
FRACTIONAL BROWNIAN MOTION AS A MODEL INFINANCET. SOTTINEN AND E. VALKEILAAbstra
t. In the 
lassi
al Bla
k & S
holes pri
ing model the randomnessof the sto
k pri
e is due to Brownian motion W: It has been suggested thatone should repla
e the standard Brownian motion by a fra
tional Brownianmotion Z: It is known that this will introdu
e some problems, e.g. relatedto arbitrage. We give a survey of some re
ent work in 
onne
tion to thisproblem. We end by giving a suggestion how to pri
e European options inthis fra
tional pri
ing model.JEL Classi�
ation: C60, G10Mathemati
s Subje
t Classi�
ation (1991): 60F17, 60G15, 90A091. Classi
al Bla
k & S
holes pri
ing modelRe
all the 
lassi
al Bla
k & S
holes pri
ing model with two assets, the risklessbond and the risky sto
k. The randomness of the sto
k pri
e S is due to Brow-nian motion W and the bond pri
e B is deterministi
 with a 
onstant interestrate. The dynami
s of the pri
es aredSt = St (�dt+ � dWt) ;dBt = Btr dtwith B0 = 1 and S0 is a positive 
onstant. The parameters � 2 R , r; � > 0 aresupposed to be known. Traditionally one assumes that there are no dividends,no transa
tion 
osts, same interest rate r for lending and saving on the bondand no limitations on short-selling of the sto
k.Note that in what follows one 
an easily repla
e the 
onstants �; r; and �with deterministi
 fun
tions. We 
onsider the 
onstant 
ase only for notational
onvenien
e. If, however, one allows sto
hasti
ity in the parameters r or � thesituation 
hanges dramati
ally.1.1. Completeness. As well-known the Bla
k & S
holes model is 
omplete (andfree of arbitrage in the 
lass of so-
alled admissible strategies to be 
onsideredlater). This is due to the fa
t that there exists a unique risk neutral measureQ; equivalent to the real world measure P; su
h that the dis
ounted sto
k pri
epro
ess S=B is a martingale under this measure. The measure Q is identi�edby the Girsanov theorem (
f. Shiryaev [24, p. 673℄) asdQdP ���FWt = exp ��� r� Wt � 12��� r� �2 t! :Date: O
tober 13, 2001. 1



2 T. SOTTINEN AND E. VALKEILAHere FWt is the � -algebra generated by the Brownian motion W; or equiva-lently by the sto
k pri
e S; upto time t � T: The 
onstant ��r� is often referredto as the market pri
e of risk.The fair pri
e CT (f) of a 
laim f on the sto
k pri
e S expiring at time Tis given by(1.1) CT (f) = EQ fBT :The fairness of the pri
e (1.1) follows from a hedging argument. Let � =(�t)t2[0;T ℄ be a portfolio pro
ess, i.e. �t denotes the number of the shares ofthe sto
k owned by an investor a time t: Assume that � is self-�nan
ing whi
his to say that the value pro
ess V = V � of the portfolio � satis�es(1.2) dVt = �t dSt + (Vt � �tSt) dBt:It follows that the dis
ounted value pro
ess V=B is a lo
al Q -martingale. As-sume that it is a (proper) Q -martingale, i.e. the 
orresponding portfolio � isadmissible. Thus, if V repli
ates the 
laim f; we must haveVtBt = EQ� fBT ���FWt � :This shows that (1.1) is V0; the 
apital needed to hedge, or repli
ate, the 
laimf: Moreover, the hedging portfolio � 
an be 
onstru
ted by using the Ito�Clark�O
one formula. Indeed, the martingale representation theorem (
f. Shiryaev [24,p. 257℄) tells us that VtBt = V0 + Z t0 
s d ~Ws;where 
 is a predi
table sto
hasti
 pro
ess and ~W is a Brownian motion underthe measure Q; i.e. (by the Girsanov theorem)~Wt = Wt + �� r� t:Plugging in the self-�nan
ing 
ondition (1.2) we obtainVtBt = V0 + � Z t0 �s SsBs d ~Ws:Thus, �t = 
t Bt�St :The Ito�Clark�O
one formula (
f. Karatzas and Shreve [10, p. 369℄) gives us thepro
ess 
 in terms of the so-
alled Malliavin derivative Dt as
t = EQ�Dt fBT ���FWt � :



FRACTIONAL BROWNIAN MOTION AS A MODEL IN FINANCE 3Putting everything together we have a formula for the hedging portfolio(1.3) �t = BtBT�StEQ�Dtf jFWt � :1.2. Arbitrage. Let us now 
onsider the arbitrage in the Bla
k & S
holes pri
ingmodel. If the portfolio, or strategy, � is admissible then the 
orresponding valuepro
ess is a martingale. Hen
e, if we start with zero 
apital and assume thatVT � 0 then 0 = V0 = EQ VTBT = EQ VTBT 1fVT>0g:So, we must have Q(VT > 0) = 0: Sin
e Q is equivalent to P it follows thatP(VT > 0) = 0: Therefore, there is no free lun
h with admissible strategies.One should note that sometimes the word admissible is used in the sense thatV is non-negative. Also, if the pro
ess V=B is bounded from below by a non-random 
onstant, depending possibly on �; then the portfolio � is 
alled tame.In any of these 
ases there are no arbitrage opportunities.One 
an 
onstru
t arbitrage opportunities with the so-
alled doubling strategy,however. The following example is from Karatzas and Shreve [10, p. 9℄. Letr = � = 0 and � = 1: Consider the sto
hasti
 integralIt := Z t0 r 1T � s dWs:The pro
ess I is a martingale with the bra
kethIit = log� TT � t� :The time-
hanged sto
hasti
 integral~It := IT�Te�thas the bra
ket h~Iit = t: Thus, it is a Brownian motion. Consequently,lim supt!T It = lim supt!1 ~It = 1:Therefore, for any � > 0�� := inf ft 2 [0; T ) : It = �g ^ Tsatis�es �� 2 (0; T ) almost surely. Let us de�ne a self-�nan
ing portfolio � as(1.4) �t := 1StpT � t1(0;��℄(t):Then the value pro
ess V satis�esVt = Z t0 �sSs dWs = It^�� :



4 T. SOTTINEN AND E. VALKEILASo, VT = � almost surely. Sin
e V0 = 0 we have 
onstru
ted arbitrage. Itshould be noted that the strategy (1.4) is not bounded from below.1.3. Problems. The Bla
k & S
holes pri
ing model is very satisfa
tory from thetheoreti
al point of view. Claims 
an be pri
ed fairly and (in prin
iple) one 
aneven 
al
ulate the 
orresponding hedging portfolios by using the formula (1.3).Also, there are no arbitrage opportunities is the 
lass of admissible portfolios.However, there is a problem with this model. It stipulates that the log-returnsRtk := log StkStk�1= (�� �22 )(tk � tk�1) + �(Wtk �Wtk�1)are independent normal random variables.The dependen
e stru
ture of the log-returns have been studied using the so-
alled Hurst parameter H: In the un
orrelated 
ase one should have H = 12 .However, many studies have indi
ated Hurst indi
es Ĥ > 12 : E.g. for the dailyex
hange rate between USD and JPY between January 1972 and De
ember 1990the estimated Hurst index is Ĥ = 0:642: For referen
es to these studies see e.g.Peters [19℄ and Shiryaev [24℄.There are also empiri
al studies indi
ating that the log-returns are not normal.This is more evident, if the observation intervals tk � tk�1 are short.To over
ome with the �rst 
riti
al point, the independen
e assumption of thelog-returns, it has been proposed that one should repla
e the Brownian motion bya fra
tional Brownian motion whi
h 
aptures the long-range dependen
y propertymeasured by H: The �rst one to suggest this was Mandelbrot, already in latesixties (
f. Mandelbrot [14℄).The se
ond 
riti
al point, the non-normality of log-returns, will be 
ompletelyignored in what follows.2. Long-range dependen
e and self-similarityIn this se
tion we 
onsider brie�y the 
on
epts of statisti
al long-range depen-den
e and self-similarity. For a detailed dis
ussion we refer to Beran [1℄.2.1. Long-range dependen
e. Consider a stationary sequen
e X = (Xk)k2N :Su
h a sequen
e is said to exhibit the statisti
al long-range dependen
y propertyif its auto
orrelation fun
tion � satis�es(2.1) limk!1 �(k)
�k�� = 1for some 
onstants 
� and � 2 (0; 1): This is to say that the dependen
e betweenXk and Xk+n de
ays slowly as n tends to in�nity. In parti
ular,(2.2) 1Xk=0 �(k) = 1:



FRACTIONAL BROWNIAN MOTION AS A MODEL IN FINANCE 5A
tually, sometimes one de�nes the long-range dependen
e by the property (2.2)instead of (2.1).There is also a de�nition involving the spe
tral density. Suppose that f is thespe
tral density of X: If there exists 
onstants 
f and � 2 (0; 1) su
h that(2.3) lim�!0 f(�)
f j�j�� = 1;then X exhibits the statisti
al long-range dependen
y property.The de�nitions (2.1) and (2.3) are 
onne
ted in the following way: let H 2(12 ; 1): Then � = 2� 2H and � = 2H � 1 (
f. Beran [1, p. 43℄).2.2. Self-similarity. Self-similar pro
esses were introdu
ed by Kolmogorov [12℄as models for turbulen
e in the early forties. In the late sixties Mandelbrot andVan Ness [15℄ made the 
on
ept known among the statisti
ians.A 
entered sto
hasti
 pro
ess pro
ess X = (Xt)t2[0;T ℄ is said to be statisti
allyself-similar with Hurst exponent H if(Xt)t2[0;T ℄ d= (a�HXat)t2[0;T ℄for all a > 0: Here d denotes the equivalen
e in distribution.If, in addition, the pro
ess X is square integrable with stationary in
rementsit follows that(2.4) Cov(Xt;Xs) = VarX12 �t2H + s2H � jt� sj2H� :Note that if H = 0 then one must have X = 0 identi
ally. The 
ase H = 1is hardly interesting, sin
e it implies Corr(Xt;X1) = 1: The 
ases H < 0 andH > 1 are impossible. It the former 
ase VarX0 = 1: In the latter 
ase onewould have Corr(Xt;X1) > 1 given t big enough. Hen
e, one assumes thatH 2 (0; 1) in the equation (2.4) above.The 
onne
tion to long-range dependen
e is then the following. Let X be 
en-tered square integrable pro
ess with stationary in
rements. Then the in
rementsYk := Xk �Xk�1 are stationary with auto
orrelation fun
tion�(k) = 12 �(k + 1)2H � 2k2H + (k � 1)2H� :Therefore, as k tends to in�nity one has�(k) � H(2H � 1)k2H�2;i.e. limk!1 �(k)H(2H � 1)k2H�2 = 1:Thus, if H 2 (12 ; 1) the in
rements (Yk)k2N exhibit the long-range dependen
yproperty with � = 2� 2H and 
� = H(2H � 1):Note that by Kolmogorov's 
riterion the pro
ess X admits a version with
ontinuous sample paths in the 
ase H 2 (12 ; 1):



6 T. SOTTINEN AND E. VALKEILAFinally, one should note that there are 
entered pro
esses with stationary andindependent in
rements having the statisti
al self-similarity property with indexH > 12 ; e.g. the symmetri
 � -stable Lévy pro
esses with H = 1� : These arepro
esses with in�nite varian
e, however. For details we refer to Samorodnitskyand Taqqu [22℄ 3. Fra
tional Brownian motionThe fra
tional Brownian motion Z = ZH is a 
ontinuous and 
entered Gauss-ian pro
ess with the 
ovarian
e fun
tionEZtZs = 12 �t2H + s2H � jt� sj2H� :This is a valid 
ovarian
e fun
tion for a Gaussian pro
ess (
f. Samorodnitsky andTaqqu [22, p. 106℄). So, by virtue of (2.4) the fra
tional Brownian motion is the(upto a multipli
ative 
onstant) unique 
entered Gaussian pro
ess with stationaryin
rements having the self-similarity property with Hurst index H 2 (0; 1):The fra
tional Brownian motion was originally de�ned and studied by Kol-mogorov [11℄ within a Hilbert spa
e framework where it was 
alled a Wienerhelix. It was further studied by Yaglom [27℄. The name �fra
tional Brownianmotion� 
omes from Mandelbrot and Van Ness [15℄. They de�ned it as a sto
has-ti
 integral with respe
t to the standard Brownian motion:(3.1) Zt = Z t�1 k(t; s) dWswith a 
ertain deterministi
 kernel k depending on H:If H = 12 then the fra
tional Brownian motion is just a standard Brownianmotion. In the 
ase H > 12 the fra
tional Brownian motion exhibits the statisti-
al long-range dependen
y property as shown in the previous se
tion. Hen
e, in�nan
ial modeling one usually assumes that H 2 (12 ; 1) (see, however, Shiryaev[24, p. 347℄ and referen
es therein).In addition to the Mandelbrot and Van Ness integral representation (3.1) ofthe fra
tional Brownian motion there exists a similar representation where theintegration is taken over the �nite interval [0; t℄; viz.(3.2) Zt = Z t0 z(t; s) dWs;wherez(t; s) = 
1 �� ts�H� 12 (t� s)H� 12 � (H � 12)s 12�H Z ts uH� 32 (u� s)H� 12 du� :The 
1 is a 
ertain normalizing 
onstant depending on H: The representation(3.2) is 
anoni
al in the sense that the �ltrations generated by Z and W 
oin
ide.For the proof of the representation see Norros, Valkeila and Virtamo [18℄.



FRACTIONAL BROWNIAN MOTION AS A MODEL IN FINANCE 7So far everything is true for H 2 (0; 1): For the rest of the paper we assumethat H > 12 ; however (although some results are true for the 
ase H 2 (0; 12)also).To de�ne a fra
tional analogue of the 
lassi
al Bla
k & S
holes pri
ing modelwe need to know how to integrate with respe
t to the fra
tional Brownian motionas this 
onne
ted to hedging. Also, we need to have the Girsanov theorem for thefra
tional Brownian motion to 
onsider an analogue of the equivalent martingalemeasure. The rest of the se
tion is dedi
ated to these te
hni
al issues.3.1. p -variation and integration. To de�ne a (pathwise) sto
hasti
 integralwith respe
t to the fra
tional Brownian motion we 
onsider the so-
alled p -variation index of a sto
hasti
 pro
ess. For details of this approa
h we refer toDudley and Norvai²a [4℄.Let � = (0 = t0 < t1 < � � � < tn = T ) be a �nite partition of the interval[0; T ℄ and for a sto
hasti
 pro
ess X setsp(X;�) := nXk=1 jXtk �Xtk�1 jp:The p -variation vp of a sto
hasti
 pro
ess X over an interval [0; T ℄ is de�nedas vp(X; [0; T ℄) := sup� sp(X;�)where � is a �nite partition of the interval [0; T ℄: The index of p -variation vof a pro
ess X is thenv(X; [0; T ℄) = inffp > 0 : vp(X; [0; T ℄) <1gif the set above is non-empty and 1 otherwise.For fra
tional Brownian motion Z with index H 2 (12 ; 1) one has(3.3) v(Z) = v(Z; [0; T ℄) = 1H :For the proof we refer to Dudley and Norvai²a [4, p. 48℄.For semimartingales M one must have v(M) 2 [0; 1℄ [ f2g (
f. Dudley andNorvai²a [4, p. 46℄). Thus, the fra
tional Brownian motion is not a semimartin-gale when H 6= 12 : So, one 
annot use the Ito theory to de�ne sto
hasti
 integralswith respe
t to it. However, one 
an de�ne a pathwise, i.e. ! -by-!; integrals asa re�nement of the Riemann�Stieltjes integrals using the p -variation.The following 
hange of variables formula for the pathwise integration withrespe
t to the fra
tional Brownian motion plays a 
entral role in what follows.Suppose that f 2 C1([0; T ℄) then(3.4) f(Zt)� f(Zs) = Z ts f 0(Zu) dZu:Note the absen
e of the �Ito 
orre
tion term�, or the quadrati
 variation term.Also, one should note that the formula (3.4) is valid in the all the di�erent



8 T. SOTTINEN AND E. VALKEILApathwise approa
hes to de�ne the sto
hasti
 integral (
f. Lin [13℄, Föllmer [6℄,Zähle [28℄).3.2. Girsanov theorem. We re
all the Girsanov theorem for fra
tional Brown-ian motion. For details we refer to Norros, Valkeila and Virtamo [18℄ and Mol
han[17℄.De�ne the so-
alled fundamental martingale M =MH byMt := 
2 Z t0 s 12�H(t� s) 12�H dZsNow M is a Gaussian martingale with the angle bra
kethMit = 
3t2�2H :Here 
2 and 
3 are 
ertain 
onstants depending on H:Let � be a deterministi
 fun
tion and de�ne a measure Q = Q� bydQdP ���FZt = exp�Z t0 �(s) dMs � 12 Z t0 �2(s) dhMis�(3.5) = exp�Z t0 �(s) dMs � 12
3(2� 2H)Z t0 �2(s)s1�2H ds� :Then the pro
ess Z � Z �0 �(t) dtis a fra
tional Brownian motion under Q and under Q only (given that Q isequivalent to P ).3.3. Predi
tion. We have the following predi
tion formula for the fra
tionalBrownian motion:(3.6) ẐT jt := E�ZT jFZt � = Zt + Z t0 	T (t; s) dZs;where 	T (t; s) = sin(�(H � 12 ))� s 12�H Z Tt uH� 12 (u� t)H� 12u� s du:The formula (3.6) is due to Gripenberg and Norros [7℄.There is also an alternative form(3.7) ẐT jt = Z t0 z(T; s) dWs:This is a dire
t 
onsequen
e of (3.2). It provides us the formula for the bra
ketof ẐT j� needed later: hẐT j�it = Z t0 z(T; s)2 ds:



FRACTIONAL BROWNIAN MOTION AS A MODEL IN FINANCE 9Sin
e the fun
tion z(T; �) is positive on (0; T ) for all T > 0 the relation (3.7)
an be inverted. This provides us the following representation for the Brownianmotion W : Wt = Z t0 1z (T; s) dẐT js;for t � T . This shows that(3.8) FZt = FWt = F ẐT j�tfor 0 � t � T: 4. Fra
tional pri
ing modelLet us modify the 
lassi
al Bla
k & S
holes model. As a sour
e of randomnessrepla
e the Brownian motion W with the fra
tional one Z with index H 2 (12 ; 1)and 
onsider the following dynami
s for the sto
k pri
e S :(4.1) dSt = St (�dt+ � dZt) :The solution to the sto
hasti
 di�erential equation (4.1) is 
alled the geometri
fra
tional Brownian motion.So, the fra
tional model adds one parameter, the Hurst index H; to the 
lassi-
al Bla
k & S
holes model to 
apture the long-range dependen
e of the log-returnsof the sto
k. As in the 
lassi
al 
ase one assumes that the values of the parametersr; �; � and H are known.Sin
e, by virtue of the property (3.3), the fra
tional Brownian motion is not asemimartingale when H 6= 12 we are fa
ed with the following problems.(a) How to de�ne the sto
hasti
 integral (4.1)?(b) Is the modi�ed pri
ing model free of arbitrage?(
) Is the modi�ed pri
ing model 
omplete, i.e. is there a fra
tional analogueof the Ito�Clark�O
one formula?For the problem (a) there are two possible de�nitions, viz. the pathwise de�ni-tion introdu
ed earlier and a de�nition based on generalized sto
hasti
 pro
esses.The next se
tion 
onsiders brie�y the generalized solutions. The rest of thepaper 
onsiders the pathwise solutions.4.1. Generalized geometri
 fra
tional Brownian motion. The generalizedsolution to (4.1) is based on white noise analysis and the so-
alled Wi
k produ
ts(
f. Dun
an, Hu and Pasi
-Dun
an [5℄ and for �nan
ial appli
ation Hu andØksendal [9℄). The solution isSt = S0 exp��t� �22 t2H + �Zt� :With generalized solutions the fra
tional pri
ing model is free of arbitrage and
omplete. Thus, the problems (b) and (
) are solved.Although this formal result is satisfa
tory from the theoreti
al point of view,there are some problems. Firstly, the fun
tional analyti
 approa
h used makesit impossible to 
onsider the integrals as almost sure limits of the paths of the



10 T. SOTTINEN AND E. VALKEILApro
ess under 
ertain partitions of the interval. It should be noted that thisinterpretation is possible in the 
ase of Brownian motion. Se
ondly, and moresubje
tively, one wants to model the path properties of the sto
k pri
e. Thegeneralized approa
h does not �t well to this aim sin
e the path properties playno 
entral role in the integrals.4.2. Arbitrage in fra
tional models. By the 
hange of variables formula (3.4)the pathwise solution to (4.1) isSt = S0 exp(�t+ �Zt) :With pathwise solutions to (4.1) and with 
ontinuous-time trading one 
an doarbitrage in the fra
tional pri
ing model.Probably the �rst one to show that there exist arbitrage opportunities withfra
tional Brownian motion (although he did not 
onsider the geometri
 fra
tionalBrownian motion but a linear one) was Rogers [20℄. His strategy 
onsisted of
ombinations of buy and hold strategies. The 
onstru
tion was rather impli
it andrelied heavily on the self-similarity of fra
tional Brownian motion and informationfrom the whole interval (�1; t℄:Shiryaev [23℄ (see also Dasgupta [3℄) 
onstru
ted an arbitrage opportunityexpli
itly by using the notion of pathwise sto
hasti
 integral. He 
onsidered the
ase � = r; � = 1 and 
onstru
ted a portfolio � = (�(B); �(S)) with�(B)t = 1� e2Zt ;�(S)t = 2(eZt � 1):The asso
iated value pro
ess V satis�esdVt = 2ert+Zt �eZt � 1� dZt + �eZt � 1�2 rert dtas easily seen by the 
hange of variables formula (3.4). Hen
e, the portfolio isself-�nan
ing. There is arbitrage here, however. To see this just note thatVT = erT �eZT � 1�2 :In 
ontrast to the arbitrage portfolio (1.4) 
onstru
ted for the 
lassi
al model theportfolio � is admissible in the sense that it is non-negative (there 
an be nomartingale 
hara
terization here).Re
ently, Cheridito [2℄ has 
onstru
ted an arbitrage opportunity by using the1H -variation property (3.3) of the paths of the fra
tional Brownian motion. The
onstru
tion was not based on 
ontinuous trading but on a �nite number oftrading points t1; : : : ; tn 2 [0; T ℄: The number of the points depend on the path,however. The value pro
ess of his portfolio was bounded from below by anarbitrary negative 
onstant (i.e. it was tame). It is worthwhile to noti
e thatCheridito's 
onstru
tion was based solely on the fa
t that the p -variation of thepaths is not 2: Hen
e it goes beyond the fra
tional Brownian motion.All the arbitrage opportunities mentioned above, save that of Rogers' [20℄,apply also to the 
ase where the sour
e of randomness is a pro
ess with boundedvariation.



FRACTIONAL BROWNIAN MOTION AS A MODEL IN FINANCE 11Let us note that the arbitrage arises in a modi�ed binomial approximation.Indeed, 
onstru
t a weighted random walk Z(n) using the kernel z in (3.2) byZ(n)t := Z t0 z(n)(t; s) dW (n)s := bnt
Xi=1 nZ ini�1n z( bnt
n ; s) ds 1pn�(n)i ;where the �(n)i 's are independent random variables withP��(n)i = 1� = 12 = P��(n)i = �1�and z(n)(t; s) = nZ ss� 1n z( bnt
n ; u) du:is a pie
ewise 
onstant approximation to z(t; �): Now, if�S(n)k := S(n)k�1��Tn + ��Z(n)k Tn�is the sto
k pri
e dynami
s at time k Tn one obtains an analogue of the Cox�Ross�Rubinstein binomial approximation to Bla
k & S
holes model. This fra
tionalbinomial, or binary, model exhibits arbitrage opportunities given that the levelof approximation, Tn ; is big enough (depending on H; but �nite). For detailsand expli
it 
onstru
tion of arbitrage we refer to Sottinen [25℄.So, the 
lassi
al notion of admissibility is not enough to ex
lude arbitrageopportunities in the fra
tional pri
ing model. If one restri
ts trading so that theremust be some non-random minimal time interval between su

essive transa
tions(whi
h may be random) then there is no arbitrage (
f. Cheridito [2℄). This is veryrestri
tive, however. Indeed, there are many 
laims whi
h 
annot be repli
atedwith these strategies. At the present moment it is not 
lear what should be thenotion of admissibility in the fra
tional pri
ing model. For some dis
ussion (andyet another 
onstru
tion of arbitrage) see Salopek [21℄.4.3. European options in fra
tional models. In spite of the la
k of the equiv-alent martingale measure one 
an 
ompute the pri
es of European options in thepathwise fra
tional model using a so-
alled weak pri
ing prin
iple (
f. Valkeila[26℄). These pri
es 
oin
ide with the ones obtained in the generalized model (
f.Hu and Øksendal [9℄).The risk neutral measure Q; equivalent to the real world measure P; in the
lassi
al Bla
k & S
holes pri
ing model was 
hara
terized by the fa
t that thedis
ounted sto
k pri
e S=B is a martingale. In parti
ular, the average growthof the sto
k is the growth of the bond under Q :(4.2) EQ StBt = S0:In the fra
tional setting we 
annot hope to have the martingale property. How-ever, the Girsanov theorem for fra
tional Brownian motion provides us a unique



12 T. SOTTINEN AND E. VALKEILAprobability measure, equivalent to P; su
h that (4.2) holds. We shall 
all thatmeasure Q the average risk neutral measure.The equation (4.2) holds if the pro
ess(4.3) (t; !) 7! Zt(!) + �� r� t+ �2 t2His the fra
tional Brownian motion under Q: By the Girsanov theorem the averagerisk neutral measure Q is therefore 
hara
terized bylog dQdP ���FZt = ��� r� Mt + �H Z t0 s2H�1 dMs�12
3(2� 2H) ��� r� �2 t2�2H + (�� r)t+ �2t2H! :The dis
ounted sto
k pri
e pro
ess S=B is not a Q -martingale. Indeed,by using the predi
tion theorem (3.6) we 
an 
al
ulate 
onditional expe
tationsunder the measure Q : EQ�STBT ���FZt � = StBt eK(T;t);where K(T; t) = (r � �)Z t0 	T (t; s) ds+�22 �t2H � Z t0 z(T; s)2 ds�+� Z t0 	T (t; s) dZs��2 Z t0 s2H�1	T (t; s) ds:This is 
onsistent with the 
lassi
al 
ase with Brownian motion W in the sensethat K = KH ! 0 as H # 12 :The 
omputation of the 
onditional expe
tations is based on the followingidentity:(4.4) St = S0 exp��T � �22 T 2H�E (�ẐT j�)T ;where E ��ẐT j��t := exp��ẐT jt � �22 Z t0 z (T; s)2 ds�is the sto
hasti
 exponential.



FRACTIONAL BROWNIAN MOTION AS A MODEL IN FINANCE 13For a European option f = f(ST ) we then de�ne the average expe
tation pri
eCT (f) to be(4.5) CT (f) := EQf(ST )BT :This is analogous to the 
lassi
al Bla
k & S
holes 
ase, i.e. formula (1.1). Asin the 
lassi
al Bla
k & S
holes model we want to give an expression to thedis
ounted value pro
ess V=B: So, we look atEQ �f(ST )BT ���FSt � = EQ � VTBT ���FSt � = EQ � VTBT ���F ŜT j�t � ;where ŜT jt = E ��ẐT j��t:Note that the 
hange of �ltration is justi�ed by (3.8).It seems possible to 
al
ulate the hedging portfolios with ŜT j� expli
itly as non-anti
ipative fun
tionals of the path of the sto
k pri
e pro
ess S: The strategieswill not be of the Markov type but rather of the form�t = K �T; t; (Ss)s2[0;t℄� :The 
al
ulations are expe
ted to be rather tedious, however.Sin
e (4.3) is a fra
tional Brownian motion under Q we 
an express the for-mula (4.5) asCT (f) = e�rT 1p2� Z 1�1 f �S0 exp��yTH + rT � �22 T 2H�� e� y22 dy:Finally, let us state the 
elebrated Bla
k & S
holes formula for a European
all-option with strike pri
e K in the fra
tional 
ase:CT ((ST �K)+) = S0�(y1)�Ke�rT�(y2);where y1 = y1(H) = log S0K + rT + �22 T 2H�TH ;y2 = y2(H) = log S0K + rT � �22 T 2H�TH :Note that the pri
e 
onverges to the 
lassi
al Bla
k & S
holes pri
e for European
all-option as H # 12 :5. Beyond fra
tional pri
ing modelTo over
ome the short
omings of the fra
tional pri
ing model some remedieshave been proposed. We shall brie�y 
onsider two approa
hes, viz. regularizationpro
edures and mixed models.



14 T. SOTTINEN AND E. VALKEILA5.1. Regularization. The regularization pro
edure to the fra
tional Brownianmotion was suggested by Rogers [20℄ and was further studied by Cheridito [2℄.For details we refer to the latter.Re
all the Mandelbrot and Van Ness integral representation (3.1) for the fra
-tional Brownian motion. One 
an regularize the fra
tional Brownian motion inthe following way. Repla
e the kernel k in (3.1) by a �regularized� kernel ~k sothat the Gaussian pro
ess ~Zt := Z t�1 ~k(t; s) dWshas stationary in
rements and satis�es the following two obje
tives.(a) The pro
ess ~Z is 
lose to the original fra
tional Brownian motion Z inthe sense that Cov(Zt; Zs) � Cov( ~Zt; ~Zs)for all t; s 2 [0; T ℄:(b) The law of the pro
ess ~Z is equivalent to the law of the standard Brow-nian motion.If the obje
tive (a) is satis�ed then the pro
ess ~Z is a reasonable repla
ement tothe fra
tional Brownian motion from the statisti
al point of view. The obje
tive(b) gives us the unique risk neutral, or pri
ing, measure Q of the 
lassi
al Bla
k& S
holes pri
ing model. In parti
ular, by the Hitsuda representation theorem(
f. Hitsuda [8℄), the obje
tive (b) is satis�ed (under the assumption of stationaryin
rements) if and only if~Zt = Wt + Z t�1 Z s�1  (s� u) dWu dsfor some square integrable kernel  :While it is possible to 
onstru
t suitable kernels  =  " su
h that the obje
tive(a) is satis�ed with any pre
ision " > 0 there is a problem. The option pri
esintrodu
ed by the kernel  depend heavily on the form of the kernel while thepre
ision " does not play a parti
ularly signi�
ant role. It seems di�
ult toargue any spe
i�
 form for the kernel  ; however.5.2. Mixed models. Consider a mixed Brownian�Fra
tional Brownian modelfor the sto
k pri
e, viz.(5.1) dSt = St (�dt+ "dWt + � dZt) ;where W is a standard Brownian motion and Z is a fra
tional one.Cheridito [2, p. 73℄ has shown that the mixed pro
ess "W+�Z is equivalent inlaw to "W whenever W and Z are independent and the index of self-similarityH satis�es H 2 (34 ; 1): Hen
e, this model is similar to the regularized one 
on-sidered in the previous subse
tion in the sense that we 
an now make use of theunique risk neutral measure Q: Also, one 
an make the pro
ess "W + �Z to
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lose as one wants to the fra
tional Brownian motion �Z in the statisti
alsense by 
hoosing a small enough ":Mishura and Valkeila [16℄ also 
onsidered a mixed model of the type (5.1). Thestandard Brownian motion and the fra
tional one were not independent in their
ase, however. Indeed, the fra
tional Brownian motion was 
onstru
ted from thestandard Brownian motion by the formulaZt = 
tH� 12 Z t0 (t� s)H� 32Ms ds� 
0 Z t0 sH� 32 Z s0 (s� u)H� 32Mu duds;where 
 and 
0 are 
ertain 
onstants depending on H andMt = Z t0 s 12�H dWs:They showed that there is no arbitrage in this model within the 
lass on Markovstrategies. Although this seems to be a very weak form of no-arbitrage note thatthe arbitrage opportunities 
onstru
ted for the fra
tional pri
ing model [2, 3, 21,23℄ were all of the Markov type.A
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