
FRACTIONAL BROWNIAN MOTION AS A MODEL INFINANCET. SOTTINEN AND E. VALKEILAAbstrat. In the lassial Blak & Sholes priing model the randomnessof the stok prie is due to Brownian motion W: It has been suggested thatone should replae the standard Brownian motion by a frational Brownianmotion Z: It is known that this will introdue some problems, e.g. relatedto arbitrage. We give a survey of some reent work in onnetion to thisproblem. We end by giving a suggestion how to prie European options inthis frational priing model.JEL Classi�ation: C60, G10Mathematis Subjet Classi�ation (1991): 60F17, 60G15, 90A091. Classial Blak & Sholes priing modelReall the lassial Blak & Sholes priing model with two assets, the risklessbond and the risky stok. The randomness of the stok prie S is due to Brow-nian motion W and the bond prie B is deterministi with a onstant interestrate. The dynamis of the pries aredSt = St (�dt+ � dWt) ;dBt = Btr dtwith B0 = 1 and S0 is a positive onstant. The parameters � 2 R , r; � > 0 aresupposed to be known. Traditionally one assumes that there are no dividends,no transation osts, same interest rate r for lending and saving on the bondand no limitations on short-selling of the stok.Note that in what follows one an easily replae the onstants �; r; and �with deterministi funtions. We onsider the onstant ase only for notationalonveniene. If, however, one allows stohastiity in the parameters r or � thesituation hanges dramatially.1.1. Completeness. As well-known the Blak & Sholes model is omplete (andfree of arbitrage in the lass of so-alled admissible strategies to be onsideredlater). This is due to the fat that there exists a unique risk neutral measureQ; equivalent to the real world measure P; suh that the disounted stok prieproess S=B is a martingale under this measure. The measure Q is identi�edby the Girsanov theorem (f. Shiryaev [24, p. 673℄) asdQdP ���FWt = exp ��� r� Wt � 12��� r� �2 t! :Date: Otober 13, 2001. 1



2 T. SOTTINEN AND E. VALKEILAHere FWt is the � -algebra generated by the Brownian motion W; or equiva-lently by the stok prie S; upto time t � T: The onstant ��r� is often referredto as the market prie of risk.The fair prie CT (f) of a laim f on the stok prie S expiring at time Tis given by(1.1) CT (f) = EQ fBT :The fairness of the prie (1.1) follows from a hedging argument. Let � =(�t)t2[0;T ℄ be a portfolio proess, i.e. �t denotes the number of the shares ofthe stok owned by an investor a time t: Assume that � is self-�naning whihis to say that the value proess V = V � of the portfolio � satis�es(1.2) dVt = �t dSt + (Vt � �tSt) dBt:It follows that the disounted value proess V=B is a loal Q -martingale. As-sume that it is a (proper) Q -martingale, i.e. the orresponding portfolio � isadmissible. Thus, if V repliates the laim f; we must haveVtBt = EQ� fBT ���FWt � :This shows that (1.1) is V0; the apital needed to hedge, or repliate, the laimf: Moreover, the hedging portfolio � an be onstruted by using the Ito�Clark�Oone formula. Indeed, the martingale representation theorem (f. Shiryaev [24,p. 257℄) tells us that VtBt = V0 + Z t0 s d ~Ws;where  is a preditable stohasti proess and ~W is a Brownian motion underthe measure Q; i.e. (by the Girsanov theorem)~Wt = Wt + �� r� t:Plugging in the self-�naning ondition (1.2) we obtainVtBt = V0 + � Z t0 �s SsBs d ~Ws:Thus, �t = t Bt�St :The Ito�Clark�Oone formula (f. Karatzas and Shreve [10, p. 369℄) gives us theproess  in terms of the so-alled Malliavin derivative Dt ast = EQ�Dt fBT ���FWt � :



FRACTIONAL BROWNIAN MOTION AS A MODEL IN FINANCE 3Putting everything together we have a formula for the hedging portfolio(1.3) �t = BtBT�StEQ�Dtf jFWt � :1.2. Arbitrage. Let us now onsider the arbitrage in the Blak & Sholes priingmodel. If the portfolio, or strategy, � is admissible then the orresponding valueproess is a martingale. Hene, if we start with zero apital and assume thatVT � 0 then 0 = V0 = EQ VTBT = EQ VTBT 1fVT>0g:So, we must have Q(VT > 0) = 0: Sine Q is equivalent to P it follows thatP(VT > 0) = 0: Therefore, there is no free lunh with admissible strategies.One should note that sometimes the word admissible is used in the sense thatV is non-negative. Also, if the proess V=B is bounded from below by a non-random onstant, depending possibly on �; then the portfolio � is alled tame.In any of these ases there are no arbitrage opportunities.One an onstrut arbitrage opportunities with the so-alled doubling strategy,however. The following example is from Karatzas and Shreve [10, p. 9℄. Letr = � = 0 and � = 1: Consider the stohasti integralIt := Z t0 r 1T � s dWs:The proess I is a martingale with the brakethIit = log� TT � t� :The time-hanged stohasti integral~It := IT�Te�thas the braket h~Iit = t: Thus, it is a Brownian motion. Consequently,lim supt!T It = lim supt!1 ~It = 1:Therefore, for any � > 0�� := inf ft 2 [0; T ) : It = �g ^ Tsatis�es �� 2 (0; T ) almost surely. Let us de�ne a self-�naning portfolio � as(1.4) �t := 1StpT � t1(0;��℄(t):Then the value proess V satis�esVt = Z t0 �sSs dWs = It^�� :



4 T. SOTTINEN AND E. VALKEILASo, VT = � almost surely. Sine V0 = 0 we have onstruted arbitrage. Itshould be noted that the strategy (1.4) is not bounded from below.1.3. Problems. The Blak & Sholes priing model is very satisfatory from thetheoretial point of view. Claims an be pried fairly and (in priniple) one aneven alulate the orresponding hedging portfolios by using the formula (1.3).Also, there are no arbitrage opportunities is the lass of admissible portfolios.However, there is a problem with this model. It stipulates that the log-returnsRtk := log StkStk�1= (�� �22 )(tk � tk�1) + �(Wtk �Wtk�1)are independent normal random variables.The dependene struture of the log-returns have been studied using the so-alled Hurst parameter H: In the unorrelated ase one should have H = 12 .However, many studies have indiated Hurst indies Ĥ > 12 : E.g. for the dailyexhange rate between USD and JPY between January 1972 and Deember 1990the estimated Hurst index is Ĥ = 0:642: For referenes to these studies see e.g.Peters [19℄ and Shiryaev [24℄.There are also empirial studies indiating that the log-returns are not normal.This is more evident, if the observation intervals tk � tk�1 are short.To overome with the �rst ritial point, the independene assumption of thelog-returns, it has been proposed that one should replae the Brownian motion bya frational Brownian motion whih aptures the long-range dependeny propertymeasured by H: The �rst one to suggest this was Mandelbrot, already in latesixties (f. Mandelbrot [14℄).The seond ritial point, the non-normality of log-returns, will be ompletelyignored in what follows.2. Long-range dependene and self-similarityIn this setion we onsider brie�y the onepts of statistial long-range depen-dene and self-similarity. For a detailed disussion we refer to Beran [1℄.2.1. Long-range dependene. Consider a stationary sequene X = (Xk)k2N :Suh a sequene is said to exhibit the statistial long-range dependeny propertyif its autoorrelation funtion � satis�es(2.1) limk!1 �(k)�k�� = 1for some onstants � and � 2 (0; 1): This is to say that the dependene betweenXk and Xk+n deays slowly as n tends to in�nity. In partiular,(2.2) 1Xk=0 �(k) = 1:



FRACTIONAL BROWNIAN MOTION AS A MODEL IN FINANCE 5Atually, sometimes one de�nes the long-range dependene by the property (2.2)instead of (2.1).There is also a de�nition involving the spetral density. Suppose that f is thespetral density of X: If there exists onstants f and � 2 (0; 1) suh that(2.3) lim�!0 f(�)f j�j�� = 1;then X exhibits the statistial long-range dependeny property.The de�nitions (2.1) and (2.3) are onneted in the following way: let H 2(12 ; 1): Then � = 2� 2H and � = 2H � 1 (f. Beran [1, p. 43℄).2.2. Self-similarity. Self-similar proesses were introdued by Kolmogorov [12℄as models for turbulene in the early forties. In the late sixties Mandelbrot andVan Ness [15℄ made the onept known among the statistiians.A entered stohasti proess proess X = (Xt)t2[0;T ℄ is said to be statistiallyself-similar with Hurst exponent H if(Xt)t2[0;T ℄ d= (a�HXat)t2[0;T ℄for all a > 0: Here d denotes the equivalene in distribution.If, in addition, the proess X is square integrable with stationary inrementsit follows that(2.4) Cov(Xt;Xs) = VarX12 �t2H + s2H � jt� sj2H� :Note that if H = 0 then one must have X = 0 identially. The ase H = 1is hardly interesting, sine it implies Corr(Xt;X1) = 1: The ases H < 0 andH > 1 are impossible. It the former ase VarX0 = 1: In the latter ase onewould have Corr(Xt;X1) > 1 given t big enough. Hene, one assumes thatH 2 (0; 1) in the equation (2.4) above.The onnetion to long-range dependene is then the following. Let X be en-tered square integrable proess with stationary inrements. Then the inrementsYk := Xk �Xk�1 are stationary with autoorrelation funtion�(k) = 12 �(k + 1)2H � 2k2H + (k � 1)2H� :Therefore, as k tends to in�nity one has�(k) � H(2H � 1)k2H�2;i.e. limk!1 �(k)H(2H � 1)k2H�2 = 1:Thus, if H 2 (12 ; 1) the inrements (Yk)k2N exhibit the long-range dependenyproperty with � = 2� 2H and � = H(2H � 1):Note that by Kolmogorov's riterion the proess X admits a version withontinuous sample paths in the ase H 2 (12 ; 1):



6 T. SOTTINEN AND E. VALKEILAFinally, one should note that there are entered proesses with stationary andindependent inrements having the statistial self-similarity property with indexH > 12 ; e.g. the symmetri � -stable Lévy proesses with H = 1� : These areproesses with in�nite variane, however. For details we refer to Samorodnitskyand Taqqu [22℄ 3. Frational Brownian motionThe frational Brownian motion Z = ZH is a ontinuous and entered Gauss-ian proess with the ovariane funtionEZtZs = 12 �t2H + s2H � jt� sj2H� :This is a valid ovariane funtion for a Gaussian proess (f. Samorodnitsky andTaqqu [22, p. 106℄). So, by virtue of (2.4) the frational Brownian motion is the(upto a multipliative onstant) unique entered Gaussian proess with stationaryinrements having the self-similarity property with Hurst index H 2 (0; 1):The frational Brownian motion was originally de�ned and studied by Kol-mogorov [11℄ within a Hilbert spae framework where it was alled a Wienerhelix. It was further studied by Yaglom [27℄. The name �frational Brownianmotion� omes from Mandelbrot and Van Ness [15℄. They de�ned it as a stohas-ti integral with respet to the standard Brownian motion:(3.1) Zt = Z t�1 k(t; s) dWswith a ertain deterministi kernel k depending on H:If H = 12 then the frational Brownian motion is just a standard Brownianmotion. In the ase H > 12 the frational Brownian motion exhibits the statisti-al long-range dependeny property as shown in the previous setion. Hene, in�nanial modeling one usually assumes that H 2 (12 ; 1) (see, however, Shiryaev[24, p. 347℄ and referenes therein).In addition to the Mandelbrot and Van Ness integral representation (3.1) ofthe frational Brownian motion there exists a similar representation where theintegration is taken over the �nite interval [0; t℄; viz.(3.2) Zt = Z t0 z(t; s) dWs;wherez(t; s) = 1 �� ts�H� 12 (t� s)H� 12 � (H � 12)s 12�H Z ts uH� 32 (u� s)H� 12 du� :The 1 is a ertain normalizing onstant depending on H: The representation(3.2) is anonial in the sense that the �ltrations generated by Z and W oinide.For the proof of the representation see Norros, Valkeila and Virtamo [18℄.



FRACTIONAL BROWNIAN MOTION AS A MODEL IN FINANCE 7So far everything is true for H 2 (0; 1): For the rest of the paper we assumethat H > 12 ; however (although some results are true for the ase H 2 (0; 12)also).To de�ne a frational analogue of the lassial Blak & Sholes priing modelwe need to know how to integrate with respet to the frational Brownian motionas this onneted to hedging. Also, we need to have the Girsanov theorem for thefrational Brownian motion to onsider an analogue of the equivalent martingalemeasure. The rest of the setion is dediated to these tehnial issues.3.1. p -variation and integration. To de�ne a (pathwise) stohasti integralwith respet to the frational Brownian motion we onsider the so-alled p -variation index of a stohasti proess. For details of this approah we refer toDudley and Norvai²a [4℄.Let � = (0 = t0 < t1 < � � � < tn = T ) be a �nite partition of the interval[0; T ℄ and for a stohasti proess X setsp(X;�) := nXk=1 jXtk �Xtk�1 jp:The p -variation vp of a stohasti proess X over an interval [0; T ℄ is de�nedas vp(X; [0; T ℄) := sup� sp(X;�)where � is a �nite partition of the interval [0; T ℄: The index of p -variation vof a proess X is thenv(X; [0; T ℄) = inffp > 0 : vp(X; [0; T ℄) <1gif the set above is non-empty and 1 otherwise.For frational Brownian motion Z with index H 2 (12 ; 1) one has(3.3) v(Z) = v(Z; [0; T ℄) = 1H :For the proof we refer to Dudley and Norvai²a [4, p. 48℄.For semimartingales M one must have v(M) 2 [0; 1℄ [ f2g (f. Dudley andNorvai²a [4, p. 46℄). Thus, the frational Brownian motion is not a semimartin-gale when H 6= 12 : So, one annot use the Ito theory to de�ne stohasti integralswith respet to it. However, one an de�ne a pathwise, i.e. ! -by-!; integrals asa re�nement of the Riemann�Stieltjes integrals using the p -variation.The following hange of variables formula for the pathwise integration withrespet to the frational Brownian motion plays a entral role in what follows.Suppose that f 2 C1([0; T ℄) then(3.4) f(Zt)� f(Zs) = Z ts f 0(Zu) dZu:Note the absene of the �Ito orretion term�, or the quadrati variation term.Also, one should note that the formula (3.4) is valid in the all the di�erent



8 T. SOTTINEN AND E. VALKEILApathwise approahes to de�ne the stohasti integral (f. Lin [13℄, Föllmer [6℄,Zähle [28℄).3.2. Girsanov theorem. We reall the Girsanov theorem for frational Brown-ian motion. For details we refer to Norros, Valkeila and Virtamo [18℄ and Molhan[17℄.De�ne the so-alled fundamental martingale M =MH byMt := 2 Z t0 s 12�H(t� s) 12�H dZsNow M is a Gaussian martingale with the angle brakethMit = 3t2�2H :Here 2 and 3 are ertain onstants depending on H:Let � be a deterministi funtion and de�ne a measure Q = Q� bydQdP ���FZt = exp�Z t0 �(s) dMs � 12 Z t0 �2(s) dhMis�(3.5) = exp�Z t0 �(s) dMs � 123(2� 2H)Z t0 �2(s)s1�2H ds� :Then the proess Z � Z �0 �(t) dtis a frational Brownian motion under Q and under Q only (given that Q isequivalent to P ).3.3. Predition. We have the following predition formula for the frationalBrownian motion:(3.6) ẐT jt := E�ZT jFZt � = Zt + Z t0 	T (t; s) dZs;where 	T (t; s) = sin(�(H � 12 ))� s 12�H Z Tt uH� 12 (u� t)H� 12u� s du:The formula (3.6) is due to Gripenberg and Norros [7℄.There is also an alternative form(3.7) ẐT jt = Z t0 z(T; s) dWs:This is a diret onsequene of (3.2). It provides us the formula for the braketof ẐT j� needed later: hẐT j�it = Z t0 z(T; s)2 ds:



FRACTIONAL BROWNIAN MOTION AS A MODEL IN FINANCE 9Sine the funtion z(T; �) is positive on (0; T ) for all T > 0 the relation (3.7)an be inverted. This provides us the following representation for the Brownianmotion W : Wt = Z t0 1z (T; s) dẐT js;for t � T . This shows that(3.8) FZt = FWt = F ẐT j�tfor 0 � t � T: 4. Frational priing modelLet us modify the lassial Blak & Sholes model. As a soure of randomnessreplae the Brownian motion W with the frational one Z with index H 2 (12 ; 1)and onsider the following dynamis for the stok prie S :(4.1) dSt = St (�dt+ � dZt) :The solution to the stohasti di�erential equation (4.1) is alled the geometrifrational Brownian motion.So, the frational model adds one parameter, the Hurst index H; to the lassi-al Blak & Sholes model to apture the long-range dependene of the log-returnsof the stok. As in the lassial ase one assumes that the values of the parametersr; �; � and H are known.Sine, by virtue of the property (3.3), the frational Brownian motion is not asemimartingale when H 6= 12 we are faed with the following problems.(a) How to de�ne the stohasti integral (4.1)?(b) Is the modi�ed priing model free of arbitrage?() Is the modi�ed priing model omplete, i.e. is there a frational analogueof the Ito�Clark�Oone formula?For the problem (a) there are two possible de�nitions, viz. the pathwise de�ni-tion introdued earlier and a de�nition based on generalized stohasti proesses.The next setion onsiders brie�y the generalized solutions. The rest of thepaper onsiders the pathwise solutions.4.1. Generalized geometri frational Brownian motion. The generalizedsolution to (4.1) is based on white noise analysis and the so-alled Wik produts(f. Dunan, Hu and Pasi-Dunan [5℄ and for �nanial appliation Hu andØksendal [9℄). The solution isSt = S0 exp��t� �22 t2H + �Zt� :With generalized solutions the frational priing model is free of arbitrage andomplete. Thus, the problems (b) and () are solved.Although this formal result is satisfatory from the theoretial point of view,there are some problems. Firstly, the funtional analyti approah used makesit impossible to onsider the integrals as almost sure limits of the paths of the



10 T. SOTTINEN AND E. VALKEILAproess under ertain partitions of the interval. It should be noted that thisinterpretation is possible in the ase of Brownian motion. Seondly, and moresubjetively, one wants to model the path properties of the stok prie. Thegeneralized approah does not �t well to this aim sine the path properties playno entral role in the integrals.4.2. Arbitrage in frational models. By the hange of variables formula (3.4)the pathwise solution to (4.1) isSt = S0 exp(�t+ �Zt) :With pathwise solutions to (4.1) and with ontinuous-time trading one an doarbitrage in the frational priing model.Probably the �rst one to show that there exist arbitrage opportunities withfrational Brownian motion (although he did not onsider the geometri frationalBrownian motion but a linear one) was Rogers [20℄. His strategy onsisted ofombinations of buy and hold strategies. The onstrution was rather impliit andrelied heavily on the self-similarity of frational Brownian motion and informationfrom the whole interval (�1; t℄:Shiryaev [23℄ (see also Dasgupta [3℄) onstruted an arbitrage opportunityexpliitly by using the notion of pathwise stohasti integral. He onsidered thease � = r; � = 1 and onstruted a portfolio � = (�(B); �(S)) with�(B)t = 1� e2Zt ;�(S)t = 2(eZt � 1):The assoiated value proess V satis�esdVt = 2ert+Zt �eZt � 1� dZt + �eZt � 1�2 rert dtas easily seen by the hange of variables formula (3.4). Hene, the portfolio isself-�naning. There is arbitrage here, however. To see this just note thatVT = erT �eZT � 1�2 :In ontrast to the arbitrage portfolio (1.4) onstruted for the lassial model theportfolio � is admissible in the sense that it is non-negative (there an be nomartingale haraterization here).Reently, Cheridito [2℄ has onstruted an arbitrage opportunity by using the1H -variation property (3.3) of the paths of the frational Brownian motion. Theonstrution was not based on ontinuous trading but on a �nite number oftrading points t1; : : : ; tn 2 [0; T ℄: The number of the points depend on the path,however. The value proess of his portfolio was bounded from below by anarbitrary negative onstant (i.e. it was tame). It is worthwhile to notie thatCheridito's onstrution was based solely on the fat that the p -variation of thepaths is not 2: Hene it goes beyond the frational Brownian motion.All the arbitrage opportunities mentioned above, save that of Rogers' [20℄,apply also to the ase where the soure of randomness is a proess with boundedvariation.



FRACTIONAL BROWNIAN MOTION AS A MODEL IN FINANCE 11Let us note that the arbitrage arises in a modi�ed binomial approximation.Indeed, onstrut a weighted random walk Z(n) using the kernel z in (3.2) byZ(n)t := Z t0 z(n)(t; s) dW (n)s := bntXi=1 nZ ini�1n z( bntn ; s) ds 1pn�(n)i ;where the �(n)i 's are independent random variables withP��(n)i = 1� = 12 = P��(n)i = �1�and z(n)(t; s) = nZ ss� 1n z( bntn ; u) du:is a pieewise onstant approximation to z(t; �): Now, if�S(n)k := S(n)k�1��Tn + ��Z(n)k Tn�is the stok prie dynamis at time k Tn one obtains an analogue of the Cox�Ross�Rubinstein binomial approximation to Blak & Sholes model. This frationalbinomial, or binary, model exhibits arbitrage opportunities given that the levelof approximation, Tn ; is big enough (depending on H; but �nite). For detailsand expliit onstrution of arbitrage we refer to Sottinen [25℄.So, the lassial notion of admissibility is not enough to exlude arbitrageopportunities in the frational priing model. If one restrits trading so that theremust be some non-random minimal time interval between suessive transations(whih may be random) then there is no arbitrage (f. Cheridito [2℄). This is veryrestritive, however. Indeed, there are many laims whih annot be repliatedwith these strategies. At the present moment it is not lear what should be thenotion of admissibility in the frational priing model. For some disussion (andyet another onstrution of arbitrage) see Salopek [21℄.4.3. European options in frational models. In spite of the lak of the equiv-alent martingale measure one an ompute the pries of European options in thepathwise frational model using a so-alled weak priing priniple (f. Valkeila[26℄). These pries oinide with the ones obtained in the generalized model (f.Hu and Øksendal [9℄).The risk neutral measure Q; equivalent to the real world measure P; in thelassial Blak & Sholes priing model was haraterized by the fat that thedisounted stok prie S=B is a martingale. In partiular, the average growthof the stok is the growth of the bond under Q :(4.2) EQ StBt = S0:In the frational setting we annot hope to have the martingale property. How-ever, the Girsanov theorem for frational Brownian motion provides us a unique



12 T. SOTTINEN AND E. VALKEILAprobability measure, equivalent to P; suh that (4.2) holds. We shall all thatmeasure Q the average risk neutral measure.The equation (4.2) holds if the proess(4.3) (t; !) 7! Zt(!) + �� r� t+ �2 t2His the frational Brownian motion under Q: By the Girsanov theorem the averagerisk neutral measure Q is therefore haraterized bylog dQdP ���FZt = ��� r� Mt + �H Z t0 s2H�1 dMs�123(2� 2H) ��� r� �2 t2�2H + (�� r)t+ �2t2H! :The disounted stok prie proess S=B is not a Q -martingale. Indeed,by using the predition theorem (3.6) we an alulate onditional expetationsunder the measure Q : EQ�STBT ���FZt � = StBt eK(T;t);where K(T; t) = (r � �)Z t0 	T (t; s) ds+�22 �t2H � Z t0 z(T; s)2 ds�+� Z t0 	T (t; s) dZs��2 Z t0 s2H�1	T (t; s) ds:This is onsistent with the lassial ase with Brownian motion W in the sensethat K = KH ! 0 as H # 12 :The omputation of the onditional expetations is based on the followingidentity:(4.4) St = S0 exp��T � �22 T 2H�E (�ẐT j�)T ;where E ��ẐT j��t := exp��ẐT jt � �22 Z t0 z (T; s)2 ds�is the stohasti exponential.



FRACTIONAL BROWNIAN MOTION AS A MODEL IN FINANCE 13For a European option f = f(ST ) we then de�ne the average expetation prieCT (f) to be(4.5) CT (f) := EQf(ST )BT :This is analogous to the lassial Blak & Sholes ase, i.e. formula (1.1). Asin the lassial Blak & Sholes model we want to give an expression to thedisounted value proess V=B: So, we look atEQ �f(ST )BT ���FSt � = EQ � VTBT ���FSt � = EQ � VTBT ���F ŜT j�t � ;where ŜT jt = E ��ẐT j��t:Note that the hange of �ltration is justi�ed by (3.8).It seems possible to alulate the hedging portfolios with ŜT j� expliitly as non-antiipative funtionals of the path of the stok prie proess S: The strategieswill not be of the Markov type but rather of the form�t = K �T; t; (Ss)s2[0;t℄� :The alulations are expeted to be rather tedious, however.Sine (4.3) is a frational Brownian motion under Q we an express the for-mula (4.5) asCT (f) = e�rT 1p2� Z 1�1 f �S0 exp��yTH + rT � �22 T 2H�� e� y22 dy:Finally, let us state the elebrated Blak & Sholes formula for a Europeanall-option with strike prie K in the frational ase:CT ((ST �K)+) = S0�(y1)�Ke�rT�(y2);where y1 = y1(H) = log S0K + rT + �22 T 2H�TH ;y2 = y2(H) = log S0K + rT � �22 T 2H�TH :Note that the prie onverges to the lassial Blak & Sholes prie for Europeanall-option as H # 12 :5. Beyond frational priing modelTo overome the shortomings of the frational priing model some remedieshave been proposed. We shall brie�y onsider two approahes, viz. regularizationproedures and mixed models.



14 T. SOTTINEN AND E. VALKEILA5.1. Regularization. The regularization proedure to the frational Brownianmotion was suggested by Rogers [20℄ and was further studied by Cheridito [2℄.For details we refer to the latter.Reall the Mandelbrot and Van Ness integral representation (3.1) for the fra-tional Brownian motion. One an regularize the frational Brownian motion inthe following way. Replae the kernel k in (3.1) by a �regularized� kernel ~k sothat the Gaussian proess ~Zt := Z t�1 ~k(t; s) dWshas stationary inrements and satis�es the following two objetives.(a) The proess ~Z is lose to the original frational Brownian motion Z inthe sense that Cov(Zt; Zs) � Cov( ~Zt; ~Zs)for all t; s 2 [0; T ℄:(b) The law of the proess ~Z is equivalent to the law of the standard Brow-nian motion.If the objetive (a) is satis�ed then the proess ~Z is a reasonable replaement tothe frational Brownian motion from the statistial point of view. The objetive(b) gives us the unique risk neutral, or priing, measure Q of the lassial Blak& Sholes priing model. In partiular, by the Hitsuda representation theorem(f. Hitsuda [8℄), the objetive (b) is satis�ed (under the assumption of stationaryinrements) if and only if~Zt = Wt + Z t�1 Z s�1  (s� u) dWu dsfor some square integrable kernel  :While it is possible to onstrut suitable kernels  =  " suh that the objetive(a) is satis�ed with any preision " > 0 there is a problem. The option priesintrodued by the kernel  depend heavily on the form of the kernel while thepreision " does not play a partiularly signi�ant role. It seems di�ult toargue any spei� form for the kernel  ; however.5.2. Mixed models. Consider a mixed Brownian�Frational Brownian modelfor the stok prie, viz.(5.1) dSt = St (�dt+ "dWt + � dZt) ;where W is a standard Brownian motion and Z is a frational one.Cheridito [2, p. 73℄ has shown that the mixed proess "W+�Z is equivalent inlaw to "W whenever W and Z are independent and the index of self-similarityH satis�es H 2 (34 ; 1): Hene, this model is similar to the regularized one on-sidered in the previous subsetion in the sense that we an now make use of theunique risk neutral measure Q: Also, one an make the proess "W + �Z to
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