(% —tg-1) +o(Wy, — Wi, )

are independent normal random variables.

The dependence structure of the log-returns have been studied using the so-
called Hurst parameter H. In the uncorrelated case one should have H = %
However, many studies have indicated Hurst indices H> % E.g. for the daily
exchange rate between USD and JPY between January 1972 and December 1990
the estimated Hurst index is H = 0.642. For references to these studies see e.g.
Peters [19] and Shiryaev [24].

There are also empirical studies indicating that the log-returns are not normal.
This is more evident, if the observation intervals ¢, — t;_; are short.

To overcome with the first critical point, the independence assumption of the
log-returns, it has been proposed that one should replace the Brownian motion by
a fractional Brownian motion which captures the long-range dependency property
measured by H. The first one to suggest this was Mandelbrot, already in late
sixties (cf. Mandelbrot [14]).

The second critical point, the non-normality of log-returns, will be completely
ignored in what follows.

2. LONG-RANGE DEPENDENCE AND SELF-SIMILARITY

In this section we consider briefly the concepts of statistical long-range depen-
dence and self-similarity. For a detailed discussion we refer to Beran [1].

2.1. Long-range dependence. Consider a stationary sequence X = (Xj)gen-
Such a sequence is said to exhibit the statistical long-range dependency property
if its autocorrelation function p satisfies

(2.1) lim )
k—oo Cpk_a

for some constants ¢, and a € (0,1). This is to say that the dependence between
X and Xjy, decays slowly as m tends to infinity. In particular,

(2.2) > plk) = oo

k=0
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Actually, sometimes one defines the long-range dependence by the property (2.2)
instead of (2.1).

There is also a definition involving the spectral density. Suppose that f is the
spectral density of X. If there exists constants ¢y and € (0,1) such that

)
A—=0 Cf|)\|7f8

(2.3) 1,

then X exhibits the statistical long-range dependency property.

The definitions (2.1) and (2.3) are connected in the following way: let H €
(3,1). Then o =2—2H and 8 =2H — 1 (cf. Beran [1, p. 43]).

2.2. Self-similarity. Self-similar processes were introduced by Kolmogorov [12]
as models for turbulence in the early forties. In the late sixties Mandelbrot and
Van Ness [15] made the concept known among the statisticians.

A centered stochastic process process X = (Xt)te[o,T} is said to be statistically
self-similar with Hurst exponent H if

d , _
(Xthiepr) = (@ " Xa)iepom

for all @ > 0. Here d denotes the equivalence in distribution.

If, in addition, the process X is square integrable with stationary increments
it follows that

Var X,

(2.4) Cov(Xy, X,) = —

(27 4 2 — |t — 527

Note that if H = 0 then one must have X = 0 identically. The case H =1
is hardly interesting, since it implies Corr(X;, X;) = 1. The cases H < 0 and
H > 1 are impossible. It the former case Var Xy = oc. In the latter case one
would have Corr(X;, X;) > 1 given ¢t big enough. Hence, one assumes that
H € (0,1) in the equation (2.4) above.

The connection to long-range dependence is then the following. Let X be cen-
tered square integrable process with stationary increments. Then the increments
Y, := X — Xp_1 are stationary with autocorrelation function

p(k) = % ((k+1)27 — 2827 + (k — 1)?7).

Therefore, as k tends to infinity one has
p(k) ~ H(2H —1)k*1-2,

1.e.

: p(k)
o HeH - )R b
Thus, if H € (3,1) the increments (Yj)gen exhibit the long-range dependency
property with o =2 —2H and ¢, = H(2H —1).
Note that by Kolmogorov’s criterion the process X admits a version with
continuous sample paths in the case H € (%, 1).
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Finally, one should note that there are centered processes with stationary and
independent increments having the statistical self-similarity property with index
H > %, e.g. the symmetric «a-stable Lévy processes with H = é These are
processes with infinite variance, however. For details we refer to Samorodnitsky

and Taqqu [22]

3. FRACTIONAL BROWNIAN MOTION

The fractional Brownian motion Z = Z¥ is a continuous and centered Gauss-
ian process with the covariance function

1
EZ, 7, = §(t2H+52H—|t—s|2H).

This is a valid covariance function for a Gaussian process (cf. Samorodnitsky and
Taqqu [22, p. 106]). So, by virtue of (2.4) the fractional Brownian motion is the
(upto a multiplicative constant) unique centered Gaussian process with stationary
increments having the self-similarity property with Hurst index H € (0,1).

The fractional Brownian motion was originally defined and studied by Kol-
mogorov [11] within a Hilbert space framework where it was called a Wiener
helix. It was further studied by Yaglom [27]. The name “fractional Brownian
motion” comes from Mandelbrot and Van Ness [15]. They defined it as a stochas-
tic integral with respect to the standard Brownian motion:

(3.1) 7 = /t (2, ) AWV,

— o0

with a certain deterministic kernel k£ depending on H.

If H= % then the fractional Brownian motion is just a standard Brownian
motion. In the case H > % the fractional Brownian motion exhibits the statisti-
cal long-range dependency property as shown in the previous section. Hence, in
financial modeling one usually assumes that H € (%, 1) (see, however, Shiryaev

[24, p. 347] and references therein).

In addition to the Mandelbrot and Van Ness integral representation (3.1) of
the fractional Brownian motion there exists a similar representation where the
integration is taken over the finite interval [0,¢], viz.

t
(32) Zt — / Z(t’S) dWs’
0
where
1 t
2ts) = o [(D)"TT -9 - (H - %)s%_H/ u=% (0 — 5)7=3 du
S

The ¢y is a certain normalizing constant depending on H. The representation
(3.2) is canonical in the sense that the filtrations generated by Z and W coincide.
For the proof of the representation see Norros, Valkeila and Virtamo [18].
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So far everything is true for H € (0,1). For the rest of the paper we assume
that H > %, however (although some results are true for the case H € (0, 1)
also).

To define a fractional analogue of the classical Black & Scholes pricing model
we need to know how to integrate with respect to the fractional Brownian motion
as this connected to hedging. Also, we need to have the Girsanov theorem for the
fractional Brownian motion to consider an analogue of the equivalent martingale
measure. The rest of the section is dedicated to these technical issues.

3.1. p-variation and integration. To define a (pathwise) stochastic integral
with respect to the fractional Brownian motion we consider the so-called p-
variation index of a stochastic process. For details of this approach we refer to
Dudley and Norvaisa [4].

Let Kk = (0 =1 <t; < -+ <t, =T) be a finite partition of the interval
[0,7] and for a stochastic process X set

n
SP(Xv K) = Z |th - thfl‘p'
k=1

The p -variation v, of a stochastic process X over an interval [0,77] is defined
as
vp(X,[0,T]) := sups,(X,kK)
K

where £ is a finite partition of the interval [0,7T]. The index of p-variation v
of a process X is then

v(X,[0,T]) = inf{p > 0:v,(X,[0,T]) < oo}

if the set above is non-empty and oo otherwise.
For fractional Brownian motion Z with index H € (%, 1) one has

(3.3) o(Z) = v(Z,[0,T]) = %

For the proof we refer to Dudley and Norvaiga [4, p. 48].

For semimartingales M one must have v(M) € [0,1] U {2} (cf. Dudley and
Norvaisa [4, p. 46]). Thus, the fractional Brownian motion is not a semimartin-
gale when H # % So, one cannot use the Ito theory to define stochastic integrals
with respect to it. However, one can define a pathwise, i.e. w-by-w, integrals as
a refinement of the Riemann—Stieltjes integrals using the p-variation.

The following change of variables formula for the pathwise integration with
respect to the fractional Brownian motion plays a central role in what follows.

Suppose that f € C1([0,T]) then

(3.4) f(Z) - £(Z,) = / 1(Z.) 7,

Note the absence of the “Ito correction term”, or the quadratic variation term.
Also, one should note that the formula (3.4) is valid in the all the different
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pathwise approaches to define the stochastic integral (cf. Lin [13]|, Follmer [6],
Zahle [28]).

3.2. Girsanov theorem. We recall the Girsanov theorem for fractional Brown-
ian motion. For details we refer to Norros, Valkeila and Virtamo [18] and Molchan
[17].

Define the so-called fundamental martingale M = M by

t
M, = 02/ s%*H(t — 3)%*H dZ;

0
Now M is a Gaussian martingale with the angle bracket

<M>t = 63t272H.

Here co and c3 are certain constants depending on H.

Let p be a deterministic function and define a measure Q = Q? by

85) 257 = ew( [ srarc— 3 [ Fera0n,)

— exp </Otp(s) M, — 303(2 — 9H) /Ot 2(s)s' 2 ds) .

Then the process

Z—/O.p(t)dt

is a fractional Brownian motion under Q and under Q only (given that Q is
equivalent to P).

3.3. Prediction. We have the following prediction formula for the fractional
Brownian motion:

t
(3.6) Zry = E[ZT\ﬂtZ] = Zt-l-/ Ur(t,s)dZs,
0
where ) )
. 1 _1 _1
Ul s) = sin(m(H — 5))3%7H /T w2 (u — )72 du
vy ' u— 8

The formula (3.6) is due to Gripenberg and Norros [7].
There is also an alternative form

(3.7) Iry = /OZ(T,S)dWS.

This is a direct consequence of (3.2). It provides us the formula for the bracket
of Z7|. needed later:

(Zp ) = /Oz(T,s)st.
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Since the function z(T,-) is positive on (0,7) for all T > 0 the relation (3.7)
can be inverted. This provides us the following representation for the Brownian

motion W : .
1 .
W, = dZ
t A P (T, S) T‘S’

for ¢t <T' . This shows that

Z.

(38) ytz - th - ﬂt
for 0 <t<T.

4. FRACTIONAL PRICING MODEL

Let us modify the classical Black & Scholes model. As a source of randomness
replace the Brownian motion W with the fractional one Z with index H € (%, 1)
and consider the following dynamics for the stock price S :

(41) dSt = St (u dt + O'dZt) .

The solution to the stochastic differential equation (4.1) is called the geometric
fractional Brownian motion.

So, the fractional model adds one parameter, the Hurst index H, to the classi-
cal Black & Scholes model to capture the long-range dependence of the log-returns
of the stock. Asin the classical case one assumes that the values of the parameters
r, u, o and H are known.

Since, by virtue of the property (3.3), the fractional Brownian motion is not a
semimartingale when H # % we are faced with the following problems.

(a) How to define the stochastic integral (4.1)7

(b) Is the modified pricing model free of arbitrage?

(c) Ts the modified pricing model complete, i.e. is there a fractional analogue
of the Ito—Clark—Ocone formula?

For the problem (a) there are two possible definitions, viz. the pathwise defini-
tion introduced earlier and a definition based on generalized stochastic processes.

The next section considers briefly the generalized solutions. The rest of the
paper considers the pathwise solutions.

4.1. Generalized geometric fractional Brownian motion. The generalized
solution to (4.1) is based on white noise analysis and the so-called Wick products
(cf. Duncan, Hu and Pasic-Duncan [5] and for financial application Hu and
(Oksendal [9]). The solution is

2
Sy = Spexp <,ut — %tQH + oZt> .

With generalized solutions the fractional pricing model is free of arbitrage and
complete. Thus, the problems (b) and (c) are solved.

Although this formal result is satisfactory from the theoretical point of view,
there are some problems. Firstly, the functional analytic approach used makes
it impossible to consider the integrals as almost sure limits of the paths of the
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process under certain partitions of the interval. It should be noted that this
interpretation is possible in the case of Brownian motion. Secondly, and more
subjectively, one wants to model the path properties of the stock price. The
generalized approach does not fit well to this aim since the path properties play
no central role in the integrals.

4.2. Arbitrage in fractional models. By the change of variables formula (3.4)
the pathwise solution to (4.1) is

Sy = Spexp(ut+oZ;).

With pathwise solutions to (4.1) and with continuous-time trading one can do
arbitrage in the fractional pricing model.

Probably the first one to show that there exist arbitrage opportunities with
fractional Brownian motion (although he did not consider the geometric fractional
Brownian motion but a linear one) was Rogers [20]. His strategy consisted of
combinations of buy and hold strategies. The construction was rather implicit and
relied heavily on the self-similarity of fractional Brownian motion and information
from the whole interval (—oo,t].

Shiryaev [23]| (see also Dasgupta [3]|) constructed an arbitrage opportunity
explicitly by using the notion of pathwise stochastic integral. He considered the
case p=r, o =1 and constructed a portfolio 7 = (7(B),n(S)) with

w(B); = 1—e,
n(8)y = 2(e” —1).
The associated value process V' satisfies
dVv, = 2e"tt2 (eZt - 1) dZ;, + (eZ’ - 1)2re” dt

as easily seen by the change of variables formula (3.4). Hence, the portfolio is
self-financing. There is arbitrage here, however. To see this just note that

Vi = €7 (eZT - 1)2.

In contrast to the arbitrage portfolio (1.4) constructed for the classical model the
portfolio m is admissible in the sense that it is non-negative (there can be no
martingale characterization here).

Recently, Cheridito [2] has constructed an arbitrage opportunity by using the
% -variation property (3.3) of the paths of the fractional Brownian motion. The
construction was not based on continuous trading but on a finite number of
trading points ¢i,...,%, € [0,T]. The number of the points depend on the path,
however. The value process of his portfolio was bounded from below by an
arbitrary negative constant (i.e. it was tame). It is worthwhile to notice that
Cheridito’s construction was based solely on the fact that the p-variation of the
paths is not 2. Hence it goes beyond the fractional Brownian motion.

All the arbitrage opportunities mentioned above, save that of Rogers’ [20],
apply also to the case where the source of randomness is a process with bounded
variation.
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Let us note that the arbitrage arises in a modified binomial approximation.
Indeed, construct a weighted random walk Z(™ using the kernel z in (3.2) by

and .
2M(t,s) = n/lz(%,u)du.

is a piecewise constant approximation to z(¢,-). Now, if
m _ om (T (n)
ASY = S5 (”E + aAZJ%)

is the stock price dynamics at time k% one obtains an analogue of the Cox—Ross—
Rubinstein binomial approximation to Black & Scholes model. This fractional
binomial, or binary, model exhibits arbitrage opportunities given that the level
of approximation, %, is big enough (depending on H, but finite). For details
and explicit construction of arbitrage we refer to Sottinen [25].

So, the classical notion of admissibility is not enough to exclude arbitrage
opportunities in the fractional pricing model. If one restricts trading so that there
must be some non-random minimal time interval between successive transactions
(which may be random) then there is no arbitrage (cf. Cheridito [2]). This is very
restrictive, however. Indeed, there are many claims which cannot be replicated
with these strategies. At the present moment it is not clear what should be the
notion of admissibility in the fractional pricing model. For some discussion (and
yet another construction of arbitrage) see Salopek [21].

4.3. European options in fractional models. In spite of the lack of the equiv-
alent martingale measure one can compute the prices of European options in the
pathwise fractional model using a so-called weak pricing principle (cf. Valkeila
[26]). These prices coincide with the ones obtained in the generalized model (cf.
Hu and Oksendal [9]).

The risk neutral measure Q, equivalent to the real world measure P, in the
classical Black & Scholes pricing model was characterized by the fact that the
discounted stock price S/B is a martingale. In particular, the average growth
of the stock is the growth of the bond under Q :

(4.2) Eap = S

In the fractional setting we cannot hope to have the martingale property. How-
ever, the Girsanov theorem for fractional Brownian motion provides us a unique
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probability measure, equivalent to P, such that (4.2) holds. We shall call that
measure Q the average risk neutral measure.

The equation (4.2) holds if the process

M—Tt_l_thH

(4.3) (t,w) — Zt(w)+ o 5

is the fractional Brownian motion under Q. By the Girsanov theorem the average
risk neutral measure Q is therefore characterized by

d _ t
log —Q ﬁ"tz = —th + JH/ s2H=1q M,
dP ag 0

1 . 2
—5ea(2 — 2H) <<u> 272 (=)t 4 02t2H> .
ag

The discounted stock price process S/B is not a Q-martingale. Indeed,
by using the prediction theorem (3.6) we can calculate conditional expectations
under the measure Q :

St Sy
i) - g

where

K(T,t) = (r—u)/o U (t,s)ds

o2 t
+—= < 2H —/ 2(T, s)? ds)
2 0

t
+O’/ \I/T(t, S) dZs
0

t
—o? / sPH1w(t, s) ds.
0

This is consistent with the classical case with Brownian motion W in the sense
that K = Ky — 0 as H | 3.

The computation of the conditional expectations is based on the following
identity:

02 A
(4.4) S, = Spexp (uT — 7T2H> E(oZy)T,

where

2t
é’(UZT‘.)t = exp(aZTt—%/O z(T,s)2ds>

is the stochastic exponential.
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For a European option f = f(S7) we then define the average expectation price
Cr(f) to be

(45) on(f) = Bl

This is analogous to the classical Black & Scholes case, i.e. formula (1.1). As
in the classical Black & Scholes model we want to give an expression to the
discounted value process V/B. So, we look at

f(S 1% V| Sp.
a7 ] = malg ] = el

where
St = g(JZT\')t'
Note that the change of filtration is justified by (3.8).

It seems possible to calculate the hedging portfolios with ST‘. explicitly as non-
anticipative functionals of the path of the stock price process S. The strategies
will not be of the Markov type but rather of the form

m = K(T.t, (Ss)se[o,t})'

The calculations are expected to be rather tedious, however.

Since (4.3) is a fractional Brownian motion under Q we can express the for-
mula (4.5) as

orif) = e "= ["

Finally, let us state the celebrated Black & Scholes formula for a European
call-option with strike price K in the fractional case:

2 2
f (SO exp(oyTH +rT — %T2H>> e T dy.

Cr((St— K)t) = So®(y1) — Ke " ®(ys),
where

log % +rT + %QTQH
oTH ’

y1 = yi(H) =

log % +rT — %QTQH
oTH '

yo = p(H) =

Note that the price converges to the classical Black & Scholes price for European
call-option as H | %

5. BEYOND FRACTIONAIL PRICING MODEL

To overcome the shortcomings of the fractional pricing model some remedies
have been proposed. We shall briefly consider two approaches, viz. regularization
procedures and mixed models.
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5.1. Regularization. The regularization procedure to the fractional Brownian
motion was suggested by Rogers [20] and was further studied by Cheridito [2].
For details we refer to the latter.

Recall the Mandelbrot and Van Ness integral representation (3.1) for the frac-
tional Brownian motion. One can regularize the fractional Brownian motion in
the following way. Replace the kernel k in (3.1) by a “regularized” kernel k so
that the Gaussian process

~ t ~
Zy = / k(t,s) dW;

— o0

has stationary increments and satisfies the following two objectives.

(a) The process Z is close to the original fractional Brownian motion Z in
the sense that

Cov(Z;,Zs) =~ COV(Zt,Zs)

for all ¢,s € [0,T]. )
(b) The law of the process Z is equivalent to the law of the standard Brow-
nian motion.

If the objective (a) is satisfied then the process Z is a reasonable replacement to
the fractional Brownian motion from the statistical point of view. The objective
(b) gives us the unique risk neutral, or pricing, measure Q of the classical Black
& Scholes pricing model. In particular, by the Hitsuda representation theorem
(cf. Hitsuda [8]), the objective (b) is satisfied (under the assumption of stationary
increments) if and only if

t s
Z; = Wt-i-/ / P(s —u)dW, ds
—00 J—c0

for some square integrable kernel 1.

While it is possible to construct suitable kernels 1 = 1. such that the objective
(a) is satisfied with any precision & > 0 there is a problem. The option prices
introduced by the kernel 1 depend heavily on the form of the kernel while the
precision e does not play a particularly significant role. It seems difficult to
argue any specific form for the kernel 1, however.

5.2. Mixed models. Consider a mixed Brownian—Fractional Brownian model
for the stock price, viz.

(51) dSt = St (Mdt+€th+UdZt),

where W is a standard Brownian motion and Z is a fractional one.

Cheridito [2, p. 73] has shown that the mixed process eW +0Z is equivalent in
law to eW whenever W and Z are independent and the index of self-similarity
H satisfies H € (%, 1). Hence, this model is similar to the regularized one con-
sidered in the previous subsection in the sense that we can now make use of the
unique risk neutral measure Q. Also, one can make the process eW + oZ to
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be as close as one wants to the fractional Brownian motion oZ in the statistical
sense by choosing a small enough e.

Mishura and Valkeila [16] also considered a mixed model of the type (5.1). The
standard Brownian motion and the fractional one were not independent in their
case, however. Indeed, the fractional Brownian motion was constructed from the
standard Brownian motion by the formula

-

t t s
Zy = ctH_2/ (t—s)H_ngds—c'/ SH_S/ (s—u)H_%Mududs,
0 0 0
where ¢ and ¢ are certain constants depending on H and
t 1
M, = / sz Hdw,.
0

They showed that there is no arbitrage in this model within the class on Markov
strategies. Although this seems to be a very weak form of no-arbitrage note that
the arbitrage opportunities constructed for the fractional pricing model [2, 3, 21,
23| were all of the Markov type.
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