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Preface

Nobody reads the preface! At least the students don’t. Therefore, I guess you are a teacher
who is contemplating on using these notes in your own course. You are welcome to do so!
Also, the LATEX source code for these notes are available from the author upon request. You
are also allowed to make any changes to the notes. I only hope you will give me credit
somewhere in your derived notes. If you forget to give credit, I will forgive you.

These lecture notes are for the master’s level course STAT 3120 “Probability and
Stochastic Processes” lectured for the first time in spring 2017 at the University of Vaasa,
and updated for spring 2018. This is a 5 ECTS credit course with approximately 40 hours
of lectures and 20 hours of exercises. One hour is 45 minutes. One lecture in these notes
is supposed to mean approximately one lecture session of 2 hours (2 times 45 minutes) in
class. This will probably not happen in practice.

The focus of these notes is to prepare the students for queueing theory. In that sense
these lectures goes like a train towards that final station, but as a local train that stops at
many stations on the track. The students are assumed to have some basic knowledge of
probability theory and to know at least the elements of computer programming, preferably
with Matlab or Octave. In Part I of these notes we recall some basic facts of probability and
random variables with the emphasis of the so-called conditioning trick that is fundamental
in the analysis of Markov chains. In Part II we introduce some random variables that are
useful in queuing theory. Part III is a rather standard, but concise, introduction Markov
chains. Finally, Part IV is an introduction to the very basics of queueing theory. After that,
there is an appendix with a list of exam questions.

I have tried to argue the validity of each claim I make in these notes (with the notable
exception of the Lévy’s continuity theorem) with a less-than-rigorous proof. It is my sincere
hope that this will help the students’ understanding and not to confuse them too much.

In these lecture notes I have originally used GNU Octave version 4.0.0 (later 4.2.2)
installed on a laptop running Ubuntu 16.04 (later 18.04), but other versions and other
OS’s should work just fine. The only inconvenience I have encountered is the different
plotting systems especially as producing PDF’s (and I don’t mean probability distribution
functions) is concerned.

All rights reversed.

Civitanova Marche, Helsinki, and Vaasa
March 14, 2018 T. S.
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These lecture notes have been revised February 6, 2019. Some typos have been cor-
rected and some muddled thinking has been clarified. The gamma distribution has been
changed into the Erlang distribution.

Vaasa
February 6, 2019 T. S.
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The Focus Problem

After finishing these lectures, you should be able so solve the following problem; and not
only to solve, but understand the assumptions and limitations of the solution, and to apply
the solution method to related and seemingly unrelated problems:

You are queuing in the Ministry of Love to get access to Room 101. There
are 5 clerks serving the customers, and a single queue using the fist-in-
first-out queuing policy. At the moment all the clerks are a busy and
there are 12 customers in line in front of you. You have been waiting for
20 minutes. During that time you have observed the service times of 3
customers. They were 1 minute, 5 minutes and 18 minutes.

(i) What is the probability that your total waiting time plus service time
in the Ministry of Love will exceed 1 hour?

(ii) Suppose you have now waited 25 minutes and there are 11 cus-
tomers in front of you and you have recorded an extra service time
which was 10 seconds. What is now the probability that your total
waiting time plus service time in the Ministry of Love will exceed 1
hour?

Actually, we will not solve The Focus Problem completely. We will only give a relatively
reasonable solution. A complete solution would be a nice Master’s Thesis, which I would
be happy to supervise.
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Part I

Conditioning Tricks



Lecture 1

Conditioning Tricks of Means

Sir Francis Galton (1822–1911) was an English polymath.
He created the statistical concept of correlation, and was the
first to apply statistical methods to the study of inheritance
of intelligence. He is considered the founder of psychomet-
rics. He was a pioneer in eugenics, coining the term itself and
the phrase “nature versus nurture”. He devised a method for
classifying fingerprints that proved useful in forensic science.

In Galton’s time there was concern amongst the Victo-
rians that aristocratic surnames were becoming extinct. Gal-
ton originally posed the question regarding the probability of
such an event in an 1873 issue of The Educational Times, and
the Reverend Henry William Watson (1827–1903) replied
with a solution. Together, they then wrote an 1874 paper en-
titled On the probability of the extinction of families. Galton
and Watson appear to have derived their process indepen-
dently of the earlier work by Irénée-Jules Bienaymé (1796–
1878). The solution is called the Galton–Watson branching
process, or the Galton–Watson–Bienaymé branching pro-
cess, or simply the branching process.

While many of the Galton’s viewpoints can be seen to-
day as antiquated, or even offensive, the Galton–Watson
branching process is still a central probabilistic tool applied
in various fields of science.

Sir Francis Galton (1822–1911)

Example 1.1 of this lecture (and the following three lectures) deals with a branching pro-
cesses. More precisely, we are interested in the number of (male) offspring in a given
generation of a single forefather. The eventual goal will be to determine the probability of
the ultimate extinction of all family lines of the said forefather. This problem will be solved
much later in Lecture 4. In this lecture, we confine ourselves in analyzing the mean of the
distribution of a given generation in the family tree. Indeed, understanding the mean is
the first thing to do in understanding a random phenomenon.

This first lecture, and indeed the first part of this book, is called “Conditioning Tricks”
because conditioning is the key trick we need to analyze stochastic processes, and life, the
universe, and all such things.
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1.1 Example (Persé–Pasquale Noble Family Tree, I)
The most noble family of Persé–Pasquale is worried of their continuing existence. At the
moment there is only one male descendant of this most noble line. According to the
family records, the males of the noble family of Persé–Pasquale have sired male children
as follows

Number of male children Frequency

0 503
1 62
2 859

More than 2 0

(a) What is the probability that the 6th generation has more than 10 male descendants?
(b) What is the average number of descendants in the 6th generation?
(c) What is the variance of the number of descendants in the 6th generation?
(d) What is the probability that the Persé–Pasquale family will be ultimately extinct?

The offspring distribution p = [px]∞x=0 , i.e., the distribution of the number of (male)
children sired by a given male in the Persé–Pasquale family, can be estimated from the given
data in a naïve way by using the method of relative frequencies. Since we have in total

503+ 62+ 859+ 0 = 1424

observations, we obtain the probabilities

p0 = 503/1424 = 0.353230,

p1 = 62/1424 = 0.043539,

p2 = 859/1424 = 0.603230,

px = 0/1424 = 0.000000 for x ≥ 3.

Since there is no data, or any other reason, to assume that there is any particular depen-
dence structure between the number of male children of the different males in the Persé–
Pasquale family tree, we assume that they are independent. Also, we assume that all the
males in the Persé–Pasquale family have the same offspring distribution, that is given above.
Let Xn denote the number of male descendants in the nth generation of the Persé–Pasquale
family tree. Let ξn,i denote the number of male children sired by the ith (male) member
of the (n− 1)th generation of the Persé–Pasquale family. Then

Xn = ξn,1 + ξn,2 + · · ·+ ξn,Xn−1
.

Suppose, for example, that the current only descendant (X0 = 1) has 2 children. Then
X1 = ξ1,1 = 2. Suppose the first child has no children and the second child has three
children. Then X2 = ξ2,1 + ξ2,2 = 0+ 3= 3.
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We have just developed a mathematical model that is called the branching process.

1.2 Definition (Branching Process)
A stochastic process Xn , n ∈ N , given by the initial condition X0 = 1 and the recursion

Xn = ξn,1 + ξn,2 + · · ·+ ξn,Xn−1
,

is called a branching process. The summands ξn,i are independent and identically dis-
tributed with offspring distribution

px = P[ξn,i = x], x ∈ N.

1.3 Remark
On the first sight, things look very rosy for the continuing existence of the Persé–Pasquale
family. Each generation is looking for a healthy 25 % increase, since the mean male
reproductive rate, or the mean of the offspring distribution is

µ =
∑

x

x px = 1.2500.

After some analysis, we will see later in Lecture 4 that the things are not so rosy after all!

In theory, the distribution of the nth generation Xn is completely determined by the
offspring distribution p = [px]x∈N . In practice, we will see later in Lecture 3 that the
distribution of Xn is complicated, and even a numerical implementation of it is somewhat
nontrivial. Indeed, it can be said that the solution to the question (a) of Example 1.1 is
very complicated and fragile, while the solution to the questions (b) and (c) are easy and
robust. Problem (d) will also turn out to be relatively easy and robust, once we develop
the analytical tools for it in Lecture 4.

Law of Total Probability

Almost all conditioning tricks in probability come from the following observation: Sup-
pose we are interested in the probability P[A] of some event A. The probability P[A] may
be difficult to calculate. However, sometimes the conditional probabilities

P[A|Bk] =
P[A , Bk]
P[Bk]

may be relatively easy to calculate for some alternatives Bk , k ∈ N . (Alternative means
that exactly one of the events Bk , k ∈ N , will happen.) Suppose further that the probabil-
ities P[Bk] , k ∈ N , for the alternatives are easy to calculate. Then the probability P[A] is
relatively easy to calculate. Indeed, we have the following basic result:
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1.4 Lemma (Law of Total Probability)
Let Bk , k ∈ N , be such events that precisely one of them will happen. Then

P[A] =
∑

k∈N
P[Bk]P[A|Bk].

To see how the conditioning formula above is true, simply think like this: In order for
the event A to happen, first one (any one) of the alternative events Bk must have happened,
and then A happens, given that the alternative Bk has happened.

1.5 Remark
(i) If X and Y are both discrete random variables, then the law of total probability

gives us

P[X = x] =
∑

y

P[Y = y]P[X = x |Y = y].

(ii) If X and Y are both continuous random variables, then the law of total probability
gives us (after approximating integrals with Riemann sums and passing to the limit)

fX (x) =

∫ ∞

−∞
fY (y) fX |Y (x |y)dy,

where fX (x) and fY (y) are the density functions of X and Y , and fX |Y (x |y) is the
conditional density function of X given Y .

(iii) For general random variables X and Y , one can use the Leibniz–Stieltjes formal-
ism and write the law of total probability as

P[X ∈ dx] =

∫ ∞

−∞
P[X ∈ dx |Y = y]P[Y ∈ dy].

Here the integration is with respect to the variable y and dx denotes an infinites-
imal interval around x , and, formally,

P[X ∈ dx |Y = y] =
P[X ∈ dx , Y ∈ dy]
P[Y ∈ dy]

.

It is possible to use Lemma 1.4 to construct the probability distribution of the nth gen-
eration of the branching process. This is, unfortunately, rather technical. Therefore we
postpone the construction to Lecture 3. In this lecture we confine ourselves in understand-
ing the mean the nth generation distribution.
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Adam’s Law

Motto: The distribution is complicated. The mean is easy.

Let X and Y be random variables. The conditional expectation or conditional mean

E[X |Y ]

is a random variable whose value is known if the value of Y is known. In other words
E[X |Y ] = g(Y ) , where g is some function depending on the joint distribution of X and
Y . If the value of Y is known, to be y , say, then E[X |Y = y] = g(y) .

1.6 Remark
(i) If X and Y are both discrete random variables, then

E[X |Y = y] =
∑

x

x P[X = x |Y = y].

(ii) If X and Y are both continuous random variables, then

E[X |Y = y] =

∫ ∞

−∞
x fX |Y (x |y)dx ,

where fX |Y (x |y) is the conditional density function of X given Y .

(iii) For general random variables X and Y , the Leibniz–Stieltjes formalism gives the
formula

E[X |Y = y] =

∫ ∞

−∞
x P[X ∈ dx |Y = y],

where the integration is with respect to the variable x .

Suppose then, for simplicity, that X and Y are both discrete random variables. Then,
by using the law of total probability of Lemma 1.4 and Remark 1.5(i), we obtain

P[X = x] =
∑

y

P[X = x |Y = y]P[Y = y].
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Consequently,

E[X ] =
∑

x

x P[X = x]

=
∑

x

x

�

∑

y

P[X = x |Y = y]P[Y = y]

�

=
∑

y

�

∑

x

x P[X = x |Y = y]

�

P[Y = y]

=
∑

y

E[X |Y = y]P[Y = y]

= E
�

E[X |Y ]
�

.

Thus, we have shown (for discrete random variables) the following law of total expecta-
tion, a.k.a. the Adam’s law:

1.7 Lemma (Adam’s Law)
Let X and Y be random variables. Then

E[X ] = E
�

E[X |Y ]
�

.

Adam’s law is all we need in order to calculate the expectations of branching processes.
Let us denote by µ the mean of the offspring distribution, i.e.,

µ =
∑

x

x px ,

where px = P[ξn,i = x] . Now, the expectation is always linear. Thus a naïve first try would
be to calculate

E[Xn] = E
�

ξn,1 + ξn,2 + · · ·+ ξn,Xn−1

�

= E
�

ξn,1

�

+E
�

ξn,2

�

+ · · ·+E
�

ξn,Xn−1

�

= Xn−1µ.

Unfortunately, the calculation above is not completely correct. The problem is that the
number of summands Xn−1 is random. This problem is easily corrected by using a condi-
tioning trick: Suppose the value of Xn−1 is known (and thus non-random). Then we can
use the linearity of the conditional expectation and we obtain

E[Xn|Xn−1] = E
�

ξn,1 + ξn,2 + · · ·+ ξn,Xn−1
|Xn−1

�

= E
�

ξn,1

�

�Xn−1

�

+E
�

ξn,2

�

�Xn−1

�

+ · · ·+E
�

ξn,Xn−1

�

�Xn−1

�

= E
�

ξn,1

�

+E
�

ξn,2

�

+ · · ·+E
�

ξn,Xn−1

�

= Xn−1µ,
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since the random summands ξn,i are independent of the size of the previous generation
Xn−1 . Now, by using the Adam’s law, we obtain the recursive formula

E[Xn] = E [E[Xn|Xn−1]]

= E[Xn−1]µ.

This recursion is straightforward to solve. Indeed, by working backwards, we see that

E[Xn] = µE[Xn−1]

= µ2E[Xn−2]

= µ3E[Xn−3]

= · · ·
= µnE[X0].

Since E[X0] = 1, we obtain the following:

1.8 Proposition (Branching Means)
The mean of the nth generation distribution of a branching process with offspring distri-
bution p is

E[Xn] = µn,

where µ is the mean of the offspring distribution.

Below is an Octave script file that solves part (b) of Example 1.1

1 ###############################################################################
2 ## FILE : perse_pasquale_b .m
3 ##
4 ## Mean of the o f f p r i n g d i s t r i b u t i o n of the Perse−Pasquale fami ly t r e e .
5 ###############################################################################
6
7 ## data i s the f r equenc i e s .
8 data = [503 62 859] ;
9

10 ## Of f sp r ing d i s t r i b u t i o n i s the r e l a t i v e f r equenc i e s . Note tha t Octave s t a r t s
11 ## indexing with 1 . So p(1) i s the p r o b a b i l i t y of 0 o f f s p r i n g .
12 p = data/sum( data ) ;
13
14 ## The mean i s c a l c u l a t e d by using dot product with the row vec to r [0 1 2 . . . ] .
15 x = 0:( length (p)−1);
16 mu = x∗p ’ ;
17
18 ## Solu t ion to Example 1.1 par t (b)
19 n = 6;
20 so l_b = mû n

www.uva.fi/∼tsottine/psp/perse_pasquale_b.m

http://www.uva.fi/~tsottine/psp/perse_pasquale_b.m
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Let us explain the workings of the m-file perse_pasquale_b.m.

1.9 Remark (Get (Used to) Octave)
We explain the workings of an Octave m-file now, but not later. In later lectures we assume
a good working knowledge of Octave. So pay attention! If you are an experienced Matlab
user, you should have no problem with Octave (or vice versa). If you are new to Octave
or Matlab, you should visit the page https://www.gnu.org/software/octave/. You should
also install Octave on your own computer. It’s free! If you want to try it without installing,
go to the page https://octave-online.net/.

1.10 Remark (Calling Octave m-files)
To execute the (script) m-file perse_pasquale_b.m, simply write its name
perse_paquale_b in the Octave prompt. Note that you should not include the file
extension .m and also that you should have the file in your working directory (or in your
search path).

So, let’s get to the contents of the m-file perse_pasquale_b.m at hand.

The lines 1–5 all begin with the comment symbol #. This means that Octave does not
try to understand what is written there. (In Matlab the comment symbol is %. This works
also with Octave.)

1.11 Remark (Comment Style)
The reason for repeating the comment sign (##) is a matter of style and convenience. A
singe comment sign (#) is typically used for debugging and experimenting with different
parameters.

The first comment block of lines 1–5 (lines 2–4, actually) is also printed out if the user
types

help perse_pasquale_b

in the Octave console.

The empty line 6 terminates the help block, and makes the code easier to read. Other-
wise it does nothing.

The comment line 7 is there for the human readers’ convenience and help.

Line 8 assigns the row vector of the data to the variable data. The semicolon (;) in
the end of line 8 (and later in the end of most lines) prevents Octave from printing out the
result (the contents of the variable data in this case).

https://www.gnu.org/software/octave/
https://octave-online.net/
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Line 9 does nothing, and is there for the human readers’ convenience; Octave does not
care about this line.

In lines 10–11 we have comments to help the human reader of the code to better un-
derstand what is going on; Octave itself does not care about these lines.

In line 12 the variable p is set to be the row vector

px =
datax

∑

y data y
, x = 1, 2,3.

The empty line 13 is there simply to make the code easier to read. Ditto for the comment
line 14. Octave does not care about these lines.

Line 15 sets x to be the row vector [0 1 · · · (k− 1)] , where k− 1 is the largest possible
number of offspring (2 in our case).

Line 16 calculates the inner product of x and p. The apostrophe (’) after p makes p’
a column vector. Consequently, what is calculated in line 16 is

xp′ = [x1 x2 · · · xk]









p1
p2
...

pk









=
k
∑

i=1

x i pi ,

which is just the mean of p , since x i = i − 1.

Lines 17–18 should be self-explanatory: they do nothing.

In line 19 we define n to be the number of generations we are interested in. It is a good
idea not to set n= 6 in the final line 20, i.e., not to have lines 19–20 combined with a single
line having sol_b = muˆ6. Indeed, sometimes we wish to change the parameters, and it
is easier to do so, if they are defined separately. We could have (should have) also defined
n somewhere in the beginning of the file. Indeed, it is a good idea to define parameters
separately in the beginning of an m-file, so that it is easier to experiment with them.

Finally, the solution to the problem (b) of Example 1.1 is calculated in line 20. Note
the missing semicolon in the end of the line. This forces the output of the variable sol_b
to be printed out when the m-file perse_pasquale_b.m is executed.

1.12 Example (Persé–Pasquale Family Tree, I, Solution (b))
Running the m-file perse_pasquale_b.m in the Octave console gives us the solution
E[X6] = 3.8147.
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Exercises

1.1 Exercise
Consider Example 1.1. Calculate the expectations of the sizes of the 1st , 2nd , 3rd and
1 000th generations.

1.2 Exercise
Calculate the expectations of the 1 000th generation of a branching process with with
offspring distributions

(a) [0.5000 0.5000] ,
(b) [0.3333 0.3333 0.3333] ,

(c) [0.3000 0.5000 0.2000] ,
(d) [0.2000 0.5000 0.3000] .

1.3 Exercise (Flatus Lake, I)
(a) The Flatus bacteria reproduces by splitting. Every minute it splits with probability

0.1 into two bacteria. Luckily, the Flatus bacteria does not live very long: with
probability 0.2, it dies within any given minute. A lake is contaminated by approx-
imately 1 000 Flatus bacteria today at 8 a.m. How many Flatus bacteria are there
in average living in the lake at 9 a.m. today?

(b) The Virilus Flatus bacteria is a nasty mutation of the Flatus bacteria. Otherwise
it is completely similar to its weaker cousin, except that it splits withing a given
minute with probability 0.2 and dies with probability 0.1. A lake is contaminated
by approximately 1 000 Virilus Flatus bacteria today at 8 a.m. How many Flatus
bacteria are there in average living in the lake at 9 a.m. today?

1.4 Exercise
Show the Adam’s law of Lemma 1.7 for the case where one or both of the random variables
X and Y is continuous.

1.5 Exercise
Let X and Y be independent random variables. Show that then the conditional expecta-
tion E[X |Y ] is just the (unconditional) expectation E[X ] .
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Conditioning Tricks for Variances

Rev. Henry William Watson (1827–19103) was an English
mathematician and an ordained priest at Cambridge Apostle.

Watson wrote a number of mathematics and physics
books that were influential in his time, but not considered
classics today.

Watson was highly appreciated in his time. For exam-
ple, he was elected a fellow of the Royal Society in 1881.
He was given an honorary D.Sc. by Cambridge in 1883. He
was nominated by the Senate of Cambridge University to rep-
resent it as a governor on the King Edward’s Foundation in
Birmingham. He was bailiff of King Edward’s School for three
years. Nowadays, Watson is only remembered by his work on
branching processes with Galton. Rev. Henry William Watson (1827–1903)

Example 2.1 of this lecture is a continuation of Example 1.1 of Lecture 1. We will solve part
(c) concerning the variance of the generations of the branching process.

2.1 Example (Persé–Pasquale Noble Family Tree, II)
The most noble family of Persé–Pasquale is worried of their continuing existence. At the
moment there is only one male descendant of this most noble line. According to the
family records, the males of the noble family of Persé–Pasquale have sired male children
as follows

Number of male children Frequency

0 503
1 62
2 859

More than 2 0

(a) What is the probability that the 6th generation has more than 10 male descendants?
(b) What is the average number of descendants in the 6th generation?
(c) What is the variance of the number of descendants in the 6th generation?
(d) What is the probability that the Persé–Pasquale family will be ultimately extinct?
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Conditional Variance

Let X and Y be random variables. The conditional variance is defined via the conditional
expectation as

V[X |Y ] = E
h
�

X −E[X |Y ]
�2 �
�

�Y
i

.

Another way of thinking conditional variance is to understand it as variance, where the
expectation is replaced everywhere with the conditional expectation.

2.2 Remark (Short-Hands and Prediction)
The definition and consequently calculations involving conditional variances can be a bit
of an eyeful. For the untrained eye, it can be a good idea to use short-hand notations.
For example, denoting X̂ = E[X |Y ] can be helpful. This is a good notation also for the
reason that the conditional expectation E[X |Y ] is indeed the best possible estimate for
X after observing Y . Similarly, it may be a good idea to write Ê[ · ] for E[ · |Y ] and V̂[ · ]
for V[ · |Y ] . With this notation we have also that Ê[X ] = X̂ .

Like the conditional expectation E[X |Y ] , the conditional variance V[X |Y ] is a random
variable whose value is known, if the value of the conditioning variable Y is known. In
other words, V[X |Y = y] = v(y) for some function v(y) depending on the joint distribu-
tion of X and Y .

Steiner’s Translation Formula

In calculating variances (and conditional variances) the so-called Steiner’s translation for-
mula (known as König–Huygens formula for the French) is most useful. For uncoditional
variance the translation formula states that

V[X ] = E[X 2]−E[X ]2.

To see why this formula is true, we can simply use the definition of the variance, simple
algebra, and the linearity of expectation:

V[X ] = E
�

(X −E[X ])2
�

= E
�

X 2 − 2XE[X ] +E[X ]2
�

= E
�

X 2
�

+E
�

−2E[X ] X
�

+E
�

E[X ]2
�

= E[X 2]− 2E[X ]E[X ] +E[X ]2

= E[X 2]−E[X ]2.

Now, since conditional expectation shares all the properties of expectation (if the condition
is kept fixed), we see that the calculations above extend immediately to the conditional
variance. Thus, we have the following lemma.
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2.3 Lemma (Steiner’s Translation Formula)
Let X and Y be random variables. Then

V[X |Y ] = E[X 2|Y ]−E[X |Y ]2.

Eve’s Law

Motto: The distribution is complicated. The variance is relatively easy.
The following law of total variance is also called the Eve’s law, because of the operators

E and V . This is also the reason why the law of total expectation is called Adam’s law: it
comes first and is simpler.

2.4 Lemma (Eve’s Law)
Let X and Y be random variables. Then

V[X ] = E
�

V[X |Y ]
�

+V
�

E[X |Y ]
�

.

To show why Lemma 2.4 is indeed true, let us start by recalling the Steiner’s translation
formula. To avoid headache, we write the formula by using the short-hands introduced in
Remark 2.2:

V̂[X ] = Ê[X 2]− Ê[X ]2

= Ê[X 2]− X̂ 2.

Now, by the unconditional Steiner’s translation formula and the Adam’s law we have

V[X ] = E[X 2]−E[X ]2

= E[Ê[X 2]]−E[X̂ ]2.

But by Steiner’s translation formula this is

V[X ] = E
�

V̂[X ] + X̂ 2
�

−E
�

X̂
�2

= E
�

V̂[X ]
�

+E
�

X̂ 2
�

−E
�

X̂
�2

,

which is the Eve’s law, since

E[X̂ 2]−E[X̂ ]2 = V̂[X̂ ].

Indeed, by using our short-hand notation, the Eve’s law is just

V[X ] = E[V̂[X ]] +V[X̂ ].
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2.5 Remark
In a very formal way the Eve’s law can be written as

V = EV̂+VÊ.

2.6 Remark
Let us analyze the Eve’s law a bit. Suppose we are interested in the variability of X
around its mean E[X ] . This is of course nothing but V[X ] . Suppose then that we want
to “explain” or predict X with some other random variable Y . The best prediction for X
is then nothing but X̂ = Ê[X ] = E[X |Y ] . Then the second term

V[E[X |Y ]] = V[Ê[X ]] = V[X̂ ]

is the part of the variability of X that is explained by the variability of Y , while the first
term

E[V[X |Y ]] = E[V̂[X ]]

is the part of the variability of X that cannot be explained by Y .

Now we are ready to solve part (c) of Example 1.1 (or Example 2.1, which is the same).
Let Xn be, as before, the size of the nth generation. Obviously, the key conditioning trick
is to calculate the conditional variance V[Xn|Xn−1] first. Since the summands in the nth

generation are all independent of each others and of the size of the (n− 1)th generation,
the conditional variance is linear:

V [Xn |Xn−1] = V
�

ξn,1 + ξn,2 + · · ·+ ξn,Xn−1
|Xn−1

�

= V
�

ξn,1 |Xn−1

�

+V
�

ξn,2 |Xn−1

�

+ · · ·+V
�

ξn,Xn−1
|Xn−1

�

= Xn−1σ
2,

Here σ2 is the offspring variance

σ2 =
∑

x

(x −µ)2 px

and p is the offspring distribution and µ is the offspring mean. Once we recall from Lecture
1 that E[Xn|Xn−1] = Xn−1µ , we are ready to use the Eve’s formula:

V [Xn] = E
�

V[Xn|Xn−1]
�

+V
�

E[Xn|Xn−1]
�

= E
�

Xn−1σ
2
�

+V [Xn−1µ]

= σ2µn−1 +µ2V[Xn−1].
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Now, we have to solve this nasty looking recursion. To ease our eyes during the work, we
denote Vn = V[Xn] . So, with this notation, we have the recursion

Vn = σ2µn−1 +µ2Vn−1

to solve. Working out this recursion backwards a couple of times, the general picture of
what is happening becomes clear pretty soon:

Vn = σ2µn−1 +µ2
�

σ2µn−2 +µ2Vn−2

�

= σ2(µn−1 +µn) +µ4Vn−2

= σ2(µn−1 +µn) +µ4
�

σ2µn−3 +µ2Vn−3

�

= σ2(µn−1 +µn +µn+1) +µ6Vn−3

= · · ·
= σ2(µn−1 +µn + · · ·+µ2n−2) +µ2nV0

= σ2(µn−1 +µn + · · ·+µ2n−2)

= σ2µn−1
�

1+µ+ · · ·+µn−1
�

.

Now, we see that we are dealing with a geometric series:

1+µ+ · · ·+µn−1 =
n−1
∑

k=0

µk =

� 1−µn

1−µ , if µ 6= 1,
n, if µ= 1,

.

Consequently, we have obtained the following:

2.7 Proposition (Branching Variances)
The variance of the nth generation distribution of a branching process with offspring
distribution p is

V[Xn] =

�

σ2µn−1 1−µn

1−µ , if µ 6= 1,
nσ2, if µ= 1,

where µ and σ are the mean and variance of the offspring distribution.

Below is an Octave script file that solves part (c) of Example 2.1

1 ###############################################################################
2 ## FILE : perse_pasquale_c .m
3 ##
4 ## Variance of the o f f p r i n g d i s t r i b u t i o n of the Perse−Pasquale fami ly t r e e .
5 ###############################################################################
6
7 ## data i s the f r equenc i e s .
8 data = [503 62 859] ;
9

10 ## Of f sp r ing d i s t r i b u t i o n i s the r e l a t i v e f r equenc i e s . Note tha t Octave s t a r t s
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11 ## indexing with 1 . So p(1) i s the p r o b a b i l i t y of 0 o f f s p r i n g .
12 p = data/sum( data ) ;
13
14 ## The mean and the var iance are c a l c u l a t e d by using dot product with the row
15 ## vec to r [0 1 2 . . . ] .
16 x = 0:( length (p)−1);
17 mu = x∗p ’ ;
18 sigma_sq = (x−mu).^2 ∗ p ’ ;
19
20 ## Solu t ion to Example 1.1 par t ( c )
21 n = 6;
22 i f (mu != 1)
23 so l _ c = sigma_sq∗mû (n−1)∗( (1−mû n)/(1−mu) )
24 else
25 so l _ c = n∗ sigma_sq
26 endif

www.uva.fi/∼tsottine/psp/perse_pasquale_c.m

The code is a slight modification of the m-file perse_pasquale_b.m. It should be self-
explanatory, except maybe for the line 18. There one should note the pointwise power: if
x is a matrix, then xˆ2 would be the matrix product, which in this case would not make
any sense. Everything is a matrix in Octave, and Octave tries to understand sums, products
and powers in terms of matrix algebra. In order to apply the operations pointwise, we must
use the dot-notation.

2.8 Example (Persé–Pasquale Family Tree, I, Solution (c))
Running the m-file perse_pasquale_c.m in the Octave console gives us the solution
V[X6] = 30.716.

Exercises

2.1 Exercise
Consider Example 1.1. Calculate the expectations and variances of the sizes of the 1st ,
2nd , 3rd and 1 000th generations.

2.2 Exercise
Calculate the expectations and variances of the 1 000th generation of a branching process
with with offspring distributions

(a) [0.5000 0.5000] ,
(b) [0.3333 0.3333 0.3333] ,

(c) [0.3000 0.5000 0.2000] ,
(d) [0.2000 0.5000 0.3000] .

http://www.uva.fi/~tsottine/psp/perse_pasquale_c.m
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2.3 Exercise
Let X and Y be independent random variables. Show that then the conditional variance
V[X |Y ] is just the (unconditional) variance V[X ] .

2.4 Exercise (Toilets for The Gods Themselves)
In an alternate universe there are three genders: rationals, emotionals and parentals.
Naturally, all the different genders have separate public toilets. In addition to the three
established genders, there are also cissies who do not identify to any of them. Naturally,
they also have separate public toilets.

The following frequency data has been observed on how long the different genders
(and cissies) spend on public toilets

Time (in minutes) Rationals Emotionals Parentals Cisses

0 – 1 129 131 16 2
1 – 2 198 102 8
2 – 3 18 18 30
3 – 4 15 19 2
4 – 5 2 9
5 – 6
6 – 7 7
7 – 8 7 6 1
8 – 9 3 2
9 – 1 1

It is said that rationals are the quickies in toilet and emotionals are the slowest. It
is also said that this is a stupid gender stereotype since the variation inside genders are
greater than the variation between the genders. Given the data above, is that true? What
does that mean that “variations inside are greater than variations between”?
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Conditioning Tricks for Distributions

Irénée-Jules Bienaymé (1796–1878), was a French statisti-
cian. He contributed to the fields of probability and statistics,
and to their application to finance, demography and social
sciences. He formulated the Bienaymé–Chebyshev inequality
(more commonly known as Chebyshev inequality or Markov
inequality) and the Bienaymé formula for the variance of a
sum of uncorrelated random variables.

Bienaymé was the first one to formulate and solve the
extinction problem of families, already in 1845. Unfortu-
nately, his work fell into obscurity. Thus the work of Gal-
ton and Watson that appeared some 30 years later has re-
ceived unjustified prestige. In addition for not receiving due
credit of his work by the posterity, Bienaymé’s life was also
marked by bad luck. He attended the École Polytechnique
in 1815. Unfortunately that year’s class was excluded in the
following year by Louis XVIII because of their sympathy for
Bonapartists. Later Bienaymé was an inspector general in
the Finance Ministry, but was removed in 1848 for his lack
of support for the new Republican regime. He then became
professor of probability at the Sorbonne, but lost his position
in 1851.

Irénée–Jules Bienaymé (1796–1878)

We continue with the remaining problems of Example 1.1 and/or 2.1, recalled as Example
3.1 below. In this lecture, not only we discuss some interesting mathematics, but we also
show how adequate programming skills are necessary in 21st century mathematics.

We derive the distribution of the nth generation of a branching process formally by using
convolutions. The resulting formula, Proposition 3.5, does not appear, as far as the author
knows, in any other textbook that deals with branching processes. The reason is obvious:
the formula is mostly useless in practice, unless one is willing to do some computer pro-
gramming. And even with computers, the naïve algorithm we implement here is extremely
slow and unreliable. Indeed, for example for an offspring distribution with length 4, the
calculation of the 6th generation distribution seems practically impossible with the naïve
recursive algorithm. At least the author’s laptop tried to calculate it for some 2 hours and
then crashed, probably because the recursion grew too deep and wide.
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3.1 Example (Persé–Pasquale Noble Family Tree, III)
The most noble family of Persé–Pasquale is worried of their continuing existence. At
the moment there is only one male descendant of this most noble line. According to
family records, the males of the noble family of Persé–Pasquale have sired male children
as follows

Number of male children Frequency

0 503
1 62
2 859

More than 2 0

(a) What is the probability that the 6th generation has more than 10 male descendants?
(b) What is the average number of descendants in the 6th generation?
(c) What is the variance of the number of descendants in the 6th generation?
(d) What is the probability that the Persé–Pasquale family will be ultimately extinct?

Distribution of Sums

In order to answer to the question (a) of Example 2.1, we have to understand the distri-
bution of random sums of random variables. Let us start this quest in a gentle way by
considering the sum of two discrete random variables. It turns out that the notion of con-
volution is precisely what we need.

3.2 Definition (Discrete Convolution)
Let p and q be two (probability) vectors. Their (discrete) convolution is the vector p∗q
defined as

(p ∗ q)x =
∑

y

px−yqy .

The (discrete) convolution power is defined recursively as

p∗1 = p,

p∗n = p ∗ p∗(n−1).

Historically, the notion of convolution does not originate from the probability theory.
However, it is very well suited for it. Indeed, suppose that X and Y are both dicrete and
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mutually independent random variables with probability distribution functions p and q ,
respectively. Then, by using a conditioning trick, we note that

P[X + Y = x] =
∑

y

P[X + Y = x , Y = y]

=
∑

y

P[X = x − y , Y = y]

=
∑

y

P[X = x − y]P[Y = y |X = x − y]

=
∑

y

P[X = x − y]P[Y = y].

Thus, we have shown the following:

3.3 Lemma (Distribution of Independent Sums)
Let X and Y be two independent discrete random variables with probability distribution
functions p and q . Then their sum X + Y has the probability distribution function p∗q .

Distribution of Random Sums

The generation Xn of a branching process is a random sum of independent identically
distributed random variables ξn,1, . . . ,ξn,Xn−1

, where the independent summands ξn, j have
the common offspring distribution p . Lemma 3.3 can be used for non-random sums.
Indeed, if Xn−1 is fixed to be some y , then

pn
x |y = P[Xn = x |Xn−1 = y]

= P[ξn,1 + · · ·+ ξn,Xn−1
= x |Xn−1 = y]

= P[ξn,1 + · · ·+ ξn,y = x |Xn−1 = y]

= P[ξn,1 + · · ·+ ξn,y = x]

= p∗y
x .

3.4 Remark
(i) The notation p∗y

x should be understood as (p∗y)x , i.e., p∗y
x is the x th coordinate

of the convoluted vector p∗y = p ∗ p ∗ · · · ∗ p ( y times).

(ii) There is no typo in the formula pn
x |y = p∗y

x . The conditional probability pn
x |y is

indeed independent of n .
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Now, we only need to uncondition by using the law of total probability to get rid of the
conditioning trick {Xn−1 = y}:

pn
x = P[Xn = x]

=
∑

y

P[Xn = x |Xn−1 = y]P[Xn−1 = y]

=
∑

y

pn
x |y pn−1

y

=
∑

y

p∗y
x pn−1

y .

Finally, we note that we must interpret

p∗0x = pn
x |0

= P[Xn = x |Xn−1 = 0]

=

�

1, if x = 0,
0, otherwise.

Indeed, an extinct family line remains extinct.

We have obtained the following:

3.5 Proposition (Branching distributions)
The nth generation distribution of a branching process with offspring distribution p is
given by the recursion

p1
x = px ,

pn
x =

∑

y

p∗y
x pn−1

y , for n> 1,

with the convention that

p∗0x =

�

1, if x = 0,
0, otherwise.

Computing Random Sums

The result of Proposition 3.5 is very difficult analyze. However, it is not too difficult to
implement it for numerical calculations, if the offspring distribution p is a vector of finite
length. This is done by using the following Octave functions.

1 function pn = conv_power (p , n)
2 ## Funct ion pn = conv_power (p , n) re tu rns the n : th convolut ion power of the
3 ## vec to r p .
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4 ##
5 ## See a l so : conv
6
7 i f (n == 1)
8 pn = p ;
9 else

10 pn = conv ( p , conv_power (p , n−1) ) ;
11 endif
12 endfunction

www.uva.fi/∼tsottine/psp/conv_power.m

The function conv_power should be self-explanatory. It is a simple recursive code that
uses the Octave’s built-in function conv. The recursion call, i.e., the beef of the function,
is in line 10. Lines 7–8 are the end of the recursion that prevent the code from entering an
infinite loop (if the function is called properly).

1 function prob = cond_branching_pdf (x , p , y )
2 ## Funct ion prob = cond_branching_pdf (x , p , y ) re tu rn s the p r o b a b i l i t y tha t the
3 ## n : th generat ion of a branching process with o f f s p r i n g d i s t r i b u t i o n p has
4 ## e x a c t l y x o f f sp r ing , given tha t the (n−1): th generat ion has e x a c t l y y
5 ## o f f s p r i n g .
6 ##
7 ## Uses func t ion conv_power .
8
9 ## Maximum o f f s p r i n g s i z e

10 k = length (p)−1;
11
12 i f ( x > k∗y )
13 prob = 0;
14 e l s e i f ( y == 0)
15 i f ( x == 0)
16 prob = 1;
17 else
18 prob = 0;
19 endif
20 e l s e i f ( y == 1)
21 prob = p( x+1) ;
22 else
23 prob = conv_power (p , y ) ( x+1) ;
24 endif
25 endfunction

www.uva.fi/∼tsottine/psp/cond_branching_pdf.m

The function cond_branching_pdf is implicitly recursive via the call to the recur-
sive function conv_power in line 23. The function cond_branching_pdf checks many
obvious cases before resorting into the recursion call. The reason for this is that, first,
the recursion call is time-consuming, and second, we want to be sure that the function
conv_power is called with proper arguments.

1 function prob = branching_pdf (x , p , n)
2 ## Funct ion prob = branching_pdf (x , p , n) re tu rns the p r o b a b i l i t y tha t the n : th
3 ## generat ion of a branching process with o f f s p r i n g d i s t r i b u t i o n p has e x a c t l y
4 ## x o f f s p r i n g .

http://www.uva.fi/~tsottine/psp/conv_power.m
http://www.uva.fi/~tsottine/psp/cond_branching_pdf.m
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5 ##
6 ## Uses func t i on s cond_brancing_pdf and conv_power .
7
8 ## Maximum o f f s p r i n g s i z e
9 k = length (p)−1;

10 ## Maximum generat ion n s i z e .
11 kn = k̂ n ;
12
13 i f ( x > kn)
14 prob = 0;
15 e l s e i f (n == 1)
16 prob = p( x+1) ;
17 else
18 prob = 0;
19 for y=0:kn
20 prob = prob + cond_branching_pdf (x , p , y )∗branching_pdf (y , p , n−1);
21 endfor
22 endif
23 endfunction

www.uva.fi/∼tsottine/psp/branching_pdf.m

The function branching_pdf works pretty much the same way as the function
cond_branching_pdf. The main difference is the for loop in lines 19–21, where we
calculate the sum

∑

y

p∗y
x pn−1

y .

By running the code below, we get the solution to the part (a) of Example 3.1 (which
is the same as Example 1.1 and Example 2.1).

1 ###############################################################################
2 ## FILE : perse_pasquale_a .m
3 ##
4 ## P r o b a b i l i t y of more than 10 descendants in the 6: th generat ion of the
5 ## Perse−Pasquale fami ly t r e e .
6 ##
7 ## N. B . The c a l c u l a t i o n s w i l l take a while .
8 ##
9 ## Uses func t i on s conv_power , cond_branching_pdf , branching_pdf

10 ###############################################################################
11
12 ## data i s the f r equenc i e s .
13 data = [503 62 859] ;
14
15 ## Of f sp r ing d i s t r i b u t i o n i s the r e l a t i v e f r equenc i e s . Note tha t Octave s t a r t s
16 ## indexing with 1 . So p(1) i s the p r o b a b i l i t y of 0 o f f s p r i n g .
17 p = data/sum( data ) ;
18
19 ## Solu t ion to Example 1.1 par t ( a )
20 n = 6;
21 K = 10;
22
23 prob = 0;
24 for x=0:K

http://www.uva.fi/~tsottine/psp/branching_pdf.m
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25 prob = prob + branching_pdf (x , p , n) ;
26 endfor
27
28 so l_a = 1−prob ;

www.uva.fi/∼tsottine/psp/perse_pasquale_a.m

3.6 Example (Persé–Pasquale Family Tree, II, Solution (a))
Running the m-file perse_pasquale_a.m in the Octave console gives us (after some 8
minutes) the solution P[X6 > 10] = 0.12895.

Let us end this lecture by visualizing the first six generations of the Persé-Pasquale fam-
ily. We note that it took 12 minutes to calculate the plot by using the code below. So, our
algorithm is not very good or useful.
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Probability mass functions of the first six generations of Example 2.1.

http://www.uva.fi/~tsottine/psp/perse_pasquale_a.m
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The graphs above where generated by the m-file listed below. The code should be
relatively self-explanatory, so we do not explain it here.

1 ###############################################################################
2 ## FILE : perse_pasquale_pmfs .m
3 ##
4 ## P l o t s d i s t r i b u t i o n s of genera t ions of a branching process .
5 ###############################################################################
6
7 ###############################################################################
8 ## Frequenc ies and the o f f s p r i n g d i s t r i b u t i o n .
9 ###############################################################################

10
11 data = [503 62 859] ;
12 p = data/sum( data ) ;
13
14 ###############################################################################
15 ## C a l c u l a t i o n s .
16 ###############################################################################
17
18 max_off = 12;
19 x = 0: max_off ;
20 Px = zeros (6 , max_off+1) ;
21 for x0 = x
22 Px (1 , x0+1) = branching_pdf (x0 , p , 1) ;
23 Px (2 , x0+1) = branching_pdf (x0 , p , 2) ;
24 Px (3 , x0+1) = branching_pdf (x0 , p , 3) ;
25 Px (4 , x0+1) = branching_pdf (x0 , p , 4) ;
26 Px (5 , x0+1) = branching_pdf (x0 , p , 5) ;
27 Px (6 , x0+1) = branching_pdf (x0 , p , 6) ;
28 endfor
29
30 ###############################################################################
31 ## P l o t t i n g ( bar p l o t s ) .
32 ###############################################################################
33
34 ## Width of the bar in the bar p lo t .
35 w = 1;
36
37 ## P l o t t i n g window [x1 , x2 , y1 , y2 ] .
38 y_max = 0.65;
39 p l o t l i m s = [ − 0.5 , max_off+0.5 , 0 , y_max ] ;
40
41 subplot (2 ,3 ,1) ; # 2 rows , 2 columns , 1 s t p l o t .
42 bar (x , Px ( 1 , : ) , w) ;
43 text ( max_off −4, 0.25 , ’ n=1 ’ ) ;
44 axis ( p l o t l i m s ) ;
45 subplot (2 ,3 ,2) ; # 2 rows , 2 columns , 2nd p lo t .
46 bar (x , Px ( 2 , : ) , w) ;
47 text ( max_off −4, 0.25 , ’ n=2 ’ ) ;
48 axis ( p l o t l i m s ) ;
49 subplot (2 ,3 ,3) ; # 2 rows , 2 columns , 3rd p lo t .
50 bar (x , Px ( 3 , : ) , w) ;
51 text ( max_off −4, 0.25 , ’ n=3 ’ ) ;
52 axis ( p l o t l i m s ) ;
53 subplot (2 ,3 ,4) ; # 2 rows , 2 columns , 4 th p lo t .
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54 bar (x , Px ( 4 , : ) , w) ;
55 text ( max_off −4, 0.25 , ’ n=4 ’ ) ;
56 axis ( p l o t l i m s ) ;
57 subplot (2 ,3 ,5) ; # 2 rows , 2 columns , 5 th p lo t .
58 bar (x , Px ( 5 , : ) , w) ;
59 text ( max_off −4, 0.25 , ’ n=5 ’ ) ;
60 axis ( p l o t l i m s ) ;
61 subplot (2 ,3 ,6) ; # 2 rows , 2 columns , 6 th p lo t .
62 bar (x , Px ( 6 , : ) , w) ;
63 text ( max_off −4, 0.25 , ’ n=6 ’ ) ;
64 axis ( p l o t l i m s ) ;

www.uva.fi/∼tsottine/psp/perse_pasquale_pmfs.m

Exercises

3.1 Exercise
Calculate the distributions of the 1st , 2nd and 3rd generations of the branching process
with offspring distributions

(a) [0.5000 0.0000 0.5000] ,
(b) [0.3333 0.3333 0.3333] ,

(c) [0.3000 0.5000 0.2000] ,
(d) [0.2000 0.5000 0.3000] .

3.2 Exercise (Flatus Lake, II)
Consider Exercise 1.3

(a) Calculate the distribution of the nth generation offspring of a single Flatus bacteria
for n= 1,2, 3.

(b) Calculate the distribution of the nth generation offspring of a single Virilus Flatus
bacteria for n= 1,2, 3.

3.3 Exercise
Visualize the distributions of the 1st , 2nd , 3rd , 4th , 5th , 6th , 7th and 8th generations of
the branching process with offspring distributions

(a) [0.7500 0.2500] ,
(b) [0.5000 0.5000] ,

(c) [0.2500 0.7500] ,
(d) [0.0001 0.9999] .

http://www.uva.fi/~tsottine/psp/perse_pasquale_pmfs.m
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3.4 Exercise
Suppose a branching process has the offspring distribution [0.1 0.0 0.2 0.0 0.4 0.3] .

(a) How many descendants can there be in generation 127?
(b) What are the possible number of descendants in generation 6?
(c) What are the possible number of descendants in generation 7?

3.5 Exercise
Calculate the 7th generation distribution for a branching process with offspring distribu-
tion [0.15 0.45 0.30 0.00 0.00 0.10] .

N.B.: As far as the author knows, this problem is way beyond the capabilities of the
algorithm used in the Octave function branching_pdf .
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Analytical Tools

Brook Taylor (1685–1731) was an English mathematician
who is best known for Taylor’s theorem and the Taylor series.
His work Methodus Incrementorum Directa et Inversa (1715)
added a new branch to higher mathematics, now called the
“calculus of finite differences”. Among other ingenious ap-
plications, he used it to determine the form of movement of
a vibrating string, by him first successfully reduced to me-
chanical principles. The same work contained the celebrated
formula known as Taylor’s formula, the importance of which
remained unrecognized until 1772, when Joseph-Louise La-
grange realized its powers and termed it “the main founda-
tion of differential calculus”.

In probability we are often interested in calculating con-
volutions, since they are the sums of independent random
variables. Unfortunately, the convolution is a complicated
operation. However, by using the Taylor series “backwards”
we obtain the so-called probability generating function, for
which the calculation of convolutions becomes easy. Unfor-
tunately, the probability generating functions only work for
N -valued random variables. Fortunately, for general random
variables there are related transformations: the moment gen-
erating functions and the characteristic functions.

Brook Taylor (1685–1731)

Finally, we are ready to turn into the final problem (d) of the Example 1.1 recalled
below as Example 4.1. This problem is, as far as the author knows, very difficult to solve
without using analytical tools (probability generating functions, moment generating func-
tions, or characteristic functions). With analytical tools the problem is, in theory, quite
simple. However, in practice, to compute the explicit solution one typically has to resort
into numerical methods.

In this lecture, we will solve the final problem (d) of Example 4.1 by using an analytical
tool called the probability generating function. Then, we will briefly introduce the related
analytical tools: moment generating functions and characteristic functions, although they
are not needed for the solution. Note that any of of these three analytical tools could have
been used to solve the problem, and in practice any of them would work just as easily.
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4.1 Example (Persé–Pasquale Noble Family Tree, IV)
The most noble family of Persé–Pasquale is worried of their continuing existence. At
the moment there is only one male descendants of this most noble line. According to
family records, the males of the noble family of Persé–Pasquale have sired male children
as follows

Number of male children Frequency

0 503
1 62
2 859

More than 2 0

(a) What is the probability that the 6th generation has more than 10 male descendants?
(b) What is the average number of descendants in the 6th generation?
(c) What is the variance of the number of descendants in the 6th generation?
(d) What is the probability that the Persé–Pasquale family will be ultimately extinct?

The extinction problem for the branching process Xn , n ∈ N , with offspring distribution
p is to calculate the ultimate extinction probability

ρ = P[ultimate extinction]

= P
�

Xn = 0 for some n
�

= P
�

Xn = 0 eventually
�

= P
�

⋃

n
{Xn = 0}

�

.

Denote

ρn = P
�

extinction of the nth generation
�

= P[Xk = 0 for some k ≤ n]

= P

�

⋃

k≤n

{Xk = 0}

�

= P[Xn = 0].

A simple-minded way to calculate the ultimate extinction probability would be to note that,
because of the monotonic continuity of probability,

ρ = lim
n→∞

ρn.
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Now ρn = pn
0 , which can in principle be calculated by using Proposition 3.5. Below is an

illustration of pn
0 for n= 0,1, 2,3, 4,5, 6,7. (With n= 8 my Octave calculated 4 hours and

then crashed.)
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Finite generations extinction probabilities for Example 3.1.

The plot above was generated by the m-file below.

1 ###############################################################################
2 ## FILE : p e r s e _ p a s q u a l e _ e x t i c t i o n s .m
3 ##
4 ## P l o t s e x t i n c t i o n p r o b a b i l i t e s with in given genera t ions .
5 ###############################################################################
6
7 ###############################################################################
8 ## Data and parameters , and i n i t i a l i z a t i o n s
9 ###############################################################################

10
11 data = [503 62 859] ; ## Frequenc ies
12 p = data/sum( data ) ; ## Of f sp r ing d i s t r i b u t i o n
13 nmax = 7; ## Maximum number of genera t ions
14 n = 1:nmax ;
15 probn = zeros (1 ,nmax) ; ## I n i t i a l i z a t i o n fo r speeding up
16
17 ###############################################################################
18 ## C a l c u l a t i o n s ( tha t take some sweet time )
19 ###############################################################################
20
21 for n0 = n
22 probn (n0) = branching_pdf (0 , p , n0) ;
23 endfor
24
25 ###############################################################################
26 ## P l o t t i n g
27 ###############################################################################
28
29 plot ([0 n ] , [0 probn ] , ’ marker ’ , ’ ∗ ’ )
30 p l o t l i m s = [0 , nmax , 0 , 1 ] ;
31 axis ( p l o t l i m s ) ;
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32 grid on ;

www.uva.fi/∼tsottine/psp/perse_pasquale_extinctions.m

We see some possible convergence in the plot for pn
0 , n = 0,1, 2,3, 4,5, 6,7. It seems

that the probability of ultimate extinction is something like little less than 0.6. However,
in order to be quite certain we have hit the neighborhood of the true ultimate extinction
probability ρ = lim pn

0 , we have to calculate pn
0 for large values of n . Unfortunately, this

is not practical. Indeed, it already took 1 hour to calculate p7
0 . Calculating something like

p50
0 , say, is not possible in practice. At least not with the recursive algorithm implemented

in the Octave function branching_pdf. A practical solution is given by using an analytical
tool called the probability generating function. We introduce the probability generating
functions later after we have discussed the Taylor’s expansion.

4.2 Remark (Almost Sure Extinction)
Before going into any further analysis, let us try to see if there is an easy solution. Let µ
be the average number of males sired by a given noble of the Persé–Pasquale family, i.e,
µ = E[ξn,i] . Suppose µ < 1. Then the extinction happens for sure. Indeed, since the
expected number of descendants in generation n is µn , we see that E[Xn]→ 0. Now we
recall the Markov’s inequality for non-negative random variables X :

P[X ≥ a] ≤
E[X ]

a
, for all a > 0.

Consequently

P[Xn > 0] = P[Xn ≥ 1]

≤ E[Xn]

= µn.

Therefore P[Xn > 0] → 0, which means that the extinction will happen eventually. If
µ = 1, it is also possible (but more technical) to argue that the extinction will happen
eventually, unless there is no randomness in the branching process.

For Persé–Pasquale family we have µ = 1.25. Consequently, the extinction does not
appear to be certain. We have to analyze further.

Taylor Approximation

The key idea in the analytical tools presented here comes from the Taylor’s polynomial
approximation of smooth functions. (We note that there are better versions of the Taylor’s
approximation theorem that do not require the existence of the (n + 1)th derivative as
Lemma 4.3 below does.)

http://www.uva.fi/~tsottine/psp/perse_pasquale_extinctions.m
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4.3 Lemma (Taylor’s Approximation)
Let f (x) be a function that has n + 1 continuous derivatives at point a . Then we can
approximate

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · ·+

f (n)(a)
n!

(x − a)n + εn(x)(x − a)n,

where εn(x)→ 0 as x → a .

We assume that the reader is familiar with the Taylor’s approximation. However, just
in case the reader has forgotten, we briefly explain why it is true by using the case n = 2
as an example; the case for general n is then easy to see.

By the fundamental theorem of calculus we have

f (x) = f (a) +

∫ x

a
f ′(y)dy.

Now, let us use the fundamental theorem of calculus twice more. We obtain

f (x) = f (a) +

∫ x

a
f ′(y)dy

= f (a) +

∫ x

a

�

f ′(a) +

∫ y

a
f ′′(z)dz

�

dy

= f (a) +

∫ x

a

�

f ′(a) +

∫ y

a

�

f ′′(a) +

∫ z

a
f ′′′(v)dv

�

dz

�

dy.

Then, by using the linearity of the integral, we obtain

f (x) = f (a) +

∫ x

a

�

f ′(a) +

∫ y

a

�

f ′′(a) +

∫ z

a
f ′′′(v)dv

�

dz

�

dy

= f (a) +

∫ x

a
f ′(a)dy +

∫ x

a

∫ y

a
f ′′(a)dzdy +

∫ x

a

∫ y

a

∫ z

a
f ′′′(v)dvdzdy

= f (a) + f ′(a)

∫ x

a
dz + f ′′(a)

∫ x

a

∫ y

a
dvdz +

∫ x

a

∫ y

a

∫ z

a
f ′′′(v)dvdzdy

= f (a) + f ′(a)(x − a) + f ′′(a)
(x − a)2

2
+

∫ x

a

∫ y

a

∫ z

a
f ′′′(v)dvdzdy.

Thus, in order to see that Lemma 4.3 is true for n= 2, it remains to show that
∫ x

a

∫ y

a

∫ z

a
f ′′′(v)dvdzdy = ε2(x)(x − a)2,
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where ε2(x)→ 0 as x → a . Now, since f ′′′(v) is continuous, it is bounded around a with
a number C , say. Therefore,

�

�

�

�

∫ x

a

∫ y

a

∫ z

a
f ′′′(v)dvdzdy

�

�

�

�

≤
∫ x

a

∫ y

a

∫ z

a
C dvdzdy

= C
(x − a)3

3!

= C
(x − a)

3!
(x − a)2.

This shows Lemma 4.3 for the case n = 2. The case for general n can be seen easily by
iterating the arguments above, although the formulas become quite messy.

4.4 Remark (Analytic Functions)
Sometimes a function f (x) can be expressed as its Taylor expansion, or more precisely,
as its Taylor series (around point a = 0) as

f (x) =
∞
∑

k=0

f (k)(0)
k!

xk.

Such functions are called analytic. Examples include of course all polynomials and the
following common functions:

ex =
∞
∑

k=0

1
k!

xk,

ln (1+ x) =
∞
∑

k=1

(−1)k−1

k
xk, for |x |< 1,

sin x =
∞
∑

k=0

(−1)k

(2k+ 1)!
x2k+1,

cos x =
∞
∑

k=0

(−1)k

(2k)!
x2k.

Actually, almost all of the functions one learns at school are analytic.

4.5 Remark
In Remark 4.4 above, f (k)(x) denotes the kth derivative, and, as always, the 0th deriva-
tive is the function itself: f (0)(x) = f (x) .
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Probability Generating Functions

The probability generating function can be thought of being the inverse of a Taylor ex-
pansion, where the coefficients, that is, the derivatives at point a = 0, correspond to the
probabilities.

4.6 Definition (Probability Generating Function)
The probability generating function G(θ ) of an N-valued random variable X is

G(θ ) =
∑

x

P[X = x]θ x .

4.7 Remark
In Definition 4.6 we have, as always, 0θ = 0 for θ 6= 0 and 00 = 1.

4.8 Remark
Definition 4.6 can also be expressed as

G(θ ) = E
�

θ X
�

,

and this, taken as the definition, in principle, works for more general random variables
than the N-valued ones. So, the probability generating function is closely related to the
Mellin transform used in analysis.

The name “probability generating function” comes from Lemma 4.9 below, which also
further elaborates how the probability generating function is a kind of an inverse of Taylor
series. Also, it follows from Lemma 4.9 that the probability mass function P[X = x] can
be recovered from the probability generating function G(θ ) , and vice versa. To see why
Lemma 4.9 below is true, one only needs to derivate. Indeed, after differentiation, all the
powers less than x vanish and all the powers greater that x vanish when evaluated at
x = 0. Only the power x remains. (Try it!)

4.9 Lemma (Probability Generating Function)
Let X be an N-valued random variable with probability generating function G(θ ) . Then

P[X = x] =
G(x)(0)

x!
.
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4.10 Remark
In Lemma 4.9 above, as always, 0! = 1. Also note that G(0)(0) = G(0) , by definition of
the 0th derivative, and

G(0) = P[X = 0],

since

G(0) =
∑

x

P[X = x]0x ,

and θ x = 0 for x 6= 0 and 00 = 1.

Probability generating functions are useful, because they transform the nasty business
of taking convolutions into the simple operation of multiplication. Indeed, suppose X and
Y are independent N-valued random variables with probability generating functions GX
and GY , respectively. Then

GX+Y (θ ) = E
�

θ X+Y
�

= E
�

θ Xθ Y
�

= E
�

θ X
�

E
�

θ Y
�

= GX (θ )GY (θ ).

By iterating the argument above, we obtain the following lemma.

4.11 Lemma (Probability Generating Functions for Independent Sums)
Let X1, X2, . . . , Xn be independent N-valued random variables with probability generating
functions GX1

(θ ) , GX2
(θ ) , . . . , GXn

(θ ) . Then the sum

S = X1 + X2 + · · ·+ Xn

has the probability generating function

GS(θ ) = GX1
(θ )GX2

(θ ) · · ·GXn
(θ ).

Probability generating functions are particularly useful for dealing with independent
random sums, as the following proposition shows.
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4.12 Lemma (Probability Generating Functions for Independent Random Sums)
Suppose X1 , X2 , . . . , are independent and identically distributed N-valued random vari-
ables. Suppose that N is an independent N-valued random variable. Let

S = X1 + X2 + · · ·+ XN .

Then the probability generating function of S is

GS(θ ) = GN (GX (θ )) ,

where GX (θ ) is the common probability generating function of the summands X i .

Lemma 4.12 follows from the following chain or arguments, where the key condition-
ing trick is to condition on the number of summands N and then use independence:

GS(θ ) = E
�

θ X1+···+XN
�

= E
�

E
�

θ X1+···+XN |N
��

= E
�

E
�

θ X1 |N
�

· · ·E
�

θ XN |N
��

= E
�

E
�

θ X1
�

· · ·E
�

θ XN
��

= E
�

GX (θ )
N
�

= GN (GX (θ )) .

Lemma 4.12 is useful for branching processes. Indeed, let Xn , n ∈ N , be a branching
process with offspring distribution p . Let Gn(θ ) be the probability generating function
of Xn and let G(θ ) be the probability generating function of the offspring distribution.
Obviously G1(θ ) = G(θ ) . For G2(θ ) we note that X2 = ξ2,1 + ξ2,2 + · · · + ξ2,X1

, where
the ξi, j ’s are independent and identically distributed with probability generating function
G(θ ) . Consequently, by using Lemma 4.12 with N = X1 , we have

G2(θ ) = G1(G(θ ))

= G(G(θ ))

= G ◦ G(θ ).

The last line here is just the definition of composition for functions. The same argument
for Xn = ξn,1 + ξn,2 + · · ·+ ξn,Xn−1

yields

Gn(θ ) = Gn−1(G(θ )).

Now iterating the recursion above backwards with n , we obtain

Gn(θ ) = Gn−2(G(G(θ ))

= Gn−2(G ◦ G(θ ))

= Gn−3(G ◦ G ◦ G(θ ))

= · · ·
= G ◦ · · · ◦ G

︸ ︷︷ ︸

n times

(θ ).
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Since the last line above is (by definition) the nth composition power G◦n(θ ) of the func-
tion G(θ ) , we have found out the following truth.

4.13 Proposition (Branching probability generating functions)
Let Xn , n ∈ N , be a branching process with offspring distribution p . Let G(θ ) be the
probability generating function of the offspring distribution. Then the probability gener-
ating function of the nth generation is G◦n(θ ).

Proposition 4.13 provides a new way to calculate the distribution of the nth generation
of the branching process. Indeed,

pn
x =

1
x!

G(x)n (0)

=
1
x!
(G◦n)(x)(0).

Unfortunately, this formula is also recursive and, moreover, includes differentiation, which
may turn out to be very unstable and time-consuming to compute with Octave. For the nth

generation extinction probabilities we have the formula

pn
0 = Gn(0)

= G◦n(0).

This formula does not look very attractive, either.
Let us get back to Example 4.1. To solve it, we use once again a conditioning trick.

Suppose that at generation 1 we have X1 = x , say. Then in order for the extinction to
happen, each one of these x lines must go extinct individually. By independence and
symmetry, the probability for this is ρx . Consequently, the law of total probability gives us

ρ = P[Xn = 0 for some n]

=
∑

x

P[X1 = x]P[Xn = 0 for some n |X1 = x]

=
∑

x

pxρ
x .

Now, by noticing the probability generating function in the equation above, we obtain the
following.

4.14 Theorem (Branching Extinction)
The probability of ultimate extinction for a branching process is given by the smallest
positive root of the equation

ρ = G(ρ),

where G(θ ) is the probability generating function of the offspring distribution.
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Now, solving the equation of Theorem 4.14 can sometimes be very tedious and most
often analytically simply impossible. In Example 4.1 the offspring distribution has non-zero
values for only 0, 1, and 2: p= [p0 p1 p2] , which means that we are left with a quadratic
equation. This we can solve easily analytically.

4.15 Example (Persé-Pasquale Family Tree, IV, Solution (d))
We need to solve, for p= [0.353230 0.043539 0.603230] ,

ρ = p0 + p1ρ + p2ρ
2.

In standard form this quadratic equation reads

p2ρ
2 + (p1 − 1)ρ + p0 = 0.

Therefore, the smallest positive root is obtained by taking “−” in the “±” in the quadratic
formula:

ρ =
1− p1 −

p

(p1 − 1)2 − 4p2p0

2p2
= 0.58556

0
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0.8

1

0 0.2 0.4 0.6 0.8 1

Extinction probability for Example 3.1.

Note that even though there is a huge 25 % growth for each generation, the family will
more likely than not go extinct eventually.

Let us note that the solution for the equation ρ = G(ρ) was easy, since we had px = 0
for x > 2. This lead into a quadratic equation, for which we have a simple analytical
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solution. For higher degree equations, the analytical solutions are very difficult to come by,
or outright impossible. Therefore, one must resort to numerical methods. If the offspring
distribution is finite, then the resulting equation is a polynomial equation. With Octave
such equations can be solved by using the function roots. If the offspring distribution
is not finite, then one has to use more general root-finding methods. In this case Octave
function fzero might be useful.

Moment Generating Functions

Probability generating functions work well for N-valued random variables. For general real
valued random variables we must use other tools. Indeed, e.g., the sum

G(θ ) =
∑

x

P[X = x]θ x

would be identically zero for continuous distributions X . The definition

G(θ ) = E
�

θ X
�

would work better, but then there is a problem of understanding the power θ X for non-
integer X . This can be done by using the exponential function, or even better, by using a
change of variables. This gives us the following definition.

4.16 Definition (Moment Generating Function)
Let X be a random variable. Its moment generating function is

M(θ ) = E
�

eθX
�

.

If X is N-valued, then the probability and moment generating functions are connected
by a simple change of variables:

M(θ ) = G(eθ ).

If X has continuous distribution with probability density function f (x) , then its probability
generating function is

M(θ ) =

∫ ∞

−∞
eθ x f (x)dx .

So, in this case the moment generating function is basically the Laplace transform of the
density function f (x) .

The name “moment generating” function comes from the following. Recall that the nth

moment of the random variable X is

mn = E [X n] .
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Now, expand the exponential function as Taylor’s series

eθX = 1+ θX +
θ2

2!
X 2 +

θ3

3!
X 3 + · · ·+

θ n

n!
X n + · · · .

By taking expectations on both sides, we see that

M(θ ) = 1+ θm1 +
θ2

2!
m2 +

θ3

3!
m3 + · · ·+

θ n

n!
mn + · · · .

By differentiating both sides we obtain the following.

4.17 Lemma (Moment Generating Function)
The nth moment of the random variable X with moment generating function M(θ ) can
be calculated as

mn = M (n)(0).

Similarly to probability generating functions, also moment generating functions de-
termine the distribution uniquely. Unfortunately, this is not so easy to see as in the case
of probability generating functions. One would hope that the moments would define the
distribution uniquely, but unfortunately that would not be completely true. We state the
following important lemma without any proof or idea of its validity.

4.18 Lemma (Moment Generating Functions Define Distributions)
Let two random variables have the same moment generating function, then their distri-
butions are the same.

Finally, let us point out that the results on sums of random variables in terms of the
probability generating functions translate in the obvious way to moment generating func-
tions.

Characteristic Functions

There is a small problem with moment generating functions: not all random variables
admit one. The problem is that in order for the expectation E[eθX ] to exist, the random
variable X must have light tails, i.e., the probabilities P[|X | ≥ x] must converge to zero
exponentially fast. This is not true for all random variables. An example is the standard
Cauchy distribution that is a continuous distribution with probability density function

f (x) =
1

π(1+ x2)
.
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Indeed, for the Cauchy distribution, none of the moments mn , n ∈ N , exist. For n = 1 a
simple-minded one would like to assign, by symmetry, that E[X ] = 0. Unfortunately, we
need more for the expectation: we need E[|X |] <∞ for E[X ] to make sense in, say, the
law of large numbers. But for the standard Cauchy distributed random variable X , we
have

E[|X |] =
∫ ∞

−∞
|x | f (x)dx =

2
π

∫ ∞

0

x
1+ x2

dx = ∞.

The analytical tool for the fat tailed random variables is provided by complex analysis.
Let z = x + iy ∈ C . Recall the complex exponential

ez = ex (cos y + i sin y) .

Now, while the real exponential eθ x can easily be very large, the imaginary exponential
eiθ x is bounded for all x ∈ R . Indeed,

�

�eiθ x
�

� =
�

� cos(θ x) + i sin(θ x)
�

� =
Æ

cos2(θ x) + sin2(θ x) = 1.

This suggests the following definition.

4.19 Definition (Characteristic Function)
Let X be a random variable. Its characteristic function is

ϕ(θ ) = E
�

eiθX
�

= E [cos (θX )] + iE [sin (θX )] .

The connection between characteristic function and moment generating function, when
the latter exists, is a simple one:

ϕ(−iθ ) = M(θ ).

Actually, this is basically the same connection that one has between the Laplace trans-
form and the Fourier transform. Indeed, the moment generating function is, basically,
the Laplace transform, and the characteristic function is, basically, the Fourier transform.

The characteristic function exists for all random variables. Also, the characteristic func-
tion defines the distribution uniquely. Moreover, the characteristic functions characterize
the convergence in distribution (hence the name, the author guesses). This last statement is
called the Lévy’s continuity theorem. To emphasize the importance of the last statement,
me make it a lemma. Before that we recall the notion of convergence in distribution.

4.20 Definition (Convergence in Distribution)
Let X1, X2, . . . be random variables with cumulative distribution functions

Fn(x) = P[Xn ≤ x].
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Let X be a random variable with cumulative distribution function F(x) . Then

Xn
d
→ X ,

i.e., Xn converges to X in distribution if

Fn(x) → F(x)

for all x for which F(x) is continuous.

The notion of convergence in distribution is a bit complicated. However, it is precisely
the notion one needs for the central limit theorem, which in turn is relatively easy to prove
once one knows the following lemma.

4.21 Lemma (Lévy’s Continuity Theorem)
Let X1, X2, . . . be random variables with characteristic functions ϕX1

(θ ),ϕX2
(θ ), . . . . Let

X be a random variable with characteristic function ϕX (θ ) . Then

Xn
d
→ X if and only if ϕXn

(θ ) → ϕX (θ ).

Finally, Let us point out that the results on sums of random variables in terms of the
probability generating functions translate (and generalize!) in the obvious way to charac-
teristic functions.

Exercises

4.1 Exercise
Calculate the ultimate extinction probabilities for the branching processes having off-
spring distributions

(a) [0.5000 0.5000] ,
(b) [0.3333 0.3333 0.3333] ,

(c) [0.3000 0.5000 0.2000] ,
(d) [0.2000 0.5000 0.3000] .

4.2 Exercise
Calculate (numerically) the ultimate extinction probabilities for the branching processes
having offspring distributions
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(a) [0.5000 0.0000 0.0000 0.5000] ,
(b) [0.2500 0.2500 0.2500 0.2500] ,

(c) [0.4000 0.3000 0.2000 0.1000] ,
(d) [0.1000 0.2000 0.3000 0.4000] .

4.3 Exercise (The Ultimate Instability of Ecology)
Suppose the branching process is a reasonable model for the sizes of animal populations.
What does this say about the stability in ecology?

4.4 Exercise
Consider a branching process with Poisson offspring distribution with parameter λ > 0.
That is,

px = e−λ
λx

x!
, x = 0,1, 2 . . . .

Visualize the ultimate extinction probability as a function of λ .

4.5 Exercise
Formulate, when possible, the analogs of the results 4.9–4.14 given for probability gen-
erating functions for moment generating functions and characteristic functions.

4.6 Exercise
(a) Give an example of a random variable that has moment generating function, but

does not have probability generating function.
(b) Give an example of a random variable that has probability generating function, but

does not have moment generating function.
(c) Give an example of a random variable that has all moments, but does not have

moment generating function.
(d) Calculate the characteristic functions of your examples.
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Some Interesting Probability
Distributions
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Binomial Distribution

The binomial distribution is one of the two natural sampling
distributions, the other being the hypergeometric distribu-
tion. The origins of the binomial distribution is shrouded in
history. In its symmetric form, i.e., when the individual suc-
cess probability is half, the distribution is probably older than
any writing system.

Maybe the first one to study the non-symmetric bi-
nomial distribution was the Swiss mathematician Jacob
Bernoulli (1654–1705). Jacob was the oldest in the long
and prestigious Bernoulli dynasty of scientific geniuses.

In his posthumously published book Ars Conjectandi
(1713), Jacob Bernoulli was the first one to publish a ver-
sion of the law of large numbers. In the same work, the first
relatively rigorous study of the binomial distribution was pre-
sented. Ars Conjectandi, meaning the “Art of Guessing”, was
one of the first textbooks ever on probability theory, and cer-
tainly the most influential one ever. Finally, we note that the
word “stochastics” for probability is a (very dry) joke on the
name of the Jacob’s book, being a some sort of a translation
of the Latin word “Conjectandi” into Classical Greek.

Jacob Bernoulli (1654–1705)

The key example 5.1 below and its follow-up example 5.11 of this lecture deal with a
queuing system in a so-called stationary state. We will learn more about queuing systems
and stationary states of stochastic processes later. For now, we just give a taste.

5.1 Example (Quality of Service for a Link, I)
There are 5 devices in a teletraffic system sharing a common link. Each device is idle
with probability 90 %. When they transmit, they do it with a constant rate of 3 Mb/s.
How big should the link capacity be so that the probability that the link can serve all the
devices at any given time is at least 99 %?
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5.2 Remark
Using numbers in analysis is just silly! One forgets where the numbers came from, and
moreover one would be unnecessarily specific. Therefore, we use symbols instead of
numbers.

Let S be the workload of the link and let c be its capacity per device. Let α be the
quality-of-service parameter, i.e., the probability that all demands are met. The question
is then to find such a c that

P[S > nc] ≤ 1−α,

where n is the number of devices sharing the link.

To answer the question of Example 5.1, we must develop a stochastic model for the
distribution of the workload S . With the minimal data given in Example 5.1 we a forced
to make lots of independence and stationarity assumptions. Indeed, there is no data to
justify any kind of special dependence structure. Also, as far as the author knows, there
is no “universally accepted” reason for any specific dependence structure, either. Also, we
need to make the stationarity assumption that the workload is statistically the same all over
the time. This means, in particular, that there are no pre-known “busy hours”.

We assume that each device will independently demand service with the same proba-
bility p = 1− 90% = 0.1 at any given time. Taking 3 Mb/s to be the unit, we can model
the demanded workload S as the random variable

S = X1 + X2 + X3 + X4 + X5,

where the summands X i are independent and identically distributed with distribution

X i =

�

1, with probability p,
0, with probability 1− p.

We recall, that the distribution of the summands X i has a name.

5.3 Definition (Bernoulli Distribution)
Let p ∈ (0, 1) . A random variable X which takes value 1 with probability p and 0 with
probability 1− p is called Bernoulli distributed.

Bernoulli distribution is N-valued and its probability generating function is

G(θ ) = E
�

θ X
�

= P[X = 0]θ0 + P[X = 1]θ1

= (1− p) + pθ .
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The mean of the Bernoulli distribution is

E[X ] = 0× P[X = 0] + 1× P[X = 1]

= P[X = 1]

= p,

and the variance of the Bernoulli distribution is

V[X ] = E[X 2]−E[X ]2

=
�

02 × P[X = 0] + 12 × P[X = 1]
�

− p2,

= p− p2

= p(1− p).

5.4 Remark
From the formula of the variance we see that the variability of the Bernoulli distribution
is at its highest in the symmetric case p = 1/2.

Qualitative Approach to Binomial Distribution

The binomial model is precisely the model that fits Example 5.1.

5.5 Definition (Binomial Distribution)
Let X1 , X2 , . . . , Xn be independent and identically distributed random variables each
having Bernoulli distribution with parameter p . Then their sum

S = X1 + X2 + · · ·+ Xn

is binomially distributed with parameters n and p .

We calculate the probability mass function of the binomial distribution in the next sec-
tion. Before that we state some easy properties that follow immediately from Definition
5.5 and the properties of the Bernoulli distribution.

5.6 Proposition (Properties of Binomial Distribution)
Let S be binomially distributed with parameters n and p . Then

(i) its probability generating function is

Gn,p(θ ) = ((1− p) + pθ )n ,
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(ii) its mean is

E[S] = np,

(iii) and its variance is

V[S] = np(1− p).

Let us first see the case for the probability generating function. Now, the Bernoulli
distribution has probability generating function

Gp(θ ) = (1− p) + pθ .

Since the binomial distribution is a sum of n independent identically distributed Bernoulli
variables, its probability generating function is

Gn,p(θ ) = Gp(θ )
n

Formula 5.6(i) follows from this.
Formulas 5.6(ii) and 5.6(iii) can be derived from formula 5.6(i) by differentiation.

There is, however, an easier way: since the Bernoulli summands in Definition 5.5 are inde-
pendent, the variance is linear. The expectation is always linear. Consequently we have

E[S] = E [X1 + X2 + · · ·+ Xn]

= E[X1] +E[X2] + · · ·+E[Xn]

= p+ p+ · · ·+ p

= np,

V[S] = V [X1 + X2 + · · ·+ Xn]

= V[X1] +V[X2] + · · ·+V[Xn]

= p(1− p) + p(1− p) + · · ·+ p(1− p)

= np(1− p),

Quantitative Approach to Binomial Distribution

The qualitative definition 5.5 is pretty close to a quantitative definition. We only need to
calculate the distribution of the sum S of n independent identically distributed Bernoulli
random variables. One approach would be to use the law of total probability of Lemma
1.4. Another approach would be to use probability generating functions. We take the latter
approach.

Recall that the probability generating function of a binomially distributed random vari-
able with parameters n and p is

Gn,p(θ ) =
�

(1−p) + pθ
�n

.
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So, to calculate the probabilities P[S = s] , s ∈ N , for a binomially distributed random
variable, we only need to differentiate. We obtain

P[S = s] =
1
s!

G(s)n,p(0)

=
1
s!

�

ds

dθ s

�

�

(1− p) + pθ
�n�
�

θ=0

=
n(n− 1) · · · (n− s+ 1)

s!
ps
�

�

(1− p) + pθ
�n−s�

θ=0

=
�

n
s

�

ps(1− p)n−s.

So, we have found the binomial distribution:

5.7 Definition (Binomial Distribution)
A random variable S has the binomial distribution with parameters n ∈ N and p ∈ (0, 1)
if it has the probability mass function

P [S = s] =
�

n
s

�

ps (1− p)n−s s = 0,1, 2, . . . , n.

5.8 Remark
There is, of course, the more traditional, combinatorial, way to deduce the binomial
distribution. It goes like this: consider the sequence X1, X2, . . . , Xn . Each of the elements
in the sequence is either 0 or 1. Suppose the sum S = X1+ X2+ · · ·+ Xn takes the value
s . One way this can happen is that the first s of the summands take the value 1 and the
rest (n− s) take the value 0. The probability for this to happen is, by independence,

ps (1− p)n−s.

Now, this is just one way how the event {S = s} can happen. Another way would be that,
first X1 = 0, and then X2 = X3 = · · ·Xs+1 = 1, and then X t = 0 for the rest t > s+1. The
probability of this to happen is, by independence and symmetry, the same as before:

(1− p) ps (1− p)n−s−1 = ps (1− p)n−s.

In general, all the ways the s number of 1’s are scattered in the sequence of 0’s and 1’s
of length n , have the same probability

ps(1− p)n−s.

The number of ways this scattering can happen is given by the binomial coefficients
�

n
s

�

=
n!

(n− s)! s!
.

Definition 5.7 follows from this.



Lecture 5 Quantitative Approach to Binomial Distribution 58

5.9 Remark (Sampling with or without Replacement)
The binomial distribution is frequently used to model the number of successes in a sample
of size n drawn with replacement from a population of size N . If the sampling is carried
out without replacement, the draws are not independent and so the resulting distribution
is a hypergeometric distribution, not a binomial one. However, for N much larger than
n , the binomial distribution remains a good approximation, and is widely used.

Let us then get back to Example 5.1. We denote by Fn,p(s) the cumulative distribution
function of the binomial distribution having parameters n and p :

Fn,p(s) = P[S ≤ s] =
s
∑

y=0

�

n
y

�

p y(1− p)n−y .

Then, the problem of Example 5.1 becomes of solving c from the inequality

1− F5,0.1(5c) ≤ 0.01.

Since Fn,p(s) is increasing, it has a generalized inverse. Actually, every cumulative distri-
bution function has a generalized inverse: they are called the quantile functions. So, after
a little bit of algebra, the inequality above becomes

c ≥
F−1

5,0.1(0.99)

5
.

Unfortunately, neither Fn,p(s) nor its inverse F−1
n,p(s) admit reasonable closed-form expres-

sions. There are, however, quite fast algorithms for calculating them. In Octave the func-
tions Fn,p(s) and F−1

n,p(s) are implemented as binocdf and binoinv, respectively.

5.10 Example (Quality of Service for a Link, I, Solution)
Typing binoinv(0.99, 5, 0.1)/5 in Octave console gives c = 0.40000. This means
that the link capacity should be at least 5× 0.4× 3 Mb/s= 6 Mb/s.

Example 5.1 and its solution 5.10 investigated the problem from the link provider’s
point of view. From the clients’ point of view the solution does not make sense! To see this,
look at the first graph below: for a 59% quality-of-service there is no need for any kind of
link!
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Per device link size requirements c on the y -axes plotted against the quality-of-service parameter α on the
x -axes for fixed p = 0.1 and different n .

The picture above was generated by the following code.

1 ###############################################################################
2 ## FILE : q o s _ l i n k _ i .m
3 ##
4 ## V i s u a l i z e s the qua l i t y−of−s e r v i c e in a binomial t r a f f i c model from the
5 ## system point of view .
6 ###############################################################################
7
8 ## Parameters f o r binomial d i s t r i b u t i o n s
9 n = [5 20 200 1000];

10 p = 0 .1 ;
11
12 ## P l o t t i n g parameters
13 N = 101; ## Grid s i z e .
14 alpha = l inspace (0 ,1 ,N) ; ## The gr id .
15
16 ## P l o t t i n g
17 for i=1: length (n)
18 subplot ( length (n) /2 , length (n) /2 , i )
19 for k = 1:N
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20 c (k) = binoinv ( alpha (k) , n( i ) , p)/n( i ) ;
21 endfor
22 plot ( alpha , c , ’ marker ’ , ’ . ’ )
23 t i t l e (n( i ) )
24 endfor

www.uva.fi/∼tsottine/psp/qos_link_i.m

Binomial Palm Distribution

Let us reformulate Example 5.1 to express the clients’ point of view. This is not the link
provider’s point for view, no matter how much the link company’s sales representative
would like to tell the clients that it is!

5.11 Example (Quality of Service for a Link, II)
There are 5 devices in a teletraffic system sharing a common link. Each device is idle with
probability 90 %. When they transmit, they do it with a constant rate of 3 Mb/s. How
big should the link capacity be so that the probability that a given device can transmit is
at least 99 %.

The insider’s, or client’s point of view is described by the so-called Palm distribution
named after the Swedish teletrafficist Conrad “Conny” Palm (1907–1951). We give an
informal, and rather vague, definition below. After that we explain what it means in the
context of examples 5.1 and 5.11.

5.12 Definition (Palm Probability)
Consider a queuing system where the clients are statistically interchangeable. Let P be the
probability that models the outsiders point of view of the system. The Palm probability
P∗ is the clients point of view.

Let us consider the clients (devices) of Example 5.11. Because of symmetry, i.e., sta-
tistical interchangeability of the devices, we can take any device. We take X1 . Let S be
as before, the total number of devices transmitting at a given time. Now, what does the
device (or client) X1 see? If X1 is not in the system, it does not see anything. Therefore,
X1 cannot see the event {S = 0} , the empty system. If X1 is in the system, then {S ≥ 1} ,
since there is at least one client in the system, the client X1 . What X1 sees, is the Palm
probability

P∗[S = s] = P[S = s |X1 = 1].

http://www.uva.fi/~tsottine/psp/qos_link_i.m
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Therefore, the distribution of the system S under the Palm probability P∗ is, by the inde-
pendence of the devices X1, X2, . . . , Xn ,

P∗[S = s] = P[X1 + X2 + · · ·+ Xn = s |X1 = 1]

= P[1+ X2 + · · ·+ Xn = s |X1 = 1]

= P[X2 + · · ·+ Xn + 1= s]

= P[S∗ = s],

where

S∗ − 1 = X2 + X3 + · · ·+ Xn

is binomially distributed with parameters n− 1 and p .
We can formalize our discovery as the following proposition.

5.13 Proposition (Binomial Palm Distribution)
The Palm distribution for S that is binomially distributed with parameters n and p is the
distribution of S∗ , where S∗ − 1 is binomially distributed with parameters n− 1 and p .

For the system, or for the link provider, the relevant quality-of-service requirement was

P[S > nc] ≤ 1−α,

since the link provider looks the queueing system “from the outside”. For the client, the
relevant quality-of-service requirement is

P∗[S > nc] ≤ 1−α,

since the client looks the queueing system “from the inside”.
By Proposition 5.13, we can rewrite the clients’ quality-of-service requirement as

P[S∗ > nc] ≤ 1−α.

Also, by Proposition 5.13, we have

P[S∗ > nc] = 1− Fn−1,p(nc − 1),

where Fn−1,p(s) is the cumulative distribution function of the binomial distribution with
parameters n− 1 and p . Consequently, after a little bit of algebra, we obtain the client’s
quality-of-service requirement

c ≥
F−1

n−1,p(α) + 1

n
.

Note that this is different from the system’s quality-of-service requirement

c ≥
F−1

n,p(α)

n
.

Now we are ready to solve Example 5.11, and give the client’s point of view:
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5.14 Example (Quality of Service for a Link, II, Solution)
Typing (binoinv(0.99, 5-1, 0.1)+1)/5 in Octave console give us solution c =
0.60000. This means that the link capacity should be at least 5×0.6×3 Mb/s= 9 Mb/s.

So, for the link provider 99% quality-of-service means a 6 Mb/s link, while for the
client 99% quality-of-service means a 9 Mb/s link. Quite a difference!

Finally, to compare the outsider’s and insider’s points of view, we plot the quality-of-
service against the link capacity per device for both of the viewpoints with values n = 5,
20, 200, 1 000 for the number of clients.
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Per device link size requirements c , with inside (green) and outside (blue) views on the y -axes plotted
against the quality-of-service parameter α on the x -axes for fixed p = 0.1 and different n .

5.15 Remark (Quality-of-Service Folklore)
From the picture above we can read, e.g., that
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(i) The insider needs more capacity for the same quality-of-service than the outsider.
(ii) When n is big there is virtually no difference between what the insider and the

outsider see.
(iii) High quality is always extremely expensive.
(iv) If n is large good quality is cheap.

The picture above was generated by the code below.

1 ###############################################################################
2 ## FILE : q o s _ l i n k _ i i .m
3 ##
4 ## V i s u a l i z e s the qua l i t y−of−s e r v i c e in a binomial t r a f f i c model from the
5 ## system point of view .
6 ###############################################################################
7
8 ## Parameters f o r binomial d i s t r i b u t i o n s .
9 n = [5 20 200 1000];

10 p = 0 .1 ;
11
12 ## P l o t t i n g parameters
13 N = 101; ## Grid s i z e .
14 alpha = l inspace (0 ,1 ,N) ; ## The gr id .
15
16 ## P l o t t i n g
17 for i=1: length (n)
18 subplot ( length (n) /2 , length (n) /2 , i )
19 for k = 1:N
20 cout (k) = binoinv ( alpha (k) , n( i ) , p)/n( i ) ;
21 c in (k) = ( b inoinv ( alpha (k) , n( i )−1, p) + 1 )/n( i ) ;
22 endfor
23 plot ( alpha , cout , ’ marker ’ , ’ . ’ , alpha , cin , ’ marker ’ , ’ . ’ )
24 t i t l e (n( i ) )
25 endfor

www.uva.fi/∼tsottine/psp/qos_link_ii.m

Exercises

5.1 Exercise
Answer to the question of Example 5.1 when the activity parameter p is

(a) 0.05,
(b) 0.1,

(c) 0.2,
(d) 0.95.

http://www.uva.fi/~tsottine/psp/qos_link_ii.m
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5.2 Exercise
Answer to the question of Example 5.11 when the activity parameter p is

(a) 0.05,
(b) 0.1,

(c) 0.2,
(d) 0.95.

5.3 Exercise
Consider Example 5.1. Let n = 20 and α = 0.95. Visualize the connection between the
activity parameter p and the per device capacity c .

5.4 Exercise
Consider Example 5.11. Let n= 20 and α= 0.95. Visualize the connection between the
activity parameter p and the per device capacity c .

5.5 Exercise (Poisson-Binomial Distribution)
Let X i be Bernoulli random variables with different parameters pi . The distribution of
the sum

S = X1 + X2 + · · ·+ Xn

is called the Poisson-binomial distribution.

(a) Find out the probability generating function of the Poisson-binomial distribution.
(b) Express, somehow, the probability distribution function of the Poisson-binomial dis-

tribution.

5.6 Exercise (Generalized Poisson-Binomial Distribution)
Let X i be Bernoulli random variables with different parameters pi and let ai be positive
real numbers. Set

S = a1X1 + a2X2 + · · ·+ anXn.

Let us call the distribution of S the generalized Poisson-binomial distribution.
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(a) How is the generalized Poisson-binomial distribution related to Example 5.1?
(b) Calculate the moment generating function of the generalized Poisson-binomial dis-

tribution.
(c) What is the probability generating function of the generalized Poisson-binomial

distribution?
(d) Can you express somehow the probability distribution function of the generalized

Poisson-binomial distribution?



Lecture 6

Poisson Distribution

The Poisson distribution is named after the French math-
ematician Siméon Denis Poisson (1781–1840) who intro-
duced the distribution in 1837 in his work Recherches sur la
probabilité des jugements en matiére criminelle et en matiére
civile (“Research on the Probability of Judgments in Crim-
inal and Civil Matters”). In his work the Poisson distribu-
tion describes the probability that a random event will oc-
cur in a time and/or space interval under the condition that
the probability of any single event occurring is very small p ,
but the number of trials is very large N . So, for Siméon
Denis Poisson, the Poisson(λ ) distribution was a limit of
binomial(N , p) distributions in the sense of the Law of Small
Numbers 6.10: p→ 0 and N →∞ , but pN → λ > 0 .

Another pioneer of the Poisson distribution was
the Polish–German economist–statistician Ladislaus
Bortkiewicz (1868–1931) who coined the term “Law of
Small Numbers” in his 1898 investigation of the number of
soldiers in the Prussian army killed accidentally by horse
kick. Some have suggested that the Poisson distribution
should be renamed the “Bortkiewicz distribution”.

Siméon Denis Poisson (1781–1840)

The Poisson distribution is, in some sense, the uniform distribution on the natural numbers
N= {0,1, 2, . . .} . Indeed, the Poisson distribution is a discrete probability distribution that
expresses the probability of a given number of events occurring in a fixed interval of time
and/or space if these events occur with a known average rate and independently. In the
key example of this lecture, Example 6.1 below, the events are scattered in space, not in
time.

6.1 Example (Malus Particles)
The Lake Diarrhea has, on average, 7 Malus particles per one liter. Magnus Flatus lives on
the shore of the Lake Diarrhea. He drinks daily 2 liters of water from the Lake Diarrhea.
The lethal daily intake of Malus particles is 30. What is the probability that Magnus
Flatus will have a lethal intake of Malus particles in a given day?
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Qualitative Approach to Poisson Distribution

To answer the question of Example 6.1 we need to know the distribution of the random
variable X that denotes the number of Malus particles in a 2 liter sample from the Lake
Diarrhea. To fix the distribution of X we have to assume something about the distribution
of the Malus particles in the lake. We know the average of the Malus particles: 7 per
liter. Without any additional information, it is natural to assume that the particles are
independently and homogeneously scattered in the lake. This means that knowledge
of the amount of Malus particles in one sample does not help in predicting the amount of
Malus particles in another sample (independence) and that samples taken from different
parts of the lake are statistically the same (homogeneity). This leads us to the qualitative
definition of the Poisson distribution, or actually the Poisson point process:

6.2 Definition (Poisson Point Process)
Let A be a collection of subsets of the Euclidean space Rd and let vol(A) denote the
volume of the set A of Rd . The family X (A) , A ∈ A , is a Poisson point process with
parameter λ > 0 if

(i) X (A) takes values in N= {0,1, 2, . . .} .
(ii) The distribution of X (A) depends only on λvol(A) .

(iii) If A and B are disjoint, then X (A) and X (B) are independent.
(iv) E[X (A)] = λvol(A) for each A in A .

In Example 6.1, A is the collection of all possible water samples from Lake Diarrhea,
X (A) is the number of Malus particles in the sample A, and Lake Diarrhea is a subset of R3 .

6.3 Remark
For the untrained eye, it is not easy to fathom independent homogeneous scattering. The
following pictures are here to train your eye.

Samples of point processes. See point_processes.m to see which one is the Poisson point process.

http://www.uva.fi/~tsottine/psp/point_processes.m
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Quantitative Approach to Poisson Distribution

The qualitative definition 6.2 does not, yet, allow calculations of probabilities, although
some expectations can be calculated. Indeed, we already did calculate some expectations
in Exercise 6.2. However, it turns out that the qualitative definition 6.2 actually fixes the
distributions completely as Theorem 6.5 will show. Before that, let us recall the Poisson
distribution.

6.4 Definition (Poisson Distribution)
A random variable X has the Poisson distribution with parameter λ > 0 if it has the
probability mass function

P [X = x] = e−λ
λx

x!
, x = 0,1, 2, . . . .
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Probability mass functions of Poisson distribution with different parameters λ .

The plots above were generated with Octave with the following code:

1 ###############################################################################
2 ## FILE : poisson_pmfs .m
3 ##
4 ## P l o t s some p r o b a b i l i t y mass func t i on s (pmf) of Poisson d i s t r i b u t i o n s .
5 ###############################################################################
6
7 ## Data f o r p l o t s .
8 lambda = [2 .4 , 5 .2 , 10 .0 ] ; ## Parameters f o r the p l o t s .
9 x = 0:20; ## The x ’ s f o r Px=prob ( x ) to be p lo t t ed .

10 w = 1; ## Width of the bar in the bar p lo t .
11 Px ( 1 , : ) = poisspdf (x , lambda (1) ) ; ## 1 s t row f o r lambda (1) .
12 Px ( 2 , : ) = poisspdf (x , lambda (2) ) ; ## 2nd row f o r lambda (2) .
13 Px ( 3 , : ) = poisspdf (x , lambda (3) ) ; ## 3rd row f o r lambda (3) .
14
15 ## P l o t t i n g ( bar p l o t s ) .
16 p l o t l i m s = [0 , 20 , 0 , 0 .265] ; ## P l o t t i n g window [x1 , x2 , y1 , y2 ] .



Lecture 6 Quantitative Approach to Poisson Distribution 69

17 subplot (1 ,3 ,1) ; ## 1 row , 3 columns , 1 s t p l o t .
18 bar (x , Px ( 1 , : ) , w) ;
19 text (12 , 0.225 , ’ \ lambda=2.4 ’ ) ;
20 axis ( p l o t l i m s ) ;
21 subplot (1 ,3 ,2) ; ## 1 row , 3 columns , 2nd p lo t .
22 bar (x , Px ( 2 , : ) , w) ;
23 text (12 , 0.225 , ’ \ lambda=5.2 ’ ) ;
24 axis ( p l o t l i m s ) ;
25 subplot (1 ,3 ,3) ; ## 1 row , 3 columns , 3rd p lo t .
26 bar (x , Px ( 3 , : ) , w) ;
27 text (12 , 0.225 , ’ \ lambda=10.0 ’ ) ;
28 axis ( p l o t l i m s ) ;

www.uva.fi/∼tsottine/psp/poisson_pmfs.m

6.5 Theorem (Poisson Point Process is Poisson Distributed)
For the Poisson point process X (A) , A∈A , of Definition 6.2 it must hold true that

P [X (A) = x] = e−λvol(A) (λvol(A))x

x!
for all A inA and x = 0,1, . . . ,

where vol(A) is the volume of the set A.

Let us argue how the Poisson distribution arises from the Poisson point process, i.e, let
us argue why Theorem 6.5 holds. We use the method of probability generating functions.
Let

G
�

θ ; vol(A)
�

=
∑

x

P [X (A) = x] θ x ,

be the probability generating function of the random variable X (A) . The key trick is to
split the set A into two parts, Av and Aw with volumes v and w . Then the volume of A is
v +w and by the independence assumption we obtain the functional equation

G(θ ; v +w) = G(θ ; v)G(θ ; w).

Denote g(θ ; v) = log G(θ ; v) . Then from the above we obtain the Cauchy’s functional
equation

g(θ ; v +w) = g(θ ; v) + g(θ ; w).

Here we keep the parameter θ fixed and consider v and w as variables. So, g(θ ; v) is
additive in v . Since g(θ ; v) is also increasing in v , it follows that g(θ ; v) = vψ(θ ) for
some ψ(θ ) . So, G(θ ; v) = evψ(θ ) . Since G(θ ; v) is a probability generating function we

http://www.uva.fi/~tsottine/psp/poisson_pmfs.m
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must have,

G(1; v) =
∑

x

P[X (Av) = x]1x ,

= 1

G′(1; v) =
∑

x

xP[X (Av) = x]1x

= E[X (Av)]

= λv.

Thus, we must have ψ(θ ) = λ(θ − 1) . So,

G(θ ; v) = eλv(θ−1).

Since probability generating functions determine probabilities, the claim follows from
Proposition 6.6(i) below, the proof of which is left as Exercise 6.3.

6.6 Proposition (Properties of Poisson Distribution)
Let X be Poisson-distributed with parameter λ . Then,

(i) GX (θ ) = eλ(θ−1) ,
(ii) E[X ] = λ ,

(iii) V[X ] = λ .

6.7 Example (Malus Particles, Solution)
Now we know that the number of Malus particles Magnus Flatus consumes daily has the
distribution

P [X = x] = e−14 14x

x!
.

The probability in question is

P [X ≥ 30] = 1− P [X ≤ 29]

= 1−
29
∑

x=0

e−14 e14x

x!
.

Since we do not want to calculate all the 30 terms of the sum above by hand, we use
Octave. The simplest way of doing this is to call the Octave function poisscdf. So,
typing 1-poisscdf(29,14) we get the answer 0.01358 %.
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Sums of Independent Poisson Distributions

From the qualitative approach to the Poisson process it is intuitively clear that if X1 and X2
are independent Poisson distributed with parameters λ1 and λ2 , respectively, then their
sum X1 + X2 is also Poisson distributed with parameter λ1 + λ2 . Rigorously this can be
seen by comparing the probability generating functions:

GX1+X2
(θ ) = GX1

(θ )GX2
(θ )

= eλ1(θ−1)eλ2(θ−1)

= e(λ1+λ2)(θ−1),

which is the probability generating function of a Poisson random variable with parameter
λ1 +λ2 .

Repeating the arguments above for n summands, we obtain the following:

6.8 Proposition (Poisson Sum)
Let X1, X2, . . . , Xn be independent Poisson distributed random variables with parameters
λ1,λ2, . . . ,λn , respectively. Then their sum X1+ X2+ · · ·+ Xn is Poisson distributed with
parameter λ1 +λ2 + · · ·+λn .

Let us then consider a reverse of Proposition 6.8. Suppose X1 and X2 are indepen-
dent Poisson distributed random variables with parameters λ1 and λ2 , respectively. Sup-
pose further that we know the value of their sum: X1 + X2 = x . What can we say about
X1 ? Intuitively, we can argue as follows: each point of the Poisson point process X1 + X2
comes independently from either X1 or X2 . The relative contribution of X1 to the points
is λ1/(λ1+λ2) . So, this is the probability of success, if success means that the point comes
from the random variable X1 . Since these successes are independent we arrive at the bi-
nomial distribution: X1 is binomially distributed with parameters x and λ1/(λ1 + λ2) .
Rigorously, the educated guess above is seen to be true from the following calculations:
First, simple use of definitions yield

P [X1 = x1 | X1 + X2 = x] =
P [X1 = x1, X2 = x − x1]
P [X1 + X2 = x]

=
P [X1 = x1]P [X2 = x − x1]
P [X1 + X2 = x]

= e−λ1
λ

x1
1

x1!
e−λ2

λ
x−x1
2

(x − x1)!

Á

e−(λ1+λ2)
(λ1 +λ2)x

x!

Then rearranging the terms in the result above yields

P [X1 = x1 | X1 + X2 = x] =
�

x
x1

��

λ1

λ1 +λ2

�x1
�

1−
λ1

λ1 +λ2

�x−x1

.
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So, we see that X1 given X1 + X2 = x is binomially distributed with parameters x and
λ1/(λ1 +λ2) . Repeating the arguments above for n summands, we obtain the following:

6.9 Proposition (Reverse Poisson Sum)
Let X1, X2, . . . , Xn be independent Poisson distributed random variables with parameters
λ1,λ2, . . . ,λn , respectively. Let X = X1 + X2 + · · · + Xn and λ = λ1 + λ2 + · · · + λn .
Then, conditionally on X = x the random variables Xk , k = 1, 2, . . . , n , are binomially
distributed with parameters x and λk/λ .

Law of Small Numbers

Proposition 6.9 gave one important connection between the Poisson and the binomial dis-
tributions. There is another important connection between these distributions. This con-
nection, the law of small numbers 6.10 below, is why Siméon Denis Poisson introduced the
Poisson distribution.

6.10 Theorem (Law of Small Numbers)
Let Xn , n ∈ N , be binomially distributed with parameters n and pn . Suppose that npn→
λ as n → ∞ . Then the distribution of Xn converges to the Poisson distribution with
parameter λ , i.e.,

P[Xn = x] → e−λ
λx

x!
for all x = 0,1, 2, . . . ,

whenever npn→ λ .

Theorem 6.10 follows easily by using Levy’s continuity theorem (Lemma 4.21). To apply
it we should strictly speaking use the characteristic functions. We will use the more familiar
probability generating functions instead. The proper proof with characteristic functions
follows by replacing θ with eiθ in the calculations below.

In the language of probability generating functions, to prove Theorem 6.10, we need
to show that

lim
n→∞

Gn(θ ) = G(θ ),

where Gn(θ ) is the probability generating function of a binomial distribution with param-
eters n and pn and G(θ ) is the probability generating function of a Poisson distribution
with parameter λ , where

λ = lim
n→∞

npn.
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By plugging in the actual forms of the probability generating functions in question, we are
left with the task of showing that

lim
n→∞

�

(1− pn) + pnθ
�n

= eλ(θ−1).

Now, recall that

ex = lim
n→∞

�

1+
xn

n

�n
,

if xn→ x . Consequently, we get

lim
n→∞

�

(1− pn) + pnθ
�n

= lim
n→∞

�

1+ pn(θ − 1)
�n

= lim
n→∞

�

1+
npn(θ − 1)

n

�n

= eλ(θ−1),

which proves the law of small numbers.

Finally, let us remark that the law of small numbers is closely related to a more famous
limit result: the central limit theorem that gives a Gaussian limit. The reader is invited to
contemplate the differences and similarities of the Poisson and the Gaussian approximation
of binomial distributions.
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Illustration of how the Binomial becomes Poisson by the law of small numbers.
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The plots above were generated with Octave with the following code:

1 ###############################################################################
2 ## FILE : poisson_binomia l .m
3 ##
4 ## An i l l u s t r a t i o n of the Law of Small Numbers , i . e . , how binomial
5 ## d i s t r i b u t i o n s approximate the Poisson d i s t r i b u t i o n , or v i c e versa .
6 ##
7 ## This i s quick and very d i r t y coding . No−one should learn t h i s s t y l e !
8 ###############################################################################
9

10 lambda = 4; ## Limi t lambda=p∗n i s f i x e d .
11 w = 1; ## The width of the column f o r the bar p lo t .
12 p l o t l i m s = [ − 0.4 , 13 , 0 , 0 .28 ] ; ## P l o t t i n g window [x1 , x2 , y1 , y2 ] .
13
14 ## The 2x3 subp lo t s .
15 x = 0:8 ;
16 n = 8;
17 P = binopdf (x , n , lambda/n) ;
18 subplot (2 ,3 ,1)
19 bar (x , P , w) ;
20 text (5 , 0.25 , ’ Bin (8 ,1/2) ’ ) ;
21 axis ( p l o t l i m s ) ;
22
23 x = 0:15;
24
25 n = 16;
26 P = binopdf (x , n , lambda/n) ;
27 subplot (2 ,3 ,2)
28 bar (x , P , w) ;
29 text (5 , 0.25 , ’ Bin (16 ,1/4) ’ ) ;
30 axis ( p l o t l i m s ) ;
31
32 n = 32;
33 P = binopdf (x , n , lambda/n) ;
34 subplot (2 ,3 ,3)
35 bar (x , P , w) ;
36 text (5 , 0.25 , ’ Bin (32 ,1/8) ’ ) ;
37 axis ( p l o t l i m s ) ;
38
39 n = 64;
40 P = binopdf (x , n , lambda/n) ;
41 subplot (2 ,3 ,4)
42 bar (x , P , w) ;
43 text (5 , 0.25 , ’ Bin (64 ,1/16) ’ ) ;
44 axis ( p l o t l i m s ) ;
45
46 n = 256;
47 P = binopdf (x , n , lambda/n) ;
48 subplot (2 ,3 ,5)
49 bar (x , P , w) ;
50 text (5 , 0.25 , ’ Bin (128 ,1/32) ’ ) ;
51 axis ( p l o t l i m s ) ;
52
53 P = poisspdf (x , lambda ) ;
54 subplot (2 ,3 ,6) ;
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55 bar (x , P , w) ;
56 text (5 , 0.25 , ’ Po isson (4) ’ ) ;
57 axis ( p l o t l i m s ) ;

www.uva.fi/∼tsottine/psp/poisson_binomial.m

Exercises

6.1 Exercise
Let X be Poisson distributed with parameter 1.5. Calculate

(a) P[X = 1.5]
(b) P[X = 0 or X = 10]

(c) P[X > 1.5] ,
(d) P[1< X ≤ 10]

6.2 Exercise
Consider Example 6.1.

(a) How many Malus particles, on average, would Magnus Flatus get daily if he would
drink only 1 liter per day?

(b) Suppose Magnus Flatus wants to get, on average, only 10 Malus particles per day.
How many liters can he drink from the Lake Diarrhea daily?

(c) Suppose Magnus Flatus wants to get, on average, only 30 Malus particles per year.
How many liters can he drink from the Lake Diarrhea daily?

6.3 Exercise
Prove Proposition 6.6.

6.4 Exercise
Let X1 , X2 and X3 be independent Poisson distributed random variables with parameters
2.5, 5.0 and 10.0, respectively. Calculate the probabilities

(a) P[X1 + X2 = 0]
(b) P[X1 + X2 + X3 = 1]
(c) P[X1 + X2 ≤ 10]

(d) P[X1 = 0 |X1 + X2 + X3 = 1]
(e) P[X1 = 3 |X2 + X2 + X3 = 3]
(f) P[X1 ≤ 1 |X1 + X2 + X3 = 1]

http://www.uva.fi/~tsottine/psp/poisson_binomial.m
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6.5 Exercise
Let X1 be Poisson distributed with parameter 2 and let X2 be Poisson distributed with
parameter 5. Suppose X1 + X2 = 10. What is the probability that X1 > X2 ?
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Exponential Distribution

The origins of the exponential distribution are shrouded in
history. One of the first persons to study the exponential
distribution was the English mathematician and founder of
mathematical statistics Karl Pearson (1857–1936) in his
1895 work Contributions to the mathematical theory of evolu-
tion, II: Skew variation in homogeneous material. In this work
the exponential distribution is a special case of the gamma
distribution, which itself is a Pearson distribution of type III.
Pearson was interested modeling distributions with skew in
general, not on the special properties of the exponential dis-
tribution as such.

Later, the exponential distribution became the central
distribution in, e.g., queueing theory and insurance mathe-
matics. This is mainly due to the memoryless property of
the exponential distribution: if one has to wait an exponen-
tially distributed time then the remaining waiting time al-
ways has the same distribution, no matter how long one has
already waited. This property makes the exponential distri-
bution the quintessential waiting-time distribution. Perhaps
the first one to use the exponential distribution as the univer-
sal waiting-time distribution was the Danish mathematician
and founder of traffic engineering and queueing theory Ag-
ner Krarup Erlang (1878–1929) in his work 1909 work The
Theory of Probabilities and Telephone Conversations.

Karl Pearson (1857–1936)

The exponential distribution is, in some sense, the uniform distribution on the positive
reals R+ = {x ∈ R; x ≥ 0} = [0,∞) . Indeed, the exponential distribution is the natural
choice for the (remaining or total) waiting-time if one does not have the information on
how long the customer has already waited. The key example of this lecture, Example 7.1
below, illustrates this point.

7.1 Example (Waiting in Line, I)
Lady Candida needs to powder her nose. She finds the powder room occupied. From
past experience, Lady Candida knows that the average time a lady spends in powdering
her nose is 10 minutes. Lady Candida has waited for 5 minutes. The powder room is
still occupied. What is the probability that Lady Candida still has to wait for at least 5
minutes?
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Qualitative Approach to Exponential Distribution

To solve Example 7.1 we need to know the distribution of the random variable T that de-
notes the remaining waiting time. Without any additional information on the time that has
already been spent in waiting it is natural to assume that the distribution of the remaining
waiting time is always the same and depends only on the mean waiting time parameter,
which we denote by 1/λ . The reason for choosing 1/λ instead of simply λ , is to make
the parametrization consistent with the Poisson distribution. The connection between the
Poisson and the Exponential distribution will be explained much later when we study the
Poisson process in Lecture 12.

7.2 Definition (Exponential Waiting Time)
The waiting time T has exponential distribution with parameter λ > 0 if

(i) P[T > t + s|T > s] = P[T > t] for all t, s > 0.
(ii) E[T] = 1

λ .

So, Example 7.1 has been reduced to calculating P[T > 5] , where T has exponential
distribution with parameter 1/10. Indeed, by 7.2(i) P[T > 5+ 5|T > 5] = P[T > 5] and
by 7.2(ii) λ= 1/10.

7.3 Remark (Light or Heavy Tails)
The exponential distribution is a mathematically convenient compromise between ul-
tra light tails and heavy tails:

Ultra Light Tails The person being served in front of you in a queue has already taken a
lot of time. Therefore it is reasonable to assume that she will be finished very soon.

Heavy Tails The person being served in front of you in a queue has already taken a lot
of time. Therefore it is reasonable to assume that there are some complications so
that she will take still a very long time to finish her business.

Quantitative Approach to Exponential Distribution

The qualitative definition 7.2 does not allow calculations. Moreover, it may turn out that
the qualitative definition does not even determine the distribution uniquely, or even worse:
there are no distributions satisfying the assumptions of Definition 7.2. Luckily, it turns out
that the quantitative definition is equivalent to the following quantitative definition. For
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the definition we recall that a random variable X is continuous if its cumulative distribu-
tion function F(x) = P[X ≤ x] is differentiable. We call the derivative f (x) = F ′(x) the
(probability) density function of X . Note that for continuous random variables

P[a ≤ X ≤ b] =

∫ b

a
f (x)dx ,

and, in particular P[X = x] = 0 for any fixed value x .

7.4 Definition (Exponential Distribution)
A positive random variable T has the exponential distribution with parameter λ > 0 if
it has the probability density function

fT (t) = λe−λt , t ≥ 0.
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Probability density functions of exponential distributions with different parameters λ .

The picture above was generated with the Octave code listed below:

1 ###############################################################################
2 ## FILE : exponent ia l_pdf s .m
3 ##
4 ## P l o t s some p r o b a b i l i t y dens i t y func t i on s ( pdf ) of Exponent ia l d i s t r i b u t i o n s .
5 ###############################################################################
6
7 ## Data f o r p l o t s .
8 lambda = [1 , 1/2 , 1/3] ; ## Means (1/ the prameters ) f o r the p l o t s .
9 x = l inspace (0 , 1 .8 , 5000) ; ## The gr id fo r Px=prob ( x ) p lo t t ed .

10 Px ( 1 , : ) = exppdf (x , lambda (1) ) ; ## 1 s t row f o r 1/ lambda (1) .
11 Px ( 2 , : ) = exppdf (x , lambda (2) ) ; ## 2nd row f o r 2/ lambda (2) .
12 Px ( 3 , : ) = exppdf (x , lambda (3) ) ; ## 3rd row f o r 3/ lambda (3) .
13
14 ## P l o t t i n g ( standard p lo t ) .
15 hold on ;
16 plot (x , Px ( 1 , : ) , ’ 1 ;1 ; ’ , ’ l i newid th ’ , 2) ;
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17 plot (x , Px ( 2 , : ) , ’ 2 ;1/2; ’ , ’ l i newid th ’ , 2) ;
18 plot (x , Px ( 3 , : ) , ’ 3 ;1/3; ’ , ’ l i newid th ’ , 2) ;
19 axis ([0.001 , 1 .8 , 0 , 3]) ;

www.uva.fi/∼tsottine/psp/exponential_pdfs.m

7.5 Theorem
Definitions 7.2 and 7.4 are the same.

Let us argue that Definition 7.4 and Definition 7.2 are indeed the same. The argument
has two sides: first we have to show that the distribution given by Definition 7.4 satisfies
the assumptions of Definition 7.2 (this is easy), and second we have to show that a random
variable given by Definition 7.2 is necessary of the form given by Definition 7.2 (this is the
tricky part).

Let us start with the easy part. Suppose the random variable T has the density function
fT (t) given by Definition 7.4. First, we note that

P [T > t + s | T > s] =
P [T > t + s , T > s]
P [T > s]

=
P [T > t + s]
P [T > s]

.

Consequently,

P [T > t + s | T > s] =

∫∞
t+s λe−λu du
∫∞

s λe−λu du

=
e−λ(t+s)

e−λs

= e−λt

= P [T > t] .

Thus assumption (i) of Definition 7.2 holds. Let us then check the assumption (ii) of Defi-
nition 7.2, i.e., let us calculate the expectation of the random variable T . Straightforward

http://www.uva.fi/~tsottine/psp/exponential_pdfs.m
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integration by parts yields

E [T] =
∫ ∞

0

tλe−λt dt

= λ

�

−te−λt

λ

�

�

�

�

∞

0
−
∫ ∞

0

−1
λ

e−λt dt

�

= λ

�

0+
1
λ

∫ ∞

0

e−λt dt

�

= λ

�

0+
1
λ

−e−λt

λ

�

�

�

�

∞

0

�

= λ
1
λ2

=
1
λ

.

Let us then consider the tricky part. Suppose that T satisfies the assumptions of Def-
inition 7.2. The trick is now to develop assumption (i) of Definition 7.2 into a Cauchy’s
functional equation and then treat assumption (ii) of Definition 7.2 merely as a normaliz-
ing constant. Denote

F̄T (t) = P[T > t],

i.e., F̄T (t) is the complementary cumulative distribution function if T . Now, clearly

P[T > t + s, T > s] = P[T > t + s].

Consequently, by Definition 7.2(i)

F̄T (t + s)
F̄T (s)

= F̄T (t),

Thus, by multiplying both sides with F̄T (s) and then taking logarithms we obtain the
Cauchy’s functional equation

f̄ (t + s) = f̄ (t) + f̄ (s),

where we have denoted f̄ (t) = log F̄(t) . Since f̄ (t) is decreasing, the only possible solu-
tion to the Cauchy’s functional equation is the linear function f̄ (t) = c t for some constant
c . Consequently, F̄(t) = ec t . Thus, for the density function we have

fT (t) = −
d
dt

F̄(t)

= −cec t .

Finally, by the normalizing assumption, i.e., Definition7.2(ii), we must have λ= −c .
We have shown that the definitions 7.2 and 7.4 are indeed the same.
Now we are ready to solve Example 7.1
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7.6 Example (Waiting in Line, I, Solution)
Let T be Lady Candida’s remaining waiting time. Then

P[T > 5] =

∫ ∞

5

fT (t)dt

=

∫ ∞

5

1
10

e−
1
10 t dt

= e−
1
10×5

= 0.60653.

So, Lady Candida still has to wait for at least 5 minutes with probability 60.653%.

Sums of Independent Exponential Distribution: Erlang Distribu-
tion

A very important problem is to know the distribution of a sum of independent exponential
distributions. Indeed, consider the following Example 7.7 that is an extension of the Lady
Candida’s waiting problem Example 7.1:

7.7 Example (Waiting in Line, II)
Lady Candida needs to powder her nose. She finds the powder room occupied and 8
ladies waiting in line in front of her. From past experience, Lady Candida knows that
the average time a lady spends in powdering her nose is 10 minutes. Lady Candida has
waited for 45 minutes. The powder room is still occupied and now there are 6 ladies
waiting in line in front of her. What is the probability that Lady Candida still has to wait
for at least 35 minutes?

After a bit of contemplating the memoryless random variables, one sees that Lady Can-
dida’s remaining waiting time is S = T1 + T2 + · · · + T7 , where T1, . . . , T7 are each inde-
pendent exponentially distributed random variables with the same mean of 10 minutes.
Indeed, there are 6 ladies in the line in front of Lady Candida, and a 7th one in the powder
room. Since there is no reason to assume any kind of specific dependence structure for the
individual (remaining) waiting times T1, T2, . . . , T7 , it is natural to assume that they are
independent.

Let us generalize the problem above slightly: we replace 7 by n and average of 10
minutes by 1/λ . So, we need to find the distribution of S = T1 + T2 + · · ·+ Tn , where the
summands T1, T2, . . . , Tn are independent exponentially distributed with common param-
eter λ .
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Recall, that if X1 and X2 are independent random variables with probability density
functions fX1

and fX2
, respectively, then their sum S2 = X1+X2 has the probability density

function given by the continuous convolution

fS2
(s) = ( fX1

∗ fX2
)(s)

=

∫ ∞

−∞
fX1
(s− x) fX2

(x)dx .

Indeed, by a conditioning trick, and by using Leibniz formalism, we see that

fS2
(s)ds = P[S2 ∈ ds]

= P[X1 + X2 ∈ ds]

=

∫ ∞

x=−∞
P[X2 ∈ dx , X1 + X2 ∈ ds]

=

∫ ∞

x=−∞
P[X2 ∈ dx , X1 + x ∈ ds]

=

∫ ∞

x=−∞
P[X1 ∈ ds− x]P[X2 ∈ dx]

=

∫ ∞

x=−∞
fX1
(s− x)ds fX2

(x)dx

=

�∫ ∞

x=−∞
fX1
(s− x) fX2

(x)dx

�

ds.

By iteration, we see that the sum of Sn = X1 + X2 + · · · + Xn of n independent random
variables X1, X2, . . . , Xn with common distribution fX has the distribution given by the
continuous convolution power

fSn
(s) = f ∗nX (s)

defined by the recursion

fS2
(s) = ( fX ∗ fX )(s)

=

∫ ∞

−∞
fX (s− x) fX (x)dx ,

fSn
(s) = ( fSn−1

∗ fX )(s)

=

∫ ∞

−∞
fSn−1
(s− x) fX (x)dx .

Let us then calculate the convolution powers for the exponential distribution. For the
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case S2 = T1 + T2 we obtain

fS2
(s) =

∫ ∞

−∞
fT (s− t) fT (t)dt

=

∫ s

0

λe−λ(s−t)λe−λt dt

= λ2

∫ s

0

e−λ(s−t)−λt dt

= λ2e−λs

∫ s

0

dt

= λ2e−λss.

Consider then the case S3 = T1 + T2 + T3 :

fS3
(s) =

∫ ∞

−∞
fS2
(s− t) fT (t)dt

=

∫ s

0

λ2(s− t)e−λ(s−t)λe−λt dt

= λ3

∫ s

0

(s− t)e−λ(s−t)−λt dt

= λ3e−λs

∫ s

0

(s− t)dt

= λ3e−λs s2

2
.

For the cases S4 , S5 and S6 , similar calculations yield

fS4
(s) = λ4e−λs s3

2× 3
,

fS5
(s) = λ5e−λs s4

2× 3× 4
,

fS6
(s) = λ6e−λs s5

2× 3× 4× 5
.

(Don’t believe me! Do the calculations yourself!) Now, because of the calculations above,
the case for general n is pretty obvious:

7.8 Proposition (Exponential Sum)
Let T1, T2, . . . , Tn be independent exponentially distributed random variables with com-
mon parameter λ . Then their sum S = T1 + T2 + · · ·+ Tn has the Erlang distribution
with parameters n and λ , i.e., S has the probability density function

fS(s) =
λn

(n−1)!
sn−1e−λs, s ≥ 0.
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The picture above was generated with the Octave code listed below:

1 ###############################################################################
2 ## FILE : er lang_pdf s .m
3 ##
4 ## P l o t s some p r o b a b i l i t y dens i t y func t i on s ( pdf ) of Er lang d i s t r i b u t i o n s .
5 ###############################################################################
6
7 lambda = 1; ## Parameter lambda i s f i x e d .
8 n = [2 , 3 , 4 ] ; ## Parameter n v a r i e s .
9 x = l inspace (0 , 10 , 5000) ; ## The x−gr id fo r Px=prob ( x ) .

10
11 ## Gamma ( or Erlang ) d e n s i t i e s f o r the parameters n and lambda .
12 Px ( 1 , : ) = gampdf (x , n(1) , lambda ) ;
13 Px ( 2 , : ) = gampdf (x , n(2) , lambda ) ;
14 Px ( 3 , : ) = gampdf (x , n(3) , lambda ) ;
15
16 ## P l o t t i n g .
17 hold on ; ## P lo t a l l on the same p ic .
18 plot (x , Px ( 1 , : ) , ’ 1 ;2 ; ’ , ’ l i newid th ’ , 4) ;
19 plot (x , Px ( 2 , : ) , ’ 2 ;3 ; ’ , ’ l i newid th ’ , 4) ;
20 plot (x , Px ( 3 , : ) , ’ 3 ;4 ; ’ , ’ l i newid th ’ , 4) ;

www.uva.fi/∼tsottine/psp/erlang_pdfs.m

Now we are ready almost to solve Exercise 7.7. We just have to calculate the integral

P[S > s] =

∫ ∞

s

λn

(n− 1)!
un−1e−λu du.

for n = 7, λ = 1/10 and s = 35. This integral can be calculated by repeated use of
integration by parts to reduce the parameter n . Indeed, for n= 1 we have simply

∫ ∞

s
λe−λu du = e−λs.

http://www.uva.fi/~tsottine/psp/erlang_pdfs.m


Lecture 7 Sums of Independent Exponential Distribution: Erlang Distribution 86

For n= 2, we have, by using integration by parts, and by using the result above, that
∫ ∞

s
λ2ue−λu du = −

∫ ∞

s
λu (−λ)e−λu du

= −
∫ ∞

s
λu

d
du

�

e−λu
�

du

= −
�

λue−λu

�

�

�

�

∞

s
−
∫ ∞

s

d
du
[λu]e−λu du

�

= λse−λs +

∫ ∞

s
λe−λu du

= λse−λs + e−λs

= e−λs [1+λs] .

For n= 3, we have, by using integration by parts, and by using the calculations above, that
∫ ∞

s

λ3

2
u2e−λu du = −

∫ ∞

s

λ2

2
u2 (−λ)e−λu du

= −
∫ ∞

s

λ2

2
u2 d

du

�

e−λu
�

du

= −
�

λ2

2
u2e−λu

�

�

�

�

∞

s
−
∫ ∞

s

d
du

�

λ2

2
u2

�

e−λu du

�

=
λ2

2
s2e−λs +

∫ ∞

s
λ2ue−λu du

=
λ2

2
s2e−λs + e−λs [1+λs]

= e−λs
�

1+λs+
1
2
(λs)2

�

.

Now the pattern is clear (and can be proven by using the induction argument): we have

P[S > s] = e−λs
n−1
∑

k=0

1
k!
(λs)k.

7.9 Remark (Gamma Functions)
The gamma function

Γ (z) =

∫ ∞

0

tz−1e−t dt

and the (lower) incomplete gamma function

γ(z, x) =

∫ x

0

tz−1e−t dt



Lecture 7 Exercises 87

are built in numerically in many mathematical software. The probabilities P[S > s] can
be expressed in terms of these gamma functions. Indeed, after a little bit of algebra
(Exercise 7.5) one sees that if S has Erlang distribution with parameters n and λ , then

P[S > s] = 1−
γ(n,λs)
Γ (n)

.

7.10 Example (Waiting in Line, II, Solution)
Let S be Lady Candida’s remaining waiting time. By no-memory and independence as-
sumption S = T1 + · · ·+ T7 where T1, . . . , T7 are independent exponential random vari-
ables with common parameter λ = 1/10. Consequently S has Erlang distribution with
parameters n= 7 and λ= 1/10. Thus

P[S > 35] = e−3.5
6
∑

k=0

1
k!

3.5k.

This probability can be calculated by using the following code:

p = 0;
for k = 0:6

p = p + 1/factorial(k)*(3.5)^k;
endfor
p = e^(-3.5)*p

So, We obtain the result 0.93471. So, the probability that Lady Candida still has to wait
at least 35 minutes is 93.471%.

Exercises

7.1 Exercise
Let T be exponentially distributed with parameter 5. Calculate

(a) P[T ≤ 3]
(b) P[T ≥ 3]
(c) P[2≤ T ≤ 3]

(d) P[T ≥ 3 | T ≥ 1]
(e) P[T ≤ 3 | T ≥ 1]
(f) P[2≤ T ≤ 3 | T ≥ 1]
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7.2 Exercise
Let T be exponentially distributed with parameter λ . Calculate its moment generating
function, and by using it how that E[T] = 1

λ and V[T] = 1
λ2

7.3 Exercise
Let S be Erlang distributed with parameters n= 3 and λ= 5. Calculate the probabilites

(a) P[S ≥ 9]
(b) P[S ≤ 9]

(c) P[6≤ S ≤ 9]
(d) P[6≤ S ≤ 9 or S ≥ 21]

7.4 Exercise
Show that the gamma function Γ (z) is a generalization of the factorial, i.e.,

Γ (n) = (n− 1)!

if n ∈ N .

7.5 Exercise
Let S be Erlang distributed with parameters n and λ . Show that

P[S > s] = 1−
γ(n,λs)
Γ (n)

.
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Gaussian Distribution

The normal distribution, or the Gaussian distribution is
named after the German mathematician Johann Carl
Friedrich Gauss (1777–1855) who certainly was Princeps
mathematicorum, but he does not deserve to have the nor-
mal distribution named after him. Gauss did some remark-
able work with the normal distribution in his 1821–1826 es-
says Theoria combinationis observationum erroribus minimis
obnoxiae about measuring errors, but the true reason for the
importance of Gaussian distribution is due to the central limit
theorem, and Gauss did not study that.

The first glimpse of the central limit theorem was given
by the French mathematician Abraham de Moivre (1667–
1754) who showed that the binomial distribution can be ap-
proximated by the Gaussian distribution. The first one to re-
ally discover the central limit theorem was the French math-
ematician Pierre-Simon Laplace (1749–1827) in his book
Théorie Analytique des Probabilités published in 1812. The
final word in its modern generality for the central limit theo-
rem was given by the Finnish mathematician Jarl Waldemar
Lindeberg (1876-1932) and the Croatian-American mathe-
matician William Feller (1906–1970). Pierre-Simon, marquis de Laplace (1749–1827)

The Gaussian distribution, or the normal distribution, is arguably the most important
distribution in all probability. The reason is of course the celebrated central limit theorem.
The key Example 8.1 of this section is an application of the central limit theorem. Indeed,
it is very difficult to see how one could solve Example 8.1 without resorting to the central
limit theorem.

8.1 Example (Bleedingheart Charity)
Ms. Bleedingheart is collecting donations for Good Cause Charity. She wants to raise
100 000 euros. She has already contacted 6 donors who have contributed 950, 800,
1 000, 1 100, 850 and 1 000 euros, respectively. How many donors Ms. Bleedingheart
needs still to contact in order to have at least 95% probability of reaching her goal of
100 000 euros?
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Gaussian Distribution Quantitatively

We will introduce the Gaussian distribution here quantitatively. The qualitative approach
will be served by the central limit theorem in the next section.

8.2 Definition (Gaussian Distribution)
(i) A continuous random variable X has standard Gaussian distribution if it has the

density function

φ(x) =
1
p

2π
e−

1
2 x2

, x ∈ R.

In this case we denote X ∼ N(0, 1) . We also denote

Φ(x) =
1
p

2π

∫ x

−∞
e−

1
2 z2

dz, x ∈ R

for the cumulative distribution function of the standard Gaussian random variable.

(ii) A continuous random variable Y has Gaussian distribution with parameters µ
and σ2 if there exist a random variable X ∼ N(0, 1) such that Y = σX +µ . In this
case we denote Y ∼ N(µ,σ2) . We also denote by φ(x;µ,σ2) and Φ(x;µ,σ2) the
probability density function and the cumulative distribution function of Y .

The parameters µ and σ2 have the usual interpretation. This is the message of the
following proposition, the proof of which is left as Exercise 8.3.

8.3 Proposition
Let X ∼ N(µ,σ2) . Then E[X ] = µ and V[X ] = σ2 .

The density function of the Gaussian random variable Y ∼ N(µ,σ2) can be calculated
by changing the variable. Indeed, let us start with the cumulative distribution function:

Φ(y;µ,σ2) = P[Y ≤ y]

= P [µ+σX ≤ y]

= P
h

X ≤
y −µ
σ

i

= Φ
� y −µ
σ

�

.
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Consequently, by taking the derivatives, we obtain

φ(y;µ,σ2) =
d

dy
Φ
� y −µ
σ

�

=
1
σ
φ
� y −µ
σ

�

=
1

p
2πσ2

e−
1
2(

y−µ
σ )

2

.

Thus we have shown the following:

8.4 Proposition
Y ∼ N(µ,σ2) if and only if it is a continuous random variable with density function

φ(y;µ,σ2) =
1

p
2πσ2

e−
1
2(

y−µ
σ )

2

, y ∈ R.
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The picture above was generated with the Octave code listed below:

1 ###############################################################################
2 ## FILE : gauss_pdfs .m
3 ##
4 ## P l o t s some p r o b a b i l i t y dens i t y func t i on s ( pdf ) of Gaussian d i s t r i b u t i o n s .
5 ###############################################################################
6
7 ## Data f o r p l o t s .
8 sigma = [0 .5 , 1 , 2 ] ; ## sigma v a r i e s .
9 y = l inspace (−6, 6 , 5000) ; ## The gr id fo r Py=prob ( y ) p lo t t ed .

10 Py ( 1 , : ) = normpdf (y , 0 , sigma (1) ) ; ## 1 s t row fo r sigma (1) .
11 Py ( 2 , : ) = normpdf (y , 0 , sigma (2) ) ; ## 2nd row fo r sigma (2) .
12 Py ( 3 , : ) = normpdf (y , 0 , sigma (3) ) ; ## 3rd row fo r sigma (3) .
13
14 ## P l o t t i n g ( standard p lo t ) .
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15 hold on ;
16 plot (y , Py ( 1 , : ) , ’ 1 ; 0 . 5 ; ’ , ’ l i newid th ’ , 4) ;
17 plot (y , Py ( 2 , : ) , ’ 2 ; 1 . 0 ; ’ , ’ l i newid th ’ , 4) ;
18 plot (y , Py ( 3 , : ) , ’ 3 ; 2 . 0 ; ’ , ’ l i newid th ’ , 4) ;

www.uva.fi/∼tsottine/psp/gauss_pdfs.m

Unfortunately, there is no way of calculating the integral Φ(x) =
∫ x
−∞φ(z)dz analyti-

cally. Thus, in computing probabilities for Gaussian random variables one has to resort to
numerical methods. Luckily, the function Φ(x) or its relative the error function erf(x) are
implemented in all mathematical software and programming languages worth their salt.
In Octave, there is the function stdnormal_cdf(x) that is the same as Φ(x) . Also,
there is the function stdnormal_pdf(x) that is the same as φ(x) . Moreover there are
functions normcdf(y,m,s) and normpdf(y,m,s) that work just like the functions
Φ(y; m, s2) and φ(y; m, s2) .

Fun Fact

There is the fun fact that the standard Gaussian density is the only probability density
function satisfying the differential equation

φ′(x) = −xφ(x).

Indeed, it is easy to check that the function φ(x) defined by Definition 8.2(i) satisfies
the fun fact and the uniqueness follows from the general theory of ordinary differential
equations. What makes this fact even funnier, is that the same differential equation for the
characteristic function also determines the Gaussian distribution. Indeed, let X ∼ N(0, 1)
and let ϕ(θ ) = ϕX (θ ) be its characteristic function. Then, on the one hand, by symmetry,

ϕ(θ ) =

∫ ∞

−∞
cos(θ x)φ(x)dx + i

∫ ∞

−∞
sin(θ x)φ(x)dx

=

∫ ∞

−∞
cos(θ x)φ(x)dx .

On the other, by changing the order of differentiation and integration

ϕ′(θ ) =
d

dθ

∫ ∞

−∞
cos(θ x)φ(x)dx

=

∫ ∞

−∞

∂

∂ θ
[cos(θ x)φ(x)] dx

=

∫ ∞

−∞
sin(θ x) xφ(x) dx

http://www.uva.fi/~tsottine/psp/gauss_pdfs.m
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Then, by the fun fact and by the integration by parts,

ϕ′(θ ) = −
∫ ∞

−∞
sin(θ x) φ′(x) dx

= −θ
∫ ∞

−∞
cos(θ x)φ(x)dx

= −θϕ(θ ).

So, we see that we have the fun fact differential equation for the Gaussian characteristic
function also:

ϕ′(θ ) = −θϕ(θ ).

We note that since ϕ(0) = 1 for any characteristic function, the only solution to the fun
fact differential equation for the characteristic function is

ϕ(θ ) = e−
1
2θ

2
.

Finally, since for any random variable Y and any numbers a and b we have

ϕa+bY (θ ) = E
�

eiθ (a+bY )
�

= E
�

eiθaeiθ bY
�

= eiaθE
�

ei(bθ )Y
�

= eiaθϕY (bθ ),

we see that we have the following result:

8.5 Proposition
Let Y ∼ N(µ,σ2) . Then

ϕY (θ ) = eiµθ− 1
2σ

2θ2
.

Central Limit Theorem

One way of expressing the central limit theorem is to state that if a random variable can
be thought to be a sum of many small independent components that are similar, then the
distribution of the random variable is close to Gaussian. Theorem 8.6 states the same thing
in more technical language.



Lecture 8 Central Limit Theorem 94

8.6 Theorem (Central Limit Theorem or Normal Approximation)
Let X1, X2, . . . be independent identically distributed random variables with common ex-
pectation µ and variance σ2 . Denote

Sn =
1
p

n

n
∑

k=1

Xk −µ
σ

.

Then Sn is asymptotically normal in the sense that

lim
n→∞
P [Sn ≤ s] = Φ(s)

for all s ∈ R .

There are many proofs for the central limit theorem, but none is as simple as the
complex-analytic proof that uses characteristic functions. Basically, all that is needed is
Levy’s continuity theorem of Lemma 4.21 and Proposition 8.5. We give this proof below.

Let us first note that we may take, without any loss of generality, that µ= 0 and σ = 1.
In other words, we can consider the standardized sum

Sn =
1
p

n
[X1 + X2 + · · ·+ Xn] ,

where the summands Xk are normalized so that E[Xk] = 0 and V[Xk] = 1. Then all we
have to do is to show that

ϕSn
(θ ) → e−

1
2θ

2
.

Now,

eiθSn = eiθ
�

1p
n

∑n
k=1 Xk

�

=
n
∏

k=1

ei θpn Xk .

Consequently, we always have

ϕSn
(θ ) = E

� n
∏

k=1

ei θpn Xk

�

.

Since the summands Xk are independent and identically distributed, we have

ϕSn
(θ ) =

n
∏

k=1

E
h

ei θpn Xk

i

= ϕX1

�

θ
p

n

�n
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Next, we use the following second-order Taylor approximation for characteristic functions.
First, we note that

ϕ′(θ ) = iE
�

XeiθX
�

,

ϕ′′(θ ) = −E
�

X 2eiθX
�

.

Therefore, for a random variable with mean zero and variance one, we have

ϕ(0) = 1,

ϕ′(0) = 0,

ϕ′′(0) = −1,

and the Taylor approximation becomes

ϕ(θ ) = 1−
1
2
θ2 + ε(θ )θ2,

where ε(θ )→ 0 as θ → 0. Replacing θ with θ/
p

n we obtain:

ϕSn
(θ ) = ϕX1

�

θ
p

n

�n

=

�

1+
−1

2θ
2

n
+ ε

�

θ
p

n

�

θ2

n

�n

→ e−
1
2θ

2
,

where the last line follows from the very definition of the constant e.

8.7 Remark (Is Central Limit Theorem Obsolete?)
Traditionally one has used the central limit theorem to ease the calculations of e.g. bino-
mial distributions. Nowadays, with computers, such usage is mostly pointless. Indeed, if
one knows the distributions of the independent summands, the distribution of their sum
is simply a convolution. Of course, calculating convolutions by hand is very tedious and
often there are no analytical solutions. However, computers can calculate such things
numerically very fast, at least sometimes. Thus, in the 21st century the central limit the-
orems is mainly useful in the case where the distribution of the summands is unknown.
But this is the case of Example 8.1, which we are now, finally, ready to solve.

8.8 Example (Bleedingheart Charity, Solution)
Let us model each single donation as an independent random variable Xk . So, if there
are n donors, then the total amount donated is Sn =

∑n
k=1 Xk . From the 6 donations we
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estimate the average donation µ and its variance σ2 as

µ̂ =
1
6
(950+ 800+ 1 000+ 1 100+ 850+ 1000)

= 950,

σ̂2 =
1
5

�

02 + 1502 + 502 + 1502 + 1002 + 502
�

= 12 000.

Now, Ms. Bleedingheart has already raised 5 700 euros, so we are looking for n such that
P[Sn ≥ 94 300]≥ 0.95. By the central limit theorem we assume that Sn is approximately
N(nµ̂, nσ̂2) distributed, for big n . In other words,

P [Sn ≥ 94 300] = P
�

Sn − nµ̂
p

nσ̂
≥

94 300− n× 950
p

n× 109.5

�

≈ 1−Φ
�

94 300− n× 950
p

n× 109.5

�

.

So, by rearranging the equation and then taking the standard Gaussian quantile function
Φ−1(q) on both sides we obtain the criterion

Φ−1(5%) ≈
94 300− n× 950
p

n× 109.5
.

Octave’s function stdnormal_inv(x) that means Φ−1(x) tells us that Φ−1(0.05) =
−1.6449. Thus we get the criterion

−1.6449 ≈
94 300− n× 950
p

n× 109.5
.

This can be developed into a quadratic equation in n and thus solved analytically. How-
ever, it is easier simply to check for different values of n in Octave. We obtain that Ms.
Bleedingheart should still contact n≈ 102 donors.

Stirling’s Approximation

The central limit theorem of Theorem 8.6 is closely related to the law of small numbers of
Theorem 6.10. Let us investigate one aspect of their interconnection by giving a less-than-
rigorous proof of the extremely useful Stirling’s approximation of the factorial.

Let S be a Poisson random variable with mean n . We know that S can be thought to be
an exact sum of many independent identically distributed Poisson random variables or an
approximate sum of many independent identically distributed binomial random variables.



Lecture 8 Exercises 97

Thus, on the one hand, we can apply the central limit theorem:

P[S = n] = P[n− 1< S ≤ n]

= P
�

−
1
p

n
<

S − n
p

n
≤ 0

�

≈
∫ 0

− 1p
n

1
p

2π
e−

1
2 x2

dx

≈
1
p

2π

1
p

n
.

On the other hand, we can calculate explicitly

P[S = n] = e−n nn

n!
.

By equating the exact solution and the approximate one, we obtain the following ap-
proximation for the factorial.

8.9 Lemma (Stirling’s Approximation)
Let n be big. Then

n! ≈
p

2πnn+ 1
2 e−n.

Exercises

8.1 Exercise
Let Y ∼ N(−1, 0.6) . Calculate

(a) P[Y ≤ 0]
(b) P[Y ≥ 0]

(c) P[−2≤ Y ≤ 0]
(d) P[Y ≤ −3 or 0≤ Y ≤ 1]

8.2 Exercise
Consider Example 8.1.

(a) Suppose Ms. Bleedingheart receives additional 3 donations of 945, 950 and 955
euros to the 6 donations she already has received. How many donations she still
needs to have 95% chance of meeting her goal 100 000 euros?
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(b) Suppose Ms. Bleedingheart receives additional 3 donations of 5, 10 and 3 000
euros to the 6 donations she already has received. Will Ms. Bleedingheart need
more ore less additional donors to meet her goal than in the case (a) above?

8.3 Exercise
Prove Proposition 8.3.

8.4 Exercise
Let Y1 ∼ N(µ1,σ2

1) and Y2 ∼ N(µ2,σ2
2) be independent. Calculate the density function

of the random variable Y1 + Y2 .

8.5 Exercise
Write an Octave program that solves problems of the Bleedingheart Charity type of Ex-
ample 8.1. The input parameters of the problem should be the goal (100 000 euros in
the example), vector of received donations ([950, 800,1 000,1 100,850, 1000] in the
example) and the level of certainty required (95% in the example). The output is n , the
number of additional donors required.

8.6 Exercise
(i) Use Stirling’s approximation to the binomial coefficients

�

n
k

�

=
n!

k!(n− k)!

where k << n , and both k and n are large.

(ii) Implement the approximation of part (i) with Octave, and compare it with the exact
calculations.



Part III

Stochastic Processes



Lecture 9

Markov Chains as Matrices

The Markov chains are named after the Russian mathemati-
cian Andrey Andreyevich Markov (1856–1922) who intro-
duced the concept in 1906. Markov’s motivation was appar-
ently to show that the law of large numbers can hold for de-
pendent random variables. Indeed, the word “chain” was
used by Markov to suggest a sequence of pairwise depen-
dent variables. By proving the law of large numbers for de-
pendent random variables, i.e., to Markov chains, Markov
won a theological argument on the existence of free will. In-
deed, Pavel Nekrasov and the Moscow School of Mathemat-
ics argued that the law of large numbers must imply indepen-
dence which was interpreted as free will. Markov showed
that Nekrasov was wrong. Later, in 1913, Markov applied
his chains to analyze the 20 000 first words of Alexander
Pushkin’s novel in verse Eugene Onegin.

More practical applications of Markov chains followed
soon. Already in 1917 the Danish mathematician Agner
Krarup Erlang used Markov chains to obtain formulas for
call loss probabilities and waiting time distributions in tele-
phone networks. Later Markov chains have found applica-
tions in all areas of science and art. It is virtually impossible
to underestimate their importance. Andrey Markov (1856–1922)

Mathematical models are always simplifications of the reality. In probabilistic modeling
the most natural simplification is independence. Indeed, random variables can be depen-
dent in infinitely many different ways, but independent only in one way. Unfortunately,
sometimes the independence assumption is simply silly. Indeed, it would be completely
nuts to argue that the daily (mean) temperatures are independent, since warm days are
typically followed by warm ones, and cold days by cold ones. So, one must often assume
some kind on dependence. Markov chains assume a weak form of dependence that can
be stated as the future depends on the past only through the present. In the case of
daily temperatures that would mean that the probability distribution of tomorrow’s tem-
perature depends only on today’s temperature and not on the temperatures yesterday, the
day before yesterday, and so on. This kind of modeling is not completely silly, as assum-
ing independence would be, but it is still a simplification. It is well-known that there is
long-range dependence in weather: temperatures hundred years ago still have effect on
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tomorrows temperature. Luckily this effect is tiny, so Markovian modeling is practical for
many purposes.

The key Example 9.1 of this lecture illustrates how “natural” assumptions lead into a
Markovian model. In the example it is clear that we have to make assumptions, since the
only statistical data we have is a single number: 0.3.

9.1 Example (Bonus–Malus Insurance)
Most automobile insurance premiums are determined by a bonus–malus system, i.e., the
policyholder will get a lower or higher premium the next year depending on the number
of claims she has made on the previous years. Suppose the upgrades or downgrades for
the policyholder are determined by the following table. The fist column gives the discount
to annual premium, the second column gives the years with no claims needed for upgrade
and the third, fourth and fifth column give the next years discount if there has been 1, 2
or more than 2 claims in the current year.

Discount Years 1 claim 2 claims > 2 claims

0% 3 0% 0% 0%
20% 1 0% 0% 0%
40% 2 20% 0% 0%
60% N/A 40% 20% 0%

Suppose that an average policyholder has 0.3 claims per year. What is the probability
that an average new policyholder that starts with 0% discount will have 60% discount
after 10 years and continues to have the 60% discount for the successive 5 years?

Markovian Modeling

A stochastic process is a family of random variables indexed by time. In this part of the
lectures we consider discrete time, i.e., each time point has a previous and a next time
point. Consequently, stochastic processes are sequences of random variables Xn , n ∈ N ,
where n is the time index. Time n = 0 is typically interpreted as “now”. When we are
using Octave, we will usually assume that the time “now” is n = 1, since Octave starts
indexing with 1.

The state-space, denoted by S , of a stochastic process Xn , n ∈ N , is the space of all
possible values of the random variables Xn . In this part we assume that also the state-space
is discrete. This means that we can write, e.g., S= {s0, s1, s2 . . .} . In practice the state-space
is usually either Z , N or finite.
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9.2 Remark (Practical Modeling)
To give a complete probabilistic description of a discrete-time discrete-state stochastic
process one has to determine the all the joint probabilities

P
�

X0 = si0 , X1 = si1 , X2 = si2 , . . . , Xn = sin

�

.

for all n ∈ N and si0 , . . . , sin ∈ S . This is obviously impractical! To make things practical,
one has to make simplifying assumptions. The Markovian assumption, i.e., the future
is independent of the past given the present , leads to the following formal definition.

9.3 Definition (Markov Chain)
A discrete-time stochastic process Xn , n ∈ N , with discrete state-space S is a Markov
chain if it satisfies the Markovian assumption

P
�

Xn+1 = sin+1

�

�X0 = si0 , X1 = si1 , . . . , Xn = sin

�

= P
�

Xn+1 = sin+1

�

�Xn = sin

�

.

If P[Xn+1 = s j |Xn = si] is independent of n , then the Markov chain is time-
homogeneous. In this case the matrix P= [Pi j] , where

Pi j = P
�

Xn+1 = s j

�

�Xn = si

�

,

is the transition probability matrix of the time-homogeneous Markov chain Xn , n ∈ N .

9.4 Remark (Homogeneity Assumption)
In what follows we will almost always assume that our Markov chains are time-
homogeneous and do not bother stating it out explicitly. Let us note, however, that the
assumption of time-homogeneity is sometimes very silly. Indeed, consider e.g. daily tem-
peratures. It makes huge difference whether n denotes a summer day or a winter day.

To give a complete probabilistic description of a Markov chain one only needs its transi-
tion probability matrix P= [Pi j] and an initial distribution or initial probability p= [pi] ,
where

pi = P [X0 = si] .

Indeed, by repetitive use of the product rule P[A, B] = P[A]P[B|A] , we can write the
complete probabilistic description as

P
�

X0 = si0 , X1 = si1 , X2 = si2 , . . . , Xn = sin

�

= P
�

X0 = si0

�

P
�

X1 = si1

�

�X0 = si0

�

P
�

X2 = si2

�

�X0 = si0 , X1 = si1

�

· · ·

· · ·P
�

Xn = sin

�

�X0 = si0 , X1 = si1 , . . . , Xn−1 = sin−1

�

.
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By the Markovian assumption we obtain

P
�

X0 = si0 , X1 = si1 , X2 = si2 , . . . , Xn = sin

�

= P
�

X0 = si0

�

P
�

X1 = si1

�

�X0 = si0

�

P
�

X2 = si2

�

�X1 = si1

�

· · ·

· · ·P
�

Xn = sin |Xn−1 = sin−1

�

,

and finally, by the time-homogeneity, we obtain

P
�

X0 = si0 , X1 = si1 , X2 = si2 , . . . , Xn = sin

�

= P
�

X0 = si0

�

P
�

X1 = si1

�

�X0 = si0

�

P
�

X1 = si2

�

�X0 = si1

�

· · ·

· · ·P
�

X1 = sin |X0 = sin−1

�

= pi0 Pi0,i1 Pi1,i2 · · · Pin−1,in .

9.5 Example (Branching Process)
Recall the branching process, Xn , n ∈ N , with offspring distribution q . This is a Markov
chain with state space S = N and initial distribution P[X0 = 1] = 1. We know that its
transition probabilities are given by the convolution power

Pi j = q∗ij .

These transition probabilities can also be calculated as follows:

Pi,0 = qi
0,

Pi,1 =
�

i
1

�

q1qi−1
0 ,

Pi,2 =
�

i
1

�

q2qi−2
0 +

�

i
2

�

q2
1qi−2

0 ,

Pi,3 =
�

i
1

�

q3qi−1
0 +

�

i
2

�

q2q1qi−2
0 +

�

i
3

�

q3
1qi−3

0 ,

Pi,4 =
�

i
1

�

q4qi−1
0 +

�

i
2

�

q3q1qi−2
0 +

�

i
2

�

q2
2qi−2

0 +
�

i
3

�

q2q2
1qi−3

0 +
�

i
4

�

q4
1qi−4

0 ,

...

The general formula should be clear, but difficult to write.

The probabilistic nature of a Markov chain is completely determined by its initial distri-
bution p and transition probability matrix P . The reverse is also true, in a certain sense. Of
course not all (possibly∞-dimensional) vectors p and matrices P correspond to a Markov
chain. Obviously, the vector p has to be a probability vector, i.e.

pi ≥ 0 for all si ∈ S and
∑

i; si∈S
pi = 1.

A similar condition is needed for the matrix P:
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9.6 Definition (Stochastic Matrix)
A (possibly ∞×∞) square matrix P = [Pi j] is a stochastic matrix if each of its rows
are probability vectors, i.e.,

(i) Pi j ≥ 0 for all i, j .
(ii)

∑

j Pi j = 1 for all i .

Let I be an index set that is either finite, N or Z . Now we can generate realizations of
a Markov chain as with state-space S = {si ; i ∈ I} having initial distribution given by the
probability vector p = [pi]i∈I and transition probabilities given by the stochastic matrix
P= [Pi j]i, j∈I as follows: First we need to generate random variable X with P[X = si] = pi .
This can be done by transforming a uniform random variable as follows.

9.7 Algorithm (Generation of Random Variables)
Generate a realization u of a uniformly on [0, 1] distributed random variable U . Partition
the interval [0, 1] into subintervals [ai , bi) , i ∈ I , such that |bi − ai| = pi . Set x = si if
ai ≤ u< bi . Then x is a realization of a random variable X having distribution p .

Then one can generate the Markov chain with Algorithm 9.8 below.

9.8 Algorithm (Generation of Markov Chains)
(i) Generate a realization x0 of X0 from the distribution p= [pi]i∈I .

(ii) If realizations x0, x1, . . . , xn for X0, . . . , Xn are already generated, generate a new
realization for Xn+1 from the distribution [Pxn, j] j∈I .

In practice it is difficult to implement the procedure aboves, if the index set I or, equiv-
alently, the state-space S is infinite. In the finite case it is, however, quite easy. Indeed,
the Octave functions rand_pmf and rand_mc introduced in the last section of this
lecture generate random variables and Markov chains with finite state-space.

Let us end this section by collecting what we know about Markov chains and matrices.

9.9 Theorem (Markov Chains as Matrices)
The complete probabilistic nature of a Markov chain is determined by its initial distribu-
tion p and transition probability matrix P . Conversely, for any probability vector p and
stochastic matrix P of comparable dimensions there exists a Markov chain initial distri-
bution p and transition probability matrix P . This Markov chain can be generated by
Algorithm 9.8.
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Chapman–Kolmogorov Equations

To answer the question posed in Example 9.1 we need to know n-step transition proba-
bilities

Pn
i j = P

�

Xn = s j

�

�X0 = si

�

.

To find these, the key tool is the law of total probability or the conditioning trick. The
law of the total probability states that for any event A we have

P[A] =
∑

k

P[A, Bk] ,

if Bk ’s are alternatives, i.e., precisely one of them occurs. The conditioning trick is the law
of total probability combined with the product rule of conditional probability:

P[A] =
∑

k

P[Bk] P[A |Bk] .

Let us start wit the 2-step transitions. Suppose the Markov chain Xn , n ∈ N , starts
at the state si at time 0 and ends in the state s j at time 2. Now, at time 1 it can be in
any state, but surely it is in some state. Moreover, it is in precisely one state. Thus the
probability of going in two steps from state si to state s j is the sum of probabilities of going
from the fixed state si to some (i.e. any) state sk and then from the state sk to the fixed
state s j . With compact mathematical notation this means that

P2
i j =

∑

k

PikPk j .

So, we see the suggestive notation P2
i j indeed is the matrix multiplication, i.e., the 2-step

transition probability matrix P2 is indeed P · P .
Let us then consider the general case of n+m transitions. Suppose we already know

the n-step and m-step transition probabilities Pn
ik and Pm

k j for all states sk . Now the trick
is to condition the Markov chain to be in a state sk after n steps. Then the probability
of going from si to s j in n+m steps, conditioned on being at a state sk after n steps, is
obviously Pn

ikPm
k j . The final step is to uncondition the assumption that the chain is in state

sk after n steps. This is done by summing over all the possible states sk the Markov chain
can be in after n steps. This leads to the following equations by Chapman and Kolmogorov.

9.10 Theorem (Chapman–Kolmogorov Equations)
The multi-step transition probabilities of a Markov chain satisfy the Chapman–
Kolmogorov equations

Pn+m
i j =

∑

k

Pn
ikPm

k j .

In particular, the n-step transition probability matrix Pn is the nth matrix power of the
1-step transition probability matrix P .
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9.11 Remark
Note that the notation Pn

i j has to be understood as (Pn)i j , not as (Pi j)n . Indeed, consider
the two-state Markov chain with transition probability matrix

P=

�

0.9 0.1
0.4 0.6

�

.

Then, e.g.,

P2
11 = P11P11 + P12P21 = 0.9× 0.9 + 0.1× 0.4 = 0.85,

while (P11)2 = 0.92 = 0.81 is the probability that the Markov chain stays in the state 1
for the entire length of 2 steps.

Theorem 9.10 tells us how to calculate the conditional probabilities. Let us then con-
sider the unconditional probabilities. Denote by pn by the n-time distribution of a Markov
chain with initial distribution p transition probability matrix P , i.e., pn

i = P[Xn = si]. Then,
by the law of total probability or by the conditioning trick,

pn
j = P

�

Xn = s j

�

=
∑

i

P
�

X0 = si

�

P
�

Xn = s j

�

�X0 = si

�

=
∑

i

pi Pn
i j .

So, we have shown the following:

9.12 Theorem (Unconditional Distribution of Markov Chain)
Let Xn , n ∈ N , be a Markov chain with initial distribution p and transition probability
matrix P . Then the distribution of the Markov chain at time n is

pn = pPn.

Now we are almost ready to solve Example 9.1. We still have an apparently huge prob-
lem at hand. Indeed, suppose we want to model the policyholders yearly premium by a
stochastic process Xn , n ∈ N , with state-space S = {0%, 20%,40%, 60%} . The huge prob-
lem is that Xn , n ∈ N , is not a Markov chain! Indeed, the transition possibilities from
state 0% to state 20% depend on how many years the policyholder has spent in the state
0%. So the future is dependent on the (relatively) distant past. Fortunately, this problem
can be solved by enlarging the state-space. In the solution of Example 9.1 we show how
to do this. In general, the method of enlarging the state-space works always, i.e., every
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stochastic process is Markovian under suitably enlarged state-space. In theory this is
good news: Markovian modeling is enough for all purposes. In practice the news are not
so good. Enlarging the state-space is often impractical.

9.13 Example (Bonus–Malus Insurance, Solution)
Let Xn , n ∈ N , denote the state of the policyholder at year n . To make Xn , n ∈ N , a
Markov chain we consider the following enlarged state-space:

1: First year with no claims at premium 0%.

2: Second year with no claims at premium 0%.

3: Third year with no claims at premium 0%.

4: First year with no claims at premium 20%.

5: First year with no claims at premium 40%.

6: Second year with no claims at premium 40%.

7: Premium 60%.

Assume then that the probabilities of 0, 1, 2 or more claims on each year are inde-
pendent of the previous years’ claims. (Indeed, we have no data to assume otherwise!)
Let us denote these probabilities by a0, a1, a2 and a>2 . Then Xn , n ∈ N , is a Markov
chain with initial distribution P[X0 = 1] = 1 and transition probability matrix

P =



















1− a0 a0 0 0 0 0 0
1− a0 0 a0 0 0 0 0
1− a0 0 0 a0 0 0 0
1− a0 0 0 0 a0 0 0

a2 + a>2 0 0 a1 0 a0 0
a2 + a>2 0 0 a1 0 0 a0

a>2 0 0 a2 a1 0 a0



















Next we have to somehow determine the probabilities a0, a1, a2 and a>2 . Again,
with the almost compete lack of data, we have to assume. We assume that the claims
occur “completely randomly”. This means that the yearly claims are Poisson distributed.
Indeed, the Poisson distribution is the “natural” distribution on the set of natural numbers.
Since the only data point we have is the average number of claims, 0.3, this leads to
probabilities

ak = e−0.3 0.3k

k!
, k = 0,1, . . . .

So, in particular,

a0 = 0.741, a1 = 0.222, a2 = 0.033 and a>2 = 0.004.
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Plugging these numbers into the symbolic transition probability matrix we obtain the
numeric transition probability matrix

P =



















0.259 0.741 0 0 0 0 0
0.259 0 0.741 0 0 0 0
0.259 0 0 0.741 0 0 0
0.259 0 0 0 0.741 0 0
0.037 0 0 0.222 0 0.741 0
0.037 0 0 0.222 0 0 0.741
0.004 0 0 0.033 0.222 0 0.741



















Now, the probability that the new policyholder will have 60% discount in 10 years and
continue to have it for the successive 5 years is

P10
1,7 (P7,7)

5 = 5,68%.

(This number was calculated with Octave. I strongly recommend not to calculate it by
hand!)

Simulating Markov Chains

Consider a Markov Chain Xn , n ∈ N , with a finite state-space S= {s1, . . . , sK} .
The following function rand_pmf simulates the initial distribution of the Markov chain.

1 function x = rand_pmf (p , s )
2 ## Funct ion x = rand_pmf (p , s ) r e tu rns a random sample x of a s imple random
3 ## X having p r o b a b i l i t y mass func t ion P[X=s (k ) ] = p(k) . I f s i s omitted , then
4 ## i t i s assumed tha t p(k) = P[X=k ] .
5
6 K = length (p) ; ## The s i z e of the s ta t e−space .
7 U = rand (1) ; ## Uniform [0 ,1] random sample .
8 i f nargin == 1 ## Set s t a t e−space i f not given .
9 s = 1:K ;

10 endif
11 cp = cumsum(p) ; ## Cumulative prob . mass vec to r .
12 for k=1:K ## Find sample . E x i t when found .
13 i f U <= cp (k)
14 x = s (k ) ;
15 return ;
16 endif
17 endfor
18 x = s (K) ; ## Paranoia .
19 endfunction

www.uva.fi/∼tsottine/psp/rand_pmf.m

The following function rand_mc simulates finite state-space Markov chains. It needs
the function rand_pmf to work.

http://www.uva.fi/~tsottine/psp/rand_pmf.m
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1 function x = rand_mc (p , P , N, s )
2 ## Funct ion x = rand_mc (p , P , N, s ) r e tu rns a random sample x of length N of
3 ## a Markov chain with i n i t i a l d i s t r i b u t i o n p , t r a n s i t i o n p r o b a b i l i t y matr ix P
4 ## and f i n i t e s t a t e−space s . I f s i s omitted , then i t i s assumed to be
5 ## {1 , 2 , . . , l ength (p) } .
6 ##
7 ## REQUIRES : rand_pmf .
8
9 K = length (p) ; ## The s i z e of the s ta t e−space .

10 i f nargin == 3 ## Set s t a t e−space , i f not given .
11 s = 1:K ;
12 endif
13 x = zeros (1 ,N) ; ## I n i t i a l i z e output vec to r .
14 x (1) = rand_pmf (p , s ) ; ## Get s t a r t i n g v a r i a b l e .
15 for n=2:N ## Loop fo r remainding v a r i a b l e s .
16 for j=1:K ## Find the index k of s (k ) .
17 i f x (n−1) == s ( j )
18 k = j ;
19 endif
20 endfor
21 x (n) = rand_pmf (P(k , : ) , s ) ; ## Get t r a n s i t i o n s .
22 endfor
23 endfunction

www.uva.fi/∼tsottine/psp/rand_mc.m

The following script exa_rand_mc illustrates the simulation function rand_mc. The
Markov chain simulated is a symmetric random walk with reflecting boundaries.

1 ###############################################################################
2 ## FILE : exa_simu_mc .m
3 ##
4 ## An i l l u s t r a t i o n of how the func t ion rand_mc works .
5 ##
6 ## REQUIRES : rand_pmf , rand_mc .
7 ###############################################################################
8
9 rand ( " s t a t e " , 210873) ; ## Fix randomness .

10 M = 2; ## Number of samples .
11 N = 200; ## Lenght of each sample .
12 s = [−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 ] ; ## State−space .
13 p = [ 0 0 0 0 0 0 1 0 0 0 0 0 0 ] ; ## MC s t a r t s a t 0 .
14
15 ## T r a n s i t i o n p r o b a b i l i t e s : a random walk with r e f l e c t i n g boundaries .
16 P = [ 0 1 0 0 0 0 0 0 0 0 0 0 0 ; ## −6
17 0.5 0 0.5 0 0 0 0 0 0 0 0 0 0 ; ## −5
18 0 0.5 0 0.5 0 0 0 0 0 0 0 0 0 ; ## −4
19 0 0 0.5 0 0.5 0 0 0 0 0 0 0 0 ; ## −3
20 0 0 0 0.5 0 0.5 0 0 0 0 0 0 0 ; ## −2
21 0 0 0 0 0.5 0 0.5 0 0 0 0 0 0 ; ## −1
22 0 0 0 0 0 0.5 0 0.5 0 0 0 0 0 ; ## 0
23 0 0 0 0 0 0 0.5 0 0.5 0 0 0 0 ; ## 1
24 0 0 0 0 0 0 0 0.5 0 0.5 0 0 0 ; ## 2
25 0 0 0 0 0 0 0 0 0.5 0 0.5 0 0 ; ## 3
26 0 0 0 0 0 0 0 0 0 0.5 0 0.5 0 ; ## 4

http://www.uva.fi/~tsottine/psp/rand_mc.m
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27 0 0 0 0 0 0 0 0 0 0 0.5 0 0 .5 ; ## 5
28 0 0 0 0 0 0 0 0 0 0 0 1 0 ] ; ## 6
29 ## −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
30
31 x = zeros (M,N) ; ## I n i t i a l i z e the output .
32 for m=1:M ## M samples of lenght N each .
33 x (m, : ) = rand_mc (p , P ,N, s ) ;
34 endfor
35
36 for m=1:M ## Plo t the samples v e r t i c a l l y .
37 subplot (M,1 ,m)
38 plot ( x (m, : ) ) ;
39 endfor

www.uva.fi/∼tsottine/psp/exa_rand_mc.m
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0
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4
6
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Realizations of a random walk with reflecting boundary.

Exercises

9.1 Exercise
Which of the following are stochastic matrices?

(a)
�

0.2 0.6
0.1 0.9

�

(b)
�

0 1
1 0

�

(c)




0.9 0.4 −0.3
0.9 0.1 0
0 0.2 0.8





(d)

[1]

For the stochastic matrices calculate the corresponding 7-step transition probability ma-
trices.

http://www.uva.fi/~tsottine/psp/exa_rand_mc.m
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9.2 Exercise
Consider the Markov Chain Xn , n∈ N , with state-space S= {1,2, 3} and transition prob-
ability matrix

P =





0.5 0 0.5
0 0.5 0.5

0.5 0 0.5





and initial probability vector (for X0 )

p= [0.7 0 0.3] .

Calculate the probabilities

(a) P[X1 = 1]
(b) P[X3 = 1]

(c) P[X6 = 2]
(d) P[X3 = X2 = 3]

9.3 Exercise (Random Walk)
Let Xn , n ∈ N , be the symmetric random walk, i.e., the Markov chain with transition
probabilities

Pi,i+1 =
1
2
= Pi,i−1.

Assume X0 = 1. Calculate the probabilities

(a) P[X4 = 2]
(b) P[X6 = −2]

(c) P[X8 = 0]
(d) P[X1973 = 0]

9.4 Exercise
Consider Example 9.1.

(a) How fast can a new policyholder raise to the level of 60% discount and what is the
probability that this happens?

(b) What is the probability that a new policyholder remains in the level of 0% discount
for 10 years?

(c) What is the probability that a new policyholder will not reach the level of 60%
discount on any year in 25 years?
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(d) What is the distribution of discounts for policyholders that have had the policy for
20 years?

Hint for (b) and (b): Let Xn , n ∈ N , be a Markov chain with state-space S and transition
probability matrix P . Let S ⊂ S . Consider a new killed Markov chain Yn , n ∈ N , that
is a constructed from the Markov chain Xn , n ∈ N , by killing it to the set of states S
in the following way: The state-space of Yn , n ∈ N , is {si , † ; si ∈ S} and the transition
probability matrix of Yn , ∈ N , is

Q i j = Pi j if si , s j 6∈ S ,

Q i,† =
∑

j : s j∈S
Pi j if s j 6∈ S ,

Q†,† = 1.

Then Yn will never leave the state S corresponding to the set of states S , if it enters it.
Consequently, the probability that the Markov chain will enter the set of states S any
time before (or including) time n is Qn

i,† , where si is the initial state of the Markov chain
Xn , n ∈ N .

9.5 Exercise
Consider Example 9.1. Suppose the insurance company has the following yearly data on
the number of claims made by the policyholders:

Claims Policyholders

0 4 905
1 1 120
2 114
3 0

Claims Policyholders

4 7
5 0
6 0
7 1

Answer to the question of Example 9.1 with this additional information

(a) as a believer of the Poisson type independent claim assumption,
(b) by believing that the data speaks for itself.

9.6 Exercise
Consider a time-homogeneous stochastic process Xn , n ∈ N , with state-space S = {1, 2}
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and the following non-Markovian 2-step dependence structure

P
�

Xn = 1
�

�Xn−1 = 1, Xn−2 = 1
�

= 0.91,

P
�

Xn = 1
�

�Xn−1 = 1, Xn−2 = 2
�

= 0.07,

P
�

Xn = 1
�

�Xn−1 = 2, Xn−2 = 1
�

= 0.02,

P
�

Xn = 1
�

�Xn−1 = 2, Xn−2 = 2
�

= 0.00,

P
�

Xn = 2
�

�Xn−1 = 1, Xn−2 = 1
�

= 0.09,

P
�

Xn = 2
�

�Xn−1 = 1, Xn−2 = 2
�

= 0.93,

P
�

Xn = 2
�

�Xn−1 = 2, Xn−2 = 1
�

= 0.98,

P
�

Xn = 2
�

�Xn−1 = 2, Xn−2 = 2
�

= 1.00.

Model Xn , n ∈ N , as a Markov chain by enlarging its state-space and calculate the prob-
ability

P
�

X7 = X6 = 1
�

�X3 = 1
�

.



Lecture 10

Classification of Markovian States

This Lecture is preparation for the next Lecture 11 that deals
with the long-term behavior of Markov chains. The key re-
sult, or rather a concept, in the long-term behavior is er-
godicity which is a generalization of the law of large num-
bers. This generalization was a major motivation for Andrey
Adreyevich Markov himself for winning his theological ar-
gument concerning the free will against Pavel Nekrasov and
the Moscow School of Mathematics.

On a more practical level the concept of ergodicity was
first introduced by the Austrian physicist and philosopher
Ludwig Bolzmann (1844–1906) in the context of statistical
mechanics. Indeed, it was he who coined the term ergodic
from the Greek words of ergon (work) and odos (path). In
the context of statistical mechanics or thermodynamics the
ergodicity, or the ergodic hypothesis means that over long pe-
riods of time, the time spent by a system in some region of
the phase-space with the same energy is proportional to the
volume of this region. In the language of stochastic processes
this means that the time-averages and the probability aver-
ages are the same, as for the probabilists the phase-space is
the probability space.

Ludwig Boltzmann (1844–1906)

We analyze here the states of a Markov chain and present concepts that are needed to
give conditions under which the long-time behavior of a Markov chain is “nice”. The key
Example 10.1 below is chosen so that it should be as “un-nice” as reasonable. In some sense
its long-time behavior is reasonable but it does not fit into the nice ergodic theory.

10.1 Example (Confused Ant)
An ant is dropped in an infinitely long corridor where the ant can only take steps left or
right. The corridor has one wall in the middle (whatever “middle” means in an infinitely
long corridor). The wall is sticky on the left side: if the ant hits the wall on the left, it
will get stuck. On the right side the wall makes the ant bounce off. Naturally, the ant gets
confused and starts to take steps left and right completely randomly. What will happen
to the ant eventually?



Lecture 10 Communication Classes 115

Communication Classes

Two given states of a Markov chain communicate, if starting from any one of them one can
eventually reach the other, and vice versa.

10.2 Definition (Accessibility and Communication)
Let Xn , n ∈ N , be a Markov chain with (discrete) state-space S = {sk; k ∈ I} and transi-
tion probability matrix P = [Pi j]i, j∈I . A state s j is accessible from the state si if Pn

i j > 0
for some n ∈ N . In this case we denote i→ j . If both i→ j and j→ i hold, we say that
the states si and s j communicate and denote i↔ j .

10.3 Remark (Equivalence Relation)
The communication relation↔ is, as the symbol suggests, an equivalence relation, i.e.,
it satisfies

(i) i↔ i (reflexivity),
(ii) if i↔ j , then j↔ i (symmetry),

(iii) if i↔ k and k↔ j , then i↔ j (transitivity).

Indeed, reflexivity and symmetry are obvious. To see transitivity, suppose that Pn
ik > 0

and Pm
k j > 0. Then, Pn+m

i j ≥ Pn
ikPm

k j > 0, and similarly for Pn+m
ji > 0 (with some different

n and m). Since any equivalence relation on any set will split the set into equivalence
classes we shall speak of communication classes, or classes for short.

As a first example, consider a Markov chain with transition probability matrix

P =





0.2 0.8 0
0.7 0.3 0
0 0 1



 .

It is obvious that this chain has two communication classes: {s1, s2} and {s3} . Indeed, if the
Markov enters the states s1 or s2 , it will never reach the state s3 : {s1, s2} is an absorbing
class. In the same way the class {s3} , or the state s3 is absorbing: if the Markov chain
ever enters the absorbing state s3 it will never leave it. In this example the classes {s1, s2}
and {s3} are actually isolated, i.e., the Markov chain starting from the one class will never
reach the other class, and vice versa.

As a second example, consider a Markov chain with transition probability matrix

P =





0.2 0.7 0.1
0.3 0.3 0.4
0 0 1



 .
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Again, this chain has two communication classes: {s1, s2} and {s3} . Indeed, s1 and s2
communicate: one can reach state s1 from state s2 with a single step, and vice versa. One
can also reach the state s3 from both of the states s1 and s2 . So, the classes {s1, s2} and
{s3} are not isolated. But the reaching goes only one way: if the Markov chain ever enters
the absorbing state s3 it will never leave it.

As a third example, consider a Markov chain with the transition probability matrix

P =











0 0 0 0 1
0 0.7 0.1 0.2 0
0 0 0.5 0.5 0
0 1 0 0 0
0 0 0 0 1











This Markov chain has three communication classes {s1} , {s2, s3, s4} and {s5} . Indeed, the
state 1 communicates only with itself, since if you leave it, you never come back. In a quite
opposite manner the state s5 only communicates with itself, since it is absorbing: once
you enter, you never leave. States s2 , s3 and s4 form a communication class {s2, s3, s4} . To
see that s2 , s3 and s4 communicate, it is enough to find a possible “round-trip” around the
states. One possible round-trip is s2→ s4→ s2→ s3→ s4→ s2 .

For the log-term behavior of Markov chains many communications classes are a nui-
sance. Therefore, there is a name for Markov chains with only one communication class.

10.4 Definition (Irreducibility)
If a Markov chain has only one communication class it is called irreducible.

To see how irritating many communications classes can be in the long time behavior,
consider the Markov chain with state space S= {s1, s2, s3} and transition probability matrix

P =





0.2 0.8 0
0.7 0.3 0
0 0 1



 .

Suppose that we are interested in the limiting probabilites

π̃ j = lim
n→∞

Pn
i j .

To understand what is goin on, let us calculate the n = 10 000 step transition probability
matrix:

P10 000 =





0.46667 0.53333 0.00000
0.46667 0.53333 0.00000
0.0000 0.00000 1.00000



 .
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So, if i ∈ {1, 2} , then we have

π̃1 = 0.46667,

π̃2 = 0.53333,

π̃3 = 0.00000,

while for i = 3, we have

π̃1 = 0.00000,

π̃2 = 0.00000,

π̃3 = 1.00000.

Consequently, the limiting distribution π̃ depends depends on the initial state of the pro-
cess, which is not desirable.

In general, it may be difficult to determine the communication classes of a Markov
chain by following a finite algorithm. In principle, one could just calculate Pn

i j and Pn
ji for

different values of n to check if si and s j communicate. Unfortunately, this can only give
a positive answer if we find that Pn

i j > 0 and Pn
ji > 0 for some (different) n along the way.

But negative answer is not possible, unless one checks all the infinite possibilities for all
n ∈ N . This infinite algorithm is, at least for the current computers, impossible. In the case
of finite state-space Markov chains the communications can be checked, however. The key
observation is that for a finite-state Markov chain with K states it is enough to check the
n-step transitions upto Pn for n ≤ K − 1. Indeed, if one cannot find a path from any state
to any other state in a collection of K states with at most K−1 steps, then there is no such
path! This is a simple counting argument.

The Octave function comm_mc listed below checks whether two states si and s j of a
finite state-space Markov chain, determined by its transition probability matrix P , commu-
nicate.

1 function bool = comm_mc(P , i , j )
2 ## Funct ion bool = comm_mc(P , i , j ) r e tu rns 0 i f the s t a t e s i and j of a Markov
3 ## chain with t r a n s i t i o n p r o b a b i l i t y matr ix P communicate , and 0 otherwise .
4
5 i f acc_mc (P , i , j ) && acc_mc (P , j , i ) ## Use the a u x i l i a r y func t ion below .
6 bool = 1;
7 else
8 bool = 0;
9 endif

10 endfunction
11
12 ## A u x i l i a r y func t ion tha t determines i f j i s a c c e s s i b l e from i by checking a l l
13 ## the p o s s i b l e paths of lenght 0 , 1 , . . . , rows (N)−1.
14
15 function bool = acc_mc (P , i , j )
16 bool = 0; ## Assume no acces s .
17 K = rows (P) ; ## Number of s t a t e s .
18 for n=0:(K−1) ## Check the acces s paths upto K−1.
19 i f ( P̂ n) ( i , j ) > 0
20 bool = 1; ## Access found . E x i t the func t ion .
21 return ;
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22 endif
23 endfor
24 endfunction

www.uva.fi/∼tsottine/psp/comm_mc.m

Transience and Recurrence, and Positive Recurrence

Let Ti j be the random time it takes for a Markov chain to reach the state s j when it starts
from the state si . We denote by Ti = Tii , for the return time of the state si . We also denote
the mean return time by

mi = E[Ti].

10.5 Definition (Transience, Null Recurrence and Positive Recurrence)
Let Xn , n ∈ N be a Markov chain with state space S . A state si ∈ S is transient if

P[Ti =∞] > 0.

A state si ∈ S of is recurrent if

P[Ti <∞] = 1.

A state si ∈ S is positive recurrent it is recurrent and

mi < ∞.

A state si ∈ S that is recurrent but not positive recurrent is null recurrent.

So, a transient state is a state that occurs only finitely many times and a recurrent state
is a state that occurs infinitely many times, and a positive recurrent state occurs frequently
enough to admit finite average. For the long-run behavior, the positive recurrence is desir-
able. Indeed, the long-time proportions π̄i for a state si satisfy

π̄i =
1
mi

.

Thus, π̄i = 0 for states that are either transient or null recurrent.

From Definition 10.5 it may seem that all states are either recurrent or transient. This
is not true for general stochastic processes. Indeed, it may happen that a state will occur
infinitely or finitely many times depending on the particular realization of the process. In
the case of time-homogeneous Markov chains this is not possible, however. Indeed, let fi
denote the probability that a time-homogeneous Markov chain, starting from the state si
(or having entered the state si ) will return to the state si . Then si is transient if fi < 1

http://www.uva.fi/~tsottine/psp/comm_mc.m
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and recurrent if fi = 1. Indeed, suppose fi < 1. Then for each time the Markov chain
enters the state si there is the positive probability 1− fi that the process will never re-enter
the state si . Consequently, starting with the state si , the probability that the process will
re-visit the state exactly n−1 times is f n−1

i (1− fi) . This means that the number of times a
transient state si is re-visited has geometric distribution with mean 1/(1− fi) . Since this
is true for all of the possible realizations, it follows that if fi < 1, the state si is transient.
If, however, fi = 1, then the Markov chain will re-enter the state si infinitely often. Indeed,
each time the Markov chain hits the state si it will regenerate: the chain Xn , n≥ Ti , and
the original chain Xn , n≥ 0, are probabilistically the same (assuming that X0 = si ).

Let us then look for quantitative criteria for transience and recurrence. Let

In(i) =

�

1, if Xn = si
0, if Xn 6= si

i.e., In(i) is the indicator of the event {Xn = si} . Then
∑∞

n=0 In(i) is the total number of
times the Markov chain visits the state si . Now,

E

�∞
∑

n=0

In(i)
�

�

�X0 = si

�

=
∞
∑

n=0

E
�

In(i)
�

�X0 = si

�

=
∞
∑

n=0

P
�

Xn = si

�

�X0 = si

�

=
∞
∑

n=0

Pn
ii .

This sum is finite for transient states and infinite for recurrent states. Let us then consider
the positive recurrent states. We see, just as above, that the average number of visits to
the starting state si that occur before the time N is

∑N
n=0 Pn

ii . Consequently, the average
number of times the state si is visited per unit time is given by the Cesàro mean

lim
N→∞

1
N

N
∑

n=0

Pn
ii .

This is also the long-time proportion π̄i the Markov chain spends at the state si , and
π̄i = 1/mi . Consequently, the Cesàro limit above must be strictly positive for positive
recurrent states. We have argued the following definite criteria for the transience and (null
or positive) recurrence in terms of the transition probability matrix P .
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10.6 Theorem (Criteria for Transience and Recurrence)
A state si of a Markov chain with transition probability matrix P is

transient if and only if
∞
∑

n=0

Pn
ii <∞

null recurrent if and only if
∞
∑

n=0

Pn
ii =∞ and lim

N→∞

1
N

N
∑

n=0

Pn
ii = 0

positive recurrent if and only if
∞
∑

n=0

Pn
ii =∞ and lim

N→∞

1
N

N
∑

n=0

Pn
ii > 0

Moreover, the mean recurrence time mi of any state si ∈ S satisfies the Cesàro limit

1
mi

= lim
N→∞

1
N

N
∑

n=1

Pn
ii .

Theorem 10.6 tells us that what determines the transience, null recurrence and positive
recurrence is how fast the n-step probabilities Pn

ii , n ∈ N , decrease. The slower they
decrease the more there is recurrent behavior.

10.7 Corollary (Transience and Recurrence Are Class Properties)
If si is transient and si communicates with s j , then s j is also transient. Ditto for null
recurrence and positive recurrence.

Let us argue why the Corollary 10.7 above is true. Suppose that si is recurrent and
communicates with s j . Then, for some n and m we have Pn

i j > 0 and Pm
ji > 0. Obviously,

for any N we have Pn+m+N
j j ≥ Pn

ji P
N
ii Pm

i j . Consequently,

∞
∑

N=0

PN+n+m
j j ≥

∞
∑

N=0

Pn
ji P

N
ii Pm

i j

= Pn
ji P

m
i j

∞
∑

N=0

PN
ii

= ∞,

which shows the s j is recurrent. The transient case is now obvious, since a state cannot be
both transient and recurrent, and it must be one or the other. Let us consider then the most
difficult case: positive recurrence. Suppose that the states si and s j communicate and that
si is positive recurrent. Let mi be the mean recurrence time of si and let m j be the mean
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recurrence time of s j . By assumption, mi <∞ . We need to show that also m j <∞ . Let
m ji be the average time it takes for the Markov chain to reach the state si starting from the
state s j . Now, let n be the shortest number of steps so that s j can be reached from si by n
steps. We use a conditioning trick now. Let A be the event that, starting from the state si
the Markov chain reaches the state s j exactly with n steps without visiting the state si in
doing so, i.e.,

A =
�

X1 6= si , X2 6= si , . . . Xn−1 6= si , Xn = s j

	

.

Then by conditioning on A we see that

mi = E[Ti]

= E[Ti |A]P[A] + E[Ti |Ac]P[Ac]

≥ E[Ti |A]P[A]
= (n+m ji)P[A].

This shows that m ji <∞ . Let us then show that mi j <∞ . Let X0 = si and denote by
Ti(r) be the length of the r th excursion of the Markov chain around the state si , i.e., the
nth revisit of the Markov chain to the state si is at the random time Ti(1)+Ti(2)+· · ·+Ti(n) .
Note that Ti(r) , r ∈ N , are independent and they have the same distribution as Ti (which
is the first excursion). Let N ji denote the number of revisits the Markov chain takes to the
state s j before it visits the state si . This is geometrically distributed random variable with
some parameter p that we are not interested in. The main point is that E[N ji] <∞ and
that

Ti j ≤
N ji
∑

r=1

Ti(r).

Consequently,

mi j = E





N ji
∑

r=1

Ti(r)





= E
�

Ni j

�

E
�

Ti(r)
�

= E
�

Ni j

�

mi

< ∞.

The claim follows now by noting the following obvious subadditivity:

m j ≤ m ji +mi j .

Finally, let us consider transience, null recurrence and positive recurrence in finite
state-space Markov chains. First note that by a simple counting argument we see that
a finite state-space Markov chain must have at least one recurrent class. Indeed, suppose
all classes are transient. This means that the Markov chain visits each of its states only
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finitely many times. But since there are finitely many states, the Markov chain will visit any
and all of its states only finitely many times. Since there are infinitely many time points,
this is obviously absurd! So, there must be at least one recurrent state. Also with finite
state-spaces the concept of positive recurrence is irrelevant: null recurrence cannot occur.
Indeed, for null recurrent states s j we have for all starting states si that

lim
N→∞

1
N

N
∑

n=1

Pn
i j = 0.

Then, by summing over all the finite number of states we obtain from this that

lim
n→∞

1
N

∑

j

N
∑

n=1

Pn
i j = 0.

But this implies the following absurdity:

0 = lim
N→∞

1
N

∑

j

N
∑

n=1

Pn
i j

= lim
N→∞

1
N

N
∑

n=1

∑

j

Pn
i j

= 1,

since
∑

j Pn
i j = 1. Thus the recurrent state si cannot be null recurrent.

For infinite state-space, null recurrence and all transience can occur. Indeed, for the
non-symmetric random walk Pi,i+1 = p = 1 − Pi,i−1 , p 6= 1/2, all states i ∈ S = Z are
transient and for the symmetric random walk Pi,i+1 = 1/2 = Pi,i−1 all states i ∈ S = Z
are null recurrent. (Exercise 10.6)

Periods

Finally, let us end our classification of states by discussing periods. Periods are messy!
They can make the long-term behavior of a Markov chain unclear in the sense that limiting
probabilities and long-term probabilities differ. This is why we would like our Markov
chains to be aperiodic. Of course, this is not always possible.

10.8 Definition (Periods)
A state si ∈ S of a Markov chain Xn , n ∈ N , with transition probability matrix P has
period di if Pn

ii = 0 whenever n is not divisible by di and di is the largest number with
this property. If di = 1, then the state si is aperiodic. If all the states of the Markov
chains are aperiodic, we say that the Markov chain is aperiodic.
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Definition 10.8 is maybe difficult to understand, but in practice checking the periods is
often relatively easy. For example, for the Markov chain with transition probability matrix

P =





0 0 1
1 0 0
0 1 0





it is relatively easy to see that d1 = d2 = d3 = 3 as the Markov chain will alternate around
the three states like s1 → s3 → s2 → s1 → s3 → s2 → s1 → · · · . It is also clear in this case,
by symmetry, that each of the state is equally probable in the long run no matter what the
initial distribution is, that is the time the Markov chain spends in the long run in any of the
states s1 , s2 or s3 is 1/3. However, the limiting probabilities limn→∞ Pn

i j do not exist.

Periodicity is also a class property. Indeed, suppose n and m are such that Pn
i j > 0 and

Pm
ji > 0. Let k be such that Pk

j j > 0. Let di and d j be the periods of the communicating

states si and s j , respectively. Then, Pn+m
ii ≥ Pn

i j P
m
ji > 0 and Pn+m+k

ii ≥ Pn
i j P

k
j j P

m
ji > 0. But

this means that di must divide n+m and n+m+ k . Consequently, di must also divide
their difference k for any such k that Pk

j j > 0. This means that di divides d j . Changing
the roles of i and j we see that also d j divides di . Therefore, di = d j , and we have shown
the following.

10.9 Proposition (Period is Communication Class Property)
If si has period d and if si communicates with s j , then also s j has period d .

Ergodicity

Let us give the name ergodic to the Markov chains that behave nicely in the long run. It
should be noted that there is a whole theory in mathematics and physics, called the ergodic
theory that deals with the question on when time averages and state-space averages are
the same. For unfortunate historical reasons, the definition below for a Markov chain to be
ergodic is unnecessarily strict for for the time and state-space averages to coincide.

10.10 Definition (Ergodic Markov Chain)
An irreducible aperiodic positive recurrent Markov chain is called ergodic.

After all this analysis of different states, let us analyze the confused ant of Example
10.1.
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10.11 Example (Confused Ant, Solution)
Let us call the position of the wall 0. Steps left then lead to states −1,−2, . . . and steps
right lead to states 1,2, . . . . Since the wall is different from the left and from the right
we split the position 0 into two states 0− and 0+ , denoting the left and right side of the
wall. The transition probabilities for the positions Xn of the confused ant at time n are
partly given by the random walk:

Pi,i−1 =
1
2
= Pi,i+1

if i−1, i, i+1 6∈ {0−, 0+} . For the left wall 0− we have Pi,0− = 0, if i 6= −1, P−1,0− = 1/2
and P0−,0− = 1. For the right wall we have Pi,0+ = 0, if i 6= 1, P1,0+ = 1/2 and P0+,1 = 1.

There are three communication classes: {. . . ,−2,−1} , {0−} and {0+, 1, 2 . . .} .
The class {. . . ,−2,−1} is transient: if the ant is dropped in this class it will eventually

get stuck to the absorbing state 0− .

The class {0−} , being absorbing, is positive recurrent.

Finally, the class {0+, 1, 2, . . .} is null recurrent. It is enough to consider any state in
the class. Let us choose 0+ . Now, by bouncing, P2n+1

0+,0+ = 0 for all n≥ 0. So, we consider
the even steps. For them, due to Stirling’s formula,

P2n
0+,0+ ≈

�

2n
n

�

2−2n ≈
1
p
πn

.

Therefore,

∞
∑

n=0

Pn
0+,0+ ≈

∞
∑

n=1

1
p
πn

= ∞

and, consequently, the class {0+, 1, 2, . . .} is recurrent. Also,

1
N

N
∑

n=0

Pn
0+,0+ ≈

1
N

N
∑

n=1

1
p
πn

≈ 0.

Consequently, the class {0+, 1, 2, . . .} is null recurrent.

Exercises

10.1 Exercise
Find out the communication classes of the following Markov chains.
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(a)




0.1 0.9 0
0 0.2 0.8
0 0 1





(b)






0.1 0.7 0.1 0.1
0.2 0.2 0.2 0.4
0.1 0.1 0.1 0.7
0.3 0.3 0.1 0.3







(c)




0.1 0.9 0
0 0.2 0.8
1 0 0





(d)






0.1 0 0.9 0
0 1 0 0

0.8 0 0.2 0
0 0.1 0 0.9







10.2 Exercise
Find out which states of the following Markov chains are transient and which are recur-
rent (null or positive).

(a)




0.1 0.9 0
0 0 1
1 0 0





(b)






0.1 0.7 0.1 0.1
0.2 0.2 0.2 0.4
0 0 1 0

0.3 0.3 0.1 0.3







(c)




0.1 0 0.9
0 0.2 0.8

0.5 0 0.5





(d)






0.1 0 0.9 0
0.8 0 0.2 0
1 0 0 0
0 0 0.1 0.9







10.3 Exercise
Find out which states of the following Markov chains are transient and which are recur-
rent (null or positive). Also, find out the period of each state.

(a)




0.1 0.9 0
0 0.2 0.8
1 0 0





(b)






0.1 0.7 0.1 0.1
0 0 1 0
0 0.6 0 0.4

0.3 0.3 0.1 0.3







(c)




0 0 1
0 0.2 0.8

0.5 0 0.5





(d)






0 0 0 1
0.8 0 0.2 0
0 0.3 0 0.7
0 0 0.1 0.9
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10.4 Exercise (Random Walk)
Consider the random walk with absorbing boundary at i = −10 and a reflecting boundary
at i = 10. This means that Pi,i+1 = 1/2 = Pi−1,i except that P−10,−10 = 1 and P10,9 =
1. Classify each state of the process on whether it is transient, null recurrent, positive
recurrent, absorbing and what is its period.

10.5 Exercise (Martingale Strategy)
John Player has found a special and clever way of playing roulette. He will bet 100 euros
on red. If the outcome is red, then he has won 100 euros. If the outcome is black, then
having lost the 100 euros, he will continue and bet 200 euros on red. If the outcome is
now red, he has won 100. If the outcome is again black, then he will bet 400 euros on red,
and so on. This strategy of always doubling your bet until you win is called a martingale
strategy. With this strategy the player is sure to win his initial bet eventually. What is
wrong with this strategy, i.e., why are the casinos not worried about martingale-players?

10.6 Exercise (Symmetry and Transience of Random Walks)
Consider the random walk Xn , n ∈ N , where X = 0 and Pi,i+1 = p = 1− Pi,i−1 , i ∈ S=
Z . Show that

(a) if the random walk is symmetric, i.e., p = 1/2, then every state i ∈ Z is null
recurrent,

(b) if the random walk is non-symmetric, i.e., p 6= 1/2, then every state i ∈ Z is
transient.
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Markovian Long Run and Ergodicity

A stochastic process is said to be ergodic if its statistical prop-
erties can be deduced from a single, sufficiently long, random
sample of the process. The reasoning is that any collection of
random samples from a process must represent the average
statistical properties of the entire process. In other words,
regardless of what the individual samples are, a birds-eye
view of the collection of samples must represent the whole
process. Conversely, a process that is not ergodic is a pro-
cess that changes erratically at an inconsistent rate. There
is a whole separate field of science called the ergodic theory
that deals with dynamical systems and their ergodicity. Ar-
guable the most celebrated result in this theory is the Ergodic
Theorem due to the American mathematician George David
Birkhoff (1884–1944).

A Markov chain is ergodic if it is irreducible, aperiodic
and positive recurrent. For Markov chains this is actually
(somewhat confusingly) the definition of ergodicity. Note,
however, that the definition of ergodicity can be stated for
general stochastic processes. It is just the Markov case where
one obtains the nice and relatively simple characterization
given above.

George David Birkhoff (1884–1944)

11.1 Example (Brutopian Caste System)
The Kingdom of Brutopia recently divided its population into three equally large castes:
the Nobility, the Burghers and the Serfs. The mobility between the castes will be (some-
how enforced to be)

Noble Burgher Serf

Noble 95% 5% 0%
Burgher 1% 61% 38%
Serf 0% 2% 98%

What will happen to the castes in the long run?
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The key Example 11.1 of this lecture deals in calculating the long-term behavior of an
ergodic Markov chain. It deals with a finite state-space Markov chain, which makes the
situation relatively simple, as there are not so many ways things can go bad.

Long-Run, Limiting, and Stationary Probabilities

What happens in the long-run in a Markov chain (if anything) is not clear. Indeed, it is not
clear what the “long-run” means. Definition 11.2 below gives three reasonable interpreta-
tions: long-run proportions, limiting probabilities and stationary probabilities.

Recall that Xn , n ∈ N , is a time-homogeneous discrete-time Markov chain with state-
space S= {si; i ∈ I} , where the index set I is discrete. The initial distribution of the Markov
chain is denoted by p = [pi]i∈I , and the transition probability matrix of the Markov chain
is denoted by P= [Pi j]i, j∈I .

Let Vn( j) be the number of times the Markov chain visits state s j before time n . Note
that in the notation of Lecture 10 this means that

Vn( j) =
n−1
∑

k=0

Ik( j).

11.2 Definition (Long-Run, Limiting and Stationary Probabilities)
(i) If the limits

π̄ j = lim
n→∞

1
n

Vn( j)

exist and are independent of the initial distribution p , then the limit π̄ = [π̄ j] j∈I
is called the long-run probability of the Markov chain.

(ii) If the limits

π̃ j = lim
n→∞

∑

i∈I
pi P

n
i j

exist and are independent of the initial distribution p , then π̃ = [π̃ j] j∈I is called
the limiting probability of the Markov chain.

(iii) If the (full) balance equation

πP = π

admits a solution π= [π j] j∈I that is a probability vector, then the solution is called
the stationary probability of the Markov chain.

The long-run and limiting probabilities are self-explanatory. The stationary probability
is less so. So, let us explain why the stationary probability is named so and where the
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balance equation comes from. Suppose that at some point of time (say n) the Markov
chain has distribution qn . Then, at the next point (n+1) the Markov chain has distribution
qn+1 = qnP . Now, if the balance equation holds for qn , i.e., qnP= qn , then qn = qn+1 , and
consequently qm = qn for all times m ≥ n . The interpretation of this is that at time n the
Markov chain has reached its stationary state. In other words, the stationary probability
π can be characterized as such initial probability that the Markov Xn , n ∈ N , is stationary,
i.e., for each ` ∈ I , the unconditional probabilities

P[Xn = s`] =
∑

k∈I
P[Xn = s`|X0 = sk]P[X0 = sk]

do not depend on the time n , if P[X0 = sk] = πk for all k ∈ I .

11.3 Remark (Flux In = Flux Out Principle)
Another way of looking at the balance equation is to note that since

∑

i∈I Pji = 1, we can
write the balance equation (actually, a set of equations)

π j =
∑

i∈I
πi Pi j for all j ∈ I

as
∑

i∈I
π j Pji =

∑

i∈I
πi Pi j for all j ∈ I.

The interpretation of the equation above is that for all states s j the rate at which the
chain leaves the state s j is the same as the rate at which the chain enters the state
s j . This interpretation of the balance equation is extremely useful in the continuous time
Markov chain setting and in the queueing theory.

Let us then discuss the connection between the long-run, limiting and stationary prob-
abilities.

The limiting probability is a fragile notion in the sense that it may fail to exist even
though the both long-run and the stationary probabilities exist, and are the same. To see
this simply consider the very simple alternating Markov chain

P=

�

0 1
1 0

�

.

It is not difficult to see that the long-run probabilities are π̄= [0.5 0.5] and that they also
satisfy the balance equation. Consequently, in this case π̄ = π = [0.5 0.5] . The limiting
probability π̃ does not exists, however. Indeed, suppose the initial distribution is p= [1 0] .
Then it is easy to see that p2n = [1 0] and p2n+1 = [0 1] . In this counterexample it is
clear that it is the period (or alternating nature) of the Markov chain that messed up the
limiting probabilities. The long-run probabilities or the stationary probabilities were not
affected by the period.
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The existence of the limiting probability implies the existence of the stationary proba-
bility. Indeed, suppose the limit π̃ = limn→∞ pPn exist and is independent of the initial
probability p . Then

π̃ = lim
n→∞

pPn

= lim
n→∞

pPn+1

= lim
n→∞

pPn P

= ( lim
n→∞

pPn)P

= π̃P.

So, we see that the limiting probability π̃ solves the balance equation.

The existence of the stationary probability does not imply the long-run probability In-
deed, consider the Markov chain

P=

�

1 0
0 1

�

.

Then any probability distribution satisfies the balance equation. However, in this case the
long-run probability is simply the initial distribution. So, it certainly is not independent of
it. The problem here is that the Markov chain is not irreducible: the states s1 and s2 do
not communicate.

Law of Large Numbers

Let us explain the role of the positive recurrence in the long-time behavior of Markov chains.

Recall that mi = E[Ti] is the mean recurrence time for the state si . If the state si is
null recurrent or transient, then mi =∞ .

The following law of large numbers for Markov chains probably dates back to the the-
ological dispute on the free will between Andrey Markov and Pavel Nekrasov.

11.4 Theorem (Law of Large Numbers)
Let Xn , n ∈ N , be an irreducible Markov chain. Then the long-run probability π̄ exists
and

π̄ j =
1

m j
.

Let us argue why the Law of Large Numbers for Markov chains 11.4 above is true.

For transient and null recurrent states Theorem 11.4 is clear. Indeed, in this case we
obviously have π̄ j = 1/m j = 0.

Let us then consider the positive recurrent states.
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Naturally, we will use the classical law of large numbers for independent and identically
distributed random variables.

Let T j(r) be the length of the r th excursion, i.e., the time it takes for the Markov
chain to return to the state s j the r th time after the (r − 1)th visit to the state s j . Then it
follows from the Markovianity that the random variables T j(r) , r ∈ N , are independent
and identically distributed and their distribution is the same as that of the (first) return
time T j . Consequently, the classical law of the large numbers state that

1
V

V
∑

r=1

T j(r) → m j as V →∞.

Note now that
∑V

r=1 T j(r) is the time the V th revisit to the state s j occurs. Since Vn( j) is
the number of times s j is visited before time n , we have the double estimate

Vn( j)
∑

r=1

T j(r) ≤ n ≤
Vn( j)+1
∑

r=1

T j(r).

This estimate looks complicated, but if you meditate on it, perhaps over a nice cup of tea,
you will eventually realize that it is actually quite trivial.

Now, since s j is recurrent, Vn( j) → ∞ , and the claim of Theorem 11.4 follows by
flipping x to 1/x in the double estimate

1
Vn( j)

Vn( j)
∑

r=1

T j(r) ≤
n

Vn( j)
≤

1
Vn( j)

Vn( j)+1
∑

r=1

T j(r)

and the hamburger principle.

It is important to note here that only the irreducibility of the Markov chain was needed
in the arguments above. So, Theorem 11.4 is quite general: the Markov chain can be peri-
odic and/or transient. Finally, recall from Lecture 10 that the reciprocal mean recurrence
time 1/m j is the Cesàro mean of the n-step transition probabilities. Consequently,

π̄ j = lim
N→∞

1
N

N
∑

n=1

Pn
j j .

Ergodic Theorem

Recall that a Markov chain is ergodic if it is irreducible, aperiodic and positive recurrent.
For irreducible Markov chains, Theorem 11.4 implies that the long-run probabilities exist
and they satisfy

π̄ j = lim
N→∞

1
N

N
∑

n=1

Pn
j j .
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Now, it can be shown that if (and only if) the Markov chain is aperiodic, then the Cesàro
limit above actually converges as a normal limit. In other words, the limiting probabilities

π̃ j = lim
N→∞

PN
j j

exist. Since the existence of the limiting probability implies the existence of the stationary
probability, we have the following ergodic theorem.

11.5 Theorem (Ergodic Theorem)
Let Xn , n ∈ N , be ergodic Markov chain. Then the long-run probability π̄ , the limiting
probability π̃ and the stationary probability π all exist, and they all are the same. More-
over, the time-averages are state-space averages in the sense that for all (bounded)
functions f : S→ R

lim
n→∞

1
n

n
∑

k=1

f (Xk) =
∑

i∈I
f (si)πi .

Solving Balance Equations

The balance equation π= πP , or the linear system

π j =
∑

i∈I
πi Pi j , j ∈ I,

can be solved in many ways. One should note however, that we insist that π is a probability
vector. Indeed, without this additional assumption a zero vector would always be a solution.
Also, if a vector v is a solution, then the vector cv would also be a solution for any scalar
constant c . Thus, the assumption that π is a probability vector is essential in making the
solution unique.

Adding the requirement
∑

i∈Iπi = 1 to the balance equation is quite simple. Adding
the non-negativity requirement πi ≥ 0 is less so. Thus, the usual strategy is just to omit the
non-negativity requirement, and hope for the best. In other words, one solves the system

π j =
∑

i∈I
πi Pi j , j ∈ I,

1 =
∑

i∈I
πi ,

and hopes to get a solution with non-negative π j ’s. For Octave implementation, we note
that the system above can be written as

π(P− I) = 0,

π1′ = 1,
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or even more compactly as

π
�

P−I 1′
�

= [0 1] .

Here I is the identity matrix; 0 and 1 are row vectors of zeros and ones, respectively. Now,
Octave’s right division operator / solves linear systems from the “right”: the solution
of the system x*A=b is given by x=b/A. Writing the Octave code that solves the balance
equation by solving a linear system should now be quite obvious.

11.6 Remark
Instead of solving the balance equation as a linear system, one can solve the correspond-
ing left eigenvalue problem

πP = λπ.

The stationary distribution π is the left eigenvector corresponding to the eigenvalue λ=
1. This method of solving will typically involve normalizing the resulting eigenvector to
get a probability vector. This is the case with Octave’s function eig, for example. Type
help eig on the Octave console to see how eig works, and how to use it to solve the
balance equation.

If the Markov chain is ergodic, one can solve the balance equation by using the limiting
probability. This is how we solve Example 11.1 below. In the solution we take n = 10 000
just for the fun of the overkill. Indeed, there is no visible change in the n-step transition
matrices after n= 400.

11.7 Example (Brutopian Caste System, Solution)
The Markov chain modeling the castes of Brutopia has transition probability matrix

P =





0.95 0.05 0.00
0.01 0.61 0.38
0.00 0.02 0.98



 .

Obviously the Markov chain is ergodic. Thus the limiting, long-run and stationary distri-
butions exist and they are all the same. Therefore, we can calculate, e.g.,

P10 000 =





0.0099 0.0495 0.9406
0.0099 0.0495 0.9406
0.0099 0.0495 0.9406



 .

This means that in the long run (or eventually) the Brutopian population will consist of
1% nobles, 5% burghers and 94% serfs.
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Exercises

11.1 Exercise
Suppose that the probability whether it rains tomorrow depends only on whether it has
rained today. Let Xn , n ∈ N , be the Markov chain modeling the weather: Xn = 0 if it
rains at day n and Xn = 1 if it does not rain at day n . Let

P =

�

0.95 0.05
0.30 0.70

�

be the transition probability matrix of Xn , n ∈ N .

(a) Suppose that on Monday it rains with probability 0.25. What is the probability that
it rains on Wednesday?

(b) In the long run, how may rainy and non-rainy days would you expect in this model?

11.2 Exercise (Skewed Random Walk with Absorbing Boundaries)
Consider a skewed random walk, i.e., a Markov chain with state-space S = Z with tran-
sition probabilities

Pi,i+1 = p = 1− Pi,i−1,

if i 6∈ {l, u} , and

Pl,l = 1 = Pu,u.

What will happen to the Markov chain in the long run?

11.3 Exercise (Cesàro Mean)
Consider a sequence an , n ∈ N , and its Cesàro mean ān =

1
n

∑n
k=1 ak , n ∈ N .

(a) Suppose an→ a . Show that then ān→ a , but the converse does not hold.
(b) How is part (a) related to Markov chains?

11.4 Exercise (Gambler’s Ruin)
Mr. S. and Ms. L. are playing a coin-tossing game with a fair coin. If the coin lands on
heads, Ms. L. will give Mr. S. one Euro. If the coin lands on tails, Mr. S. will give Ms. L.
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one Euro. Mr. S. has capital of 500 Euros and Ms. L. has capital of 50 Euros. The game
is played until either Mr. S. or Ms. L. loses his/her capital.

(a) What is the probability that Ms. L. wins the game?
(b) Suppose the coin is not fair. Let p be the probability that Ms. L. wins and individual

toss. What should p be so that the game is fair, i.e., the probability for Ms. L. to
win the game is 1/2?

Hint: Develop a recurrence equation for losing one’s capital by conditioning on what
happens after the first coin toss, or just use Google.

11.5 Exercise
Write an Octave function that solves the balance equation πP= P for a Markov chain by
using

(a) limiting probabilities,
(b) by solving the equation as a linear system,
(c) by calculating the eigenvalue decomposition.
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Poisson Process

The Poisson process is one of the most widely-used counting
processes. It is usually used in scenarios where we are count-
ing the occurrences of certain events, or arrivals, that ap-
pear to happen at a constant rate or intensity, but completely
at random. Without any special knowledge of the random-
ness in the occurrences of the events, it is natural to assume
that they are independently and homogeneously scattered in
time. Therefore, the Poisson process is the cumulative Pois-
son point process on the positive real line. Since the points
of the Poisson point process are homogeneously and inde-
pendently scattered, this means that the Poisson process has
stationary and independent increments.

Processes with stationary and independent increments
are called Lévy processes in honor of the French mathemati-
cian Paul Pierre Lévy (1886–1971). If a Lévy process is con-
tinuous, then it can be shown that it is the Brownian motion.
If a Lévy process is a counting process, then we shall show
in this lecture that it is the Poisson process. It can be shown
that all other Lévy processes can be constructed from these
two processes by using superpositioning.

The Poisson process is also a continuous-time Markov
chain with discrete state-space. Indeed, all Lévy processes
are continuous-time Markov processes. Paul Lévy (1886–1971)

12.1 Example (The Big Machine)
Technician Genus Paperus oversees The Big Machine. The Big Machine has, on average,
a nasty failure in every 4 hours. To prevent a nasty failure, Genus Paperus must press a
red reset button. One nasty failure is not too bad, but two nasty failures without reseting
will lose Genus Paperus his job, and 5 nasty failures without reseting will lose him his
life as The Big Machine will explode. Now, Genus Paperus is a lazy bastard. So, in his 8
hours shift he waits for 4 hours for possible nasty failures, presses the button if needed,
and then goes to sleep. What is the probability that Genus Paperus will lose his job in a
given shift?
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Qualitative Approach to Poisson Process

A stochastic process N(t) , t ≥ 0, is said to be a counting process if N(t) represents the
total number of ‘’events” or “arrivals” that occur by time t . In a more technical language,
a counting process is a process that satisfies

(i) N(t) ∈ N ,
(ii) if s ≤ t , then N(s)≤ N(t) ,

The Poisson process is a counting process where the arrival points are independently
and homogeneously scattered. This means that the Poisson process is a cumulative Poisson
point process on R+ . Yet another way of saying what we just said is: If X (A) , A⊂ R+ , is a
Poisson point process, then N(t) = X ([0, t]) , t ≥ 0, is a Poisson process. And now, we say
what we just said three times, a fourth time in the definition below:

12.2 Definition (Poisson Process)
A continuous-time stochastic process N(t) , t ≥ 0, is the Poisson process with rate λ , if
it is a counting process with independent and stationary increments with E[N(t)] = λt .

Continuous-time Markov chains can be defined pretty much the same way as discrete-
time Markov chains:

12.3 Definition (Continuous-Time Markov Chain)
A continuous-time stochastic process X (t) , t ≥ 0, with discrete state-space S= {si ; i ∈ I}
is a Markov chain if

P
�

X (t) = s j |X (t1) = si1 , X (t2) = si2 , . . . , X (tn) = sin

�

= P
�

X (t) = s j |X (tn) = sin

�

for all t1 ≤ t2 ≤ · · · ≤ tn ≤ t and s j , si1 , si2 , . . . , sin ∈ S . If for all s ≤ t and si , s j ∈ S ,

P
�

X (t) = s j |X (s) = si

�

= P
�

X (t − s) = s j |X (0) = si

�

,

we say that the Markov chain X (t) , t ≥ 0, is time-homogeneous.

The Poisson process is a time-homogeneous continuous-time Markov chain. Indeed, we
only need to “force” the independent and stationary increments X (tk)−X (tk−1) = sik−sik−1

into Definition 12.3 in the following way. Let N(t) , t ≥ 0, be a Poisson process. Let
t1 ≤ t2 ≤ · · · ≤ tn ≤ t and j, i1, . . . , in ∈ N . Denote

∆N(tk) = N(tk)− N(tk−1)

and
∆ jk = jk − jk−1.
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Let t0 = 0 and j0 = 0. Then, since N(0) = 0, we have, by using the independence and
stationarity of the increments ∆N(tk) , k ≤ n , that

P [N(t) = j |N(t1) = j1, . . . , N(tn) = jn]

= P [N(t) = j |∆N(t1) = j1,∆N(t2) =∆ j2, . . . ,∆N(tn) =∆ jn]

= P [N(t)− N(tn) = j − jn |∆N(t1) = j1,∆N(t2) =∆ j2, . . . ,∆N(tn) =∆ jn]

= P [N(t)− N(tn) = j − jn]

= P [N(t − tn) = j − jn] .

Thus, we have obtained the following result:

12.4 Proposition (Poisson Process is Markovian)
The Poisson process is a continuous-time time-homogeneous Markov chain with state-
space S= N .

Quantitative Approach to Poisson Process

Since the Poisson process N(t) , t ≥ 0, with rate λ is the cumulative Poisson point process
on the positive real line R+ , i.e.,

N(t) = X ([0, t]),

where X (A) , A⊂ R+ , is a Poisson point process with parameter λ , the results of Lecture 6
imply that:

12.5 Theorem (Poisson Process has Poisson Distribution)
Let N(t) , t ≥ 0, be a Poisson process with rate λ > 0. Then

P[N(t) = n] = e−λt (λt)n

n!
, for n= 0,1, 2, . . . ,

i.e, N(t) has the Poisson distribution with parameter λt .

Combining Theorem 12.5 with the stationary and independent increments makes it pos-
sible to calculate virtually everything related to the Poisson process. For example, suppose
we want to calculate

P
�

N(10) = 7 , N(5) = 7 , N(4) = 6
�

� N(1) = 1 , N(3) = 2
�
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for a Poisson process N(t) with rate 0.2. By “forcing” independent increments to the
probability in question, we obtain

P
�

N(10) = 7 , N(5) = 7 , N(4) = 6
�

� N(1) = 1 , N(3) = 2
�

= P
�

N(10)− N(5) = 0 , N(5)− N(4) = 1 , N(4)− N(3) = 4
�

� N(3)− N(1) = 1
�

= P[N(10)− N(5) = 0] P[N(5)− N(4) = 1] P[N(4)− N(3) = 4].

By using the stationarity of the increments and by plugging in the Poisson probabilities, we
obtain

P
�

N(10) = 7 , N(5) = 7 , N(4) = 6
�

� N(1) = 1 , N(3) = 2
�

= P[N(5) = 0] P[N(1) = 1] P[N(1) = 4]

= e−0.2×5 × e−0.2 × 0.2 × e−0.2 ×
0.24

4!
= 3.2880× 10−6.

12.6 Example (The Big Machine, Solution)
Let N(t) , t ≥ 0, be the process that counts the nasty failure of The Big Machine during
Genus Paperus’s shift. Let us measure the time by hours. Then the question asked is

P [N(8)− N(4)≥ 2 |N(4) = 0] ,

where N(t) , t ≥ 0, is a counting process with rate 1/4= 0.25. A reasonable assumption
is that N(t) , t ≥ 0 is a Poisson process. Then we can calculate

P [N(8)− N(4)≥ 2 |N(4) = 0]

= P [N(4)≥ 2]

= 1− P [N(4)≤ 1]

= 1−
�

P [N(4) = 0] + P [N(4) = 1]
�

= 1−
�

e−0.25×4 + e−0.25×4 × (0.25× 4)
�

= 26.424 %.

Let us then consider the points, or arrivals, of the Poisson process. Let Sn be the time
the nth arrival occurs, i.e.,

Sn = min {t ≥ 0 ; N(t) = n} .

Let Tn = Sn+1−Sn be the interarrival time between the (n+1)th and the nth arrival. Since
the Poisson process has stationary and independent increments, the interarrival times are
identical in distribution and independent. Also, since the Poisson process is Markovian, the
remaining time it spends in the current state is independent from the time it has already
spent in the current state. This implies that the interarrival times have the no-memory
property. Consequently, we have the following result:
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12.7 Proposition (Poisson Arrivals)
Let N(t) , t ≥ 0, be a Poisson process with rate λ . Then its interarrival times Tn are
independent and exponentially distributed with parameter λ . The arrival time Sn is
Erlang distributed with parameters n and λ .

12.8 Remark (Simulating Poisson Process)
Proposition 12.7 is very useful in simulation. Indeed, to simulate a Poisson process one
only needs to simulate independent exponentially distributed random variables. Another
way to simulate the Poisson process is to use the law of small numbers and approxi-
mate the Poisson process by a Bernoulli process. A Bernoulli process Bn , n ∈ N , is a
discrete-time Markov chain, where B0 = 0 and at each time point n , Bn jumps up with
independent probability p , and stays in its previous state with probability 1− p . If the
time-step ∆t is small and p = λ∆t , then the Bernoulli process is close to the Poisson
process.

Proposition 12.9 below states that Poisson processes remain Poisson processes under
merging and splitting. This result is very convenient in queuing systems. Indeed, it says
that if the input streams to a queueing system are independent Poisson processes, then the
total input stream is also a Poisson process. Also, if a Poisson stream is split randomly to
different queues, then the individual input streams to the queues are independent Poisson
processes.

12.9 Proposition (Merging and Splitting)
(i) Suppose that N1(t) and N2(t) are two independent Poisson processes with respec-

tive rates λ1 and λ2 . Then the merged process N1(t)+N2(t) is a Poisson process
with rate λ1 +λ2 .

(ii) Suppose that N(t) is a Poisson process with rate λ and that each arrival is marked
with probability p independent of all other arrivals. Let N1(t) and N2(t) denote
respectively the split processes, i.e., number of marked and unmarked arrivals in
[0, t] . Then N1(t) and N2(t) are independent Poisson processes with respective
rates λp and λ(1− p) .

The validity of Proposition 12.9 can be seen by noticing that the property of independent
and stationary increments is preserved under independent merging and splitting.



Lecture 12 Continuous-Time Markov Chains 141

Continuous-Time Markov Chains

We end this lecture by briefly discussing general continuous-time time-homogeneous
Markov chains X (t) , t ≥ 0, having discrete state space S = {si ; i ∈ I} , where I is either
N , Z , or finite. The discussion here is quite informal, and we omit all the nasty details.
Nevertheless, this discussion should be valuable in building intuition for Markovian
queueing systems.

Suppose the Markov chain is in state si at time t . Then, by the Markov property, the
remaining sojourn time in the state si of the chain is independent of the time already spent
in the state. Consequently, the time a Markov chain spends in a state si is exponentially
distributed with some state-dependent parameter νi . When the Markov chain decides to
leave the state si , it will jump to the state s j with probability P◦i j . The matrix P◦ is the
transition probability matrix of the skeleton of the chain X (t) , t ≥ 0, that looks at the
continuous time process only at the times the state changes. Obviously we have P◦ii =
0, but otherwise P◦ can be any stochastic matrix. So, a continuous-time Markov chain
is completely determined by the sojourn intensities ν and and the skeletal transition
probabilities P◦ . From the philosophical point of view this is good news: continuous-
time Markov chains have a clear structure. From the simulation point of view this is also
good news: it is pretty obvious how to simulate continuous-time Markov chains. From the
theoretical-technical point of view the news are not so good. The structure is pretty difficult
to analyze.

Let us then try to analyze continuous-time Markov chains from the theoretical-technical
point of view. Since the Markov chain is time-homogeneous (by assumption), the thing to
analyze is the family P(t) , t ≥ 0, of transition probability matrices, where

Pi j(t) = P
�

X (t + t0) = s j

�

�X (t0) = si

�

.

This family of matrices is very inconvenient as such. Fortunately, just like in the discrete-
time case, we can use the law of total probability to obtain the Chapman–Kolmogorov
equations

P(t + s) = P(t)P(s).

Then, under some very mild regularity conditions, the continuous-time Chapman–
Kolmogorov equations work just like the Cauchy’s functional equation: by setting

Q i j = P ′i j(0),

the solution of the equation P(t + s) = P(t)P(s) is given by

P(t) = etQ,

where we have used the matrix exponential

eA =
∞
∑

n=0

1
n!

An.
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So far this does not look very promising. We have only found a very complicated way to
express the transition probabilities P(t) , t ≥ 0. However, it turns out that the matrix Q ,
also called the infinitesimal generator of the transition probabilities P(t) , t ≥ 0, has a
very clear probabilistic interpretation. Indeed,

Q i j = the rate (or flux) at which the transition si → s j occurs if i 6= j,

−Q ii = the rate (or flux) at which the state si is stayed.

From the practical point of view this means that, in continuous-time Markovian modeling,
one should model the infinitesimal generator Q , not the transition probabilities P(t) , t ≥ 0.

12.10 Remark
We note that

∑

j Q i j = 0 (total flux) and Q ii = −
∑

j 6=i Q i j , (flux-to-stay is negative flux-
to-leave).

Let us then have three examples without any proofs or explanations whatsoever.
As a first example, consider the Poisson process with rate λ . It has the infinitesimal

generator

Q =











−λ λ 0 0 0 0 · · ·
0 −λ λ 0 0 0 · · ·
0 0 −λ λ 0 0 · · ·
0 0 0 −λ λ 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·











.

As a second example, consider a single-server queue, where customers arrive at Poisson
rate λ and they are served with exponential service times with parameter µ . So, we have
input rate λ and output rate µ . The continuous-time Markov chain denoting the number
of customers in the system has infinitesimal generator

Q =











−λ λ 0 0 0 0 · · ·
µ −(λ+µ) λ 0 0 0 · · ·
0 µ −(λ+µ) λ 0 0 · · ·
0 0 µ −(λ+µ) λ 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·











.

As a third example, consider a queue with two servers, where customers arrive at Pois-
son rate λ and they are served with exponential service times with parameter µ . So, we
have input rate λ and output rate µ if there is only one customer and output rate 2µ if
there are two or more customers. The continuous-time Markov chain denoting the number
of customers in the system has infinitesimal generator

Q =











−λ λ 0 0 0 0 · · ·
µ −(λ+µ) λ 0 0 0 · · ·
0 2µ −(λ+ 2µ) λ 0 0 · · ·
0 0 2µ −(λ+ 2µ) λ 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·











.
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12.11 Remark (Flux In = Flux Out Principle)
The infinitesimal generator Q is useful in finding the stationary or limiting probabilities

πi = lim
t→∞
P [X (t) = si] ,

if they exist. The idea is the flux in = flux out principle for the state si :
∑

j 6=i

π jQ ji =
∑

j 6=i

πiQ i j .

The limiting probabilities exist if the continuous-time Markov chain is irreducible and
positive recurrent. There is no problem with the periods, as they are impossible in
continuous-time time-homogeneous models.

Finally, we note that the (full) balance equations, or the flux in = flux out principle,
can be written by using the matrix notation shortly as

πQ = 0.

Indeed, since Q ii = −
∑

j 6=i Q i j , we have for all i ∈ I that

∑

j

π jQ ji =
∑

j 6=i

π jQ ji +πiQ ii

=
∑

j 6=i

πiQ i j −πi

∑

j 6=i

Q i j

= 0.

So, the flux in = flux out principle can also be stated as a principle of zero total flux.
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Exercises

12.1 Exercise
Let N(t) , t ≥ 0, be a Poisson process with intensity 0.5. Calculate

(a) P[N(1) = 0 , N(3) = 0] ,
(b) P[N(3) = 5 , N(2) = 1 |N(1) = 0] ,

(c) P[N(3)> 2 |N(1) = 1] ,
(d) P[N(5)≤ 4 |N(1) = 2] .

12.2 Exercise
Consider Example 12.1. What is the probability that technician Genus Paperus will die
during a given shift in The Big Machine’s explosion.

12.3 Exercise
People immigrate into the Kingdom of Brutopia at a Poisson rate 1 per day.

(a) What is the expected time until the tenth immigrant arrives?
(b) What is the probability that the elapsed time between the tenth and the eleventh

immigrant exceeds two days?

12.4 Exercise (Simulation of Poisson and Bernoulli Processes)
Make an Octave function that simulates the Poisson process with rate λ on the interval
[0, 1]

(a) exactly by using the exponential interarrival times,
(b) approximately by using the law of small numbers.

12.5 Exercise
A Markovian queue is fed customers with rate λ . There are some servers, that each feed
out customers with rate µ . Let X (t) denote the number of customers in the system at
time t . What is the infinitesimal generator of the Markov chain X (t) , t ≥ 0, when

(a) there are three servers,
(b) there are m servers,
(c) there are infinite number of servers?
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Lecture 13

Little, Palm, and PASTA

Queueing theory is the mathematical study of waiting lines,
or queues. It has its origins in the research by the Dan-
ish mathematician Agner Krarup Erlang (1878–1929) who
studied the Copenhagen telephone exchange. Other pioneers
of queueing theory include the Swedish statistician Conrad
"Conny" Palm (1907–1951), who studied how the system’s
and the client’s point of view of a queueing system differ. In
his honor, the client’s point of view is now called the Palm
distribution. Maybe the most celebrated result of queueing
theory is the Little’s law named after the American operations
researcher John Little (1928–). His law

`= λw

combines in a neat way the average load, the input rate and
the average waiting time of a queueing system. John Little (1928–)

13.1 Example (Don Guido’s Wine Cellar)
Don Guido has all the time on average 150 cases of wine his basement. Don Guido
consumes 25 cases per year. How long does Don Guido hold each case?

Palm and PASTA

Consider X (t) , the state of a queuing system at time t . For definiteness, you can think of
X (t) as the total number of clients in the queueing system, so that the state-space is N . If
you are more bold, you can think of X (t) as a vector that gives the number of clients in
different queues and servers of the system, so that the state-space is Nm , where m is the
total number of queues and servers in the system.

Let

πx = lim
t→∞
P[X (t) = x], x ∈ S,
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and assume that these limiting system probabilities exist.

13.2 Remark (Stationarity and Full Balance)
If the system is Markovian, then π is also the stationary distribution of the system solving
the (full) balance equation πQ = 0 , where Q is the infinitesimal generator of the
continuous-time discrete-state Markov chain X (t) , t ≥ 0.

Another way of looking at the limiting probability πX is to note that πx is also the
long-run proportion of time that the system is in state x . Yet another way of looking at the
probability πx is by considering an outsider, who observes the system at an independent
random time:

πx = probability that an outsider finds the system at state x .

Thus, the probabilities π = [πx]x∈S are the outsider’s view or the system’s view of the
queuing system.

Let us then consider the insider’s view or the client’s view. For a client, the obvious
point of interest is the Palm probability

π∗x = probability that the arriving client finds the system at state x .

13.3 Remark (Inside and Outside)
In general, π and π∗ can be different. Indeed, consider a queue, where all the client are
served with a deterministic constant time: 1 second, say. Suppose that the interarrival
times of the clients are strictly greater than 1 second. This means that every client finds
the queue empty: π∗0 = 1. However, π0 < 1, as they may be some clients in the system
sometimes. This is very nice for the client: no waiting in queue, ever. Unfortunately,
typically the case is quite the opposite. Indeed, consider the following queue: it takes,
as in the previous example, exactly 1 second to serve a client. The customers arrive,
on average only once in a million years. But when they arrive, they arrive in batches of
two (the other after a millisecond after the one). So, from the system’s point of view the
queue is virtually always empty, while from the client’s point of view the queue is busy
with probability 1/2.

If the queueing system if fed by a Poisson process, then the Palm and the system proba-
bilities are the same. This arrival theorem is called Poisson Arrivals See Time-Averages,
or PASTA for short. Consider a time interval of length T and a smaller time interval inside
it of length t . We assume that there is a single Poisson arrival on the interval and show
that the probability that the arrival takes place in the shorter interval is t/T . This will



Lecture 13 Palm and PASTA 148

show that the Poisson arrival sees the system in the same way as the random independent
outsider. In a more technical language, this means that we have to show that

P [N(t0) = 0, N(t + t0) = 1 |N(T ) = 1] =
t
T

,

for all t and t0 such that t+ t0 < T . (Here we chose the interval of length T to be [0, T] ,
which we can do because of the stationary of the increments). Now, by the definition of
the conditional expectation and by the independence and stationarity of the increments,

P [N(t0) = 0 , N(t + t0) = 1 | N(T ) = 1]

= P [N(t0) = 0 , N(t + t0) = 1 , N(T ) = 1]
�

P[N(T ) = 1]

= P[N(t0)− N(0) = 0 , N(t + t0)− N(t0) = 1 , N(T )− N(t + t0) = 0] / P[N(T ) = 1]

= P[N(t0) = 0]P[N(t) = 1]P[N(T − t − t0) = 0] / P[N(T ) = 1].

Hence, by plugging in the Poisson probabilities, we have that

P [N(t0) = 0, N(t + t0) = 1 |N(T ) = 1]

= e−λt0 λte−λt e−λ(T−t−t0)
À

λTe−λT

= t
�

T.

We have shown the following arrival theorem:

13.4 Theorem (PASTA)
Consider a queueing system that is fed by a Poisson process. Then the system probability
π and the Palm probability π∗ are the same.

13.5 Remark (Lack of Anticipation)
The insider’s and the outsider’s view can agree even for non-Poisson arrivals. Indeed, it
can be shown that the PASTA property is true under the so-called lack of anticipation
assumption: the future arrivals are independent of the past states of the system.

13.6 Remark (Waiting Paradox)
PASTA implies the following counter-intuitive waiting paradox:

Suppose buses come to a bus stop according to Poisson process with 12 min-
utes intervals on average. You arrive to the bus stop completely randomly.
Then the average waiting time for the bus to come for you is 12 minutes.
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One would expect that the average waiting time is 12/2 = 6 minutes. This is, how-
ever, the best possible average waiting time which is attained only in the non-random
case, where the buses come exactly in 12 minute intervals. The more there is random-
ness in the interarrival times, the more there is average waiting time for the random client
at the bus stop. Actually, the Poisson case is by far not the worst. The average waiting
time can even be infinite, even though the average interarrival times are finite. The intu-
itive reason for this is that the client comes, with high probability, during an interval that
is much longer than average. Actually, it can be shown that your average waiting time is
given by the so-called mean forward recurrence time

w∗ =
E[T2]
2E[T]

,

where T is the interarrival time of the buses. If T is fixed length 1/λ , then w∗ = 1/(2λ) .
If T is the Poisson interarrival, i.e., T is exponentially distributed with mean 1/λ , then
w∗ = 1/λ . If T has heavy tails in the sense that E[T2] =∞ , while E[T] = 1/λ , then
w∗ =∞ .

Little’s Law

Consider a queueing system where clients arrive as a point process (i.e., one-by-one), and
after some time leave as a point process (i.e., one-by-one). Let Sn denote the arrival time
of the nth client. We assume that Sn→∞ . The arrival process of the system is

N(t) = max {n ; Sn ≤ t} ,

i.e., N(t) counts how many of the arrival points Sn occur in the interval [0, t] . Once the
nth client enters the system at time Sn , it will stay in the system a random time Wn . Then,
the client leaves at time S†

n = Sn +Wn . Let N †(t) denote the departure process, i.e.,

N †(t) = max
�

n ; S†
n ≤ t

	

.

The nth client is in the system if and only if Sn ≤ t ≤ S†
n . Recall that the indicator

1A for an event A is the random variable that takes value 1 if A happens, and value 0
otherwise. Then, the informal definition

L(t) = load of the system at time t

= the number of clients in the system at time t
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can be written more formally as

L(t) =
∞
∑

n=1

1�
Sn≤t≤S†

n

	

=
∑

n ; Sn≤t

1�
Wn>t−Sn

	

=
N(t)
∑

n=1

1�
Wn>t−Sn

	.

Informally, we define

λ = arrival rate

w = average waiting time

` = average load.

The formal definitions are

λ = lim
t→∞

N(t)
t

,

w = lim
n→∞

1
n

n
∑

k=1

Wk,

` = lim
t→∞

1
t

∫ t

0

L(s)ds,

with the assumption that these limits exist. We further assume that

λ = λ† = lim
t→∞

N †(t)
t

,

i.e., arrival rate = departure rate.

13.7 Remark
The assumption arrival rate = departure rate is actually unnecessary. It follows from the
existence of the parameters λ , w and ` . In any case, it is clear that for Little’s law to
hold true, we must have the equality of arrival and departure rates. Indeed, departure
rate cannot exceed arrival rate for obvious reasons; and if the departure rate is less than
the arrival rate, the system would blow up giving infinite load.

Let us then see how the characteristics λ , w and ` are connected by the Little’s law.
We first note that the area under the path of L(s) from 0 to t , i.e,

∫ t
0 L(s) ds , is simply the

sum of whole and partial waiting times (e.g., rectangles of height 1 and lengths Wk ). If
the system is empty at time t , then we have exactly

∫ t

0

L(s)ds =
N(t)
∑

k=1

Wk,
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and in general we have

N†(t)
∑

k=1

Wk ≤
∫ t

0

L(s)ds ≤
N(t)
∑

k=1

Wk.

From this we obtain

N †(t)
t

1
N †(t)

N†(t)
∑

k=1

Wk ≤
1
t

∫ t

0

L(s)ds ≤
N(t)

t
1

N(t)

N(t)
∑

k=1

Wk.

Now, by letting t →∞ , and by using the hamburger principle we see, after deep con-
templation of all that was discussed, that:

13.8 Theorem (Little’s Law)
If both λ and w exist and are finite, then λ† and ` exist; λ† = λ and

` = λw.

Assuming some kind of weak stability or stationarity, the solution to Don Guido’s wine
cellar problem can now be given by using the Little’s law.

13.9 Example (Don Guido’s Wine Cellar, Solution)
We note that if

λ = rate at which Don Guido consumes/buys cases,

w = the waiting time of a case in the cellar,

` = the number of cases in the cellar,

then the answer is given by the Little’s law as

w =
`

λ
=

150
25/years

= 6 years.

Exercises

13.1 Exercise
The Palm probabilities π∗ are also called Palm’s birth probabilities since they the what
the arriving client, a.k.a. the birth, sees. The Palm’s death probabilities π† are what
the leaving client, a.k.a, the death, sees. They are defined as

π†
n = proportion of clients leaving behind n in the system when they depart.
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(a) Give an example of a queueing system where all the probabilities π , π∗ and π†

are different.
(b) Suppose that the clients come and leave only one-by-one, i.e., there are no batch

arrivals or departures. Argue that π∗ = π† .

13.2 Exercise
(a) A fast food hamburger restaurant uses 2 250 kilograms of hamburger mince each

week. The manager of the restaurant wants to ensure that the meat is always fresh
i.e. the meat should be no more than two months old on average when used. How
much hamburger mince should be kept in the refrigerator as inventory?

(b) A stable queuing system is fed clients with intensity 18 per minute. There are, on
average, 1 500 clients in the system. What is the average time a client spends in
the system?

13.3 Exercise
(a) It takes 120 days on average to sell a house. You observe from monitoring the

classified ads that over the past year the number of houses for sale has ranged from
20to 30 at any point in time, with an average of 25. What can you say about the
number of transactions in the past year?

(b) A queue depth meter shows an average of nine jobs waiting to be serviced. Another
meter shows a mean throughput of 50 per second. What is the mean response time?

13.4 Exercise
The world population is approximately 7.5 (American) billions and the average life ex-
pectancy of a baby born today is 71.4 years (or was at 25th of February, 2017).

(a) Calculate, by using the Little’s law, the average number of people that die each day.
(b) Explain why the number you got from the Little’s law is probably wrong.
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Markovian Queues

A Markovian queue has the Poisson process as arrivals, i.e.,
the interarrival times are independent and exponentially dis-
tributed. The service times are also independent and expo-
nentially distributed. The Markovian queues are very con-
venient: When the input rate is strictly less than the output
rate, they satisfy the assumptions of the Little’s law. They also
satisfy the PASTA property. Also, the stationary distribution
of a Markovian queue can be calculated by using a “flux in is
flux out” principle. Finally, it can be shown that the output
process of a Markovian queue is the “same” Poisson process
as the input process.

A great pioneer of queuing theory was the Danish math-
ematician, statistician and engineer Agner Krarup Erlang
(1878–1929), who studied the Copenhagen telephone ex-
change in his 1909 work The Theory of Probabilities and Tele-
phone Conversations he introduced the Poisson process as the
arrival process, and in doing so introduced the Markovian
queue. The teletraffic unit of offered load is named erlang
in Erlang’s honor. Also, the distribution arising as a sum of
independent identically distributied exponentals is named in
his honor.

Agner Krarup Erlang (1878–1929)

14.1 Example (Mini-Market Queue, I)
Clients come to a local mini-market, on average, in 2 minute intervals. The clerk serves
the clients with average rate of 3 clients per minute. The local mini-market is quite small:
it can have only 6 clients in queue. If there are 6 clients in queue, the 7th client has to
wait on the street. This would be a great embarrassment for the manager of the local
mini-market. You are going to shop in the mini-market. What is the probability that you
will cause a great embarrassment to the manager?

The problem of Example 14.1 can be modeled as a Markovian queue with unlimited
queueing capacity (the M/M/1 queue in the short Kendall’s notation), assuming that the
queue can build on the street. If this is not possible, then we have to model the problem
with a finite-capacity queue (M/M/1/K queue, with K = 6, in the semi-short Kendall’s
notation).
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M/M/1 Queue

In the short Kendall’s notation, M/M/1 queue denotes a queue where the arrival process
is Markovian, or Memoryless, the service times are Memoryless, and there is 1 one server.
In this short Kendall’s notation the following standing assumptions are in force: The inter-
arrivals and the service times are all mutually independent, and the infinite-capacity queue
has FIFO (First-In-First-Out) policy. A more formal definition of the M/M/1 queue is given
below.

14.2 Definition (M/M/1 Queue)
The M/M/1 queue is a single-server queue with unlimited capacity, where the queue is
fed by a Poisson process with rate λ and the service times are independent and exponen-
tially distributed with rate µ .

Let L(t) , t ≥ 0, denote the workload, or load, of a Markovian queue, i.e., the number
of clients either waiting in the queue or being served. Then from the probabilistic point
of view L(t) , t ≥ 0, for the M/M/1 queue is a constant-rate birth-and-death process.
The “births” are the arrivals to the system and the “deaths” are departures from the system.
The arrivals have rate λ and the departures have rate µ . If µ > λ , then the system will
eventually explode in the sense that L(t)→∞ . The same is true for µ= λ , although this
is not immediately obvious. We denote

ρ =
λ

µ
.

So, ρ is the birth-to-death ratio: there are, on average, ρ arrivals (births) for every
departure (deaths). In the queueing slang, ρ is also called utilization of the buffer (or
the queue). So, in order for the queue not to explode, its utilization must be strictly less
than one. If µ < λ , i.e., ρ < 1, then, as t →∞ , the system will reach a stationary state
meaning that the limiting probabilities

πn = lim
t→∞
P [L(t) = n] , n ∈ N,

exist. These limiting probabilities are also the long-run proportions of time the system has
n clients in it (outsider’s view). By PASTA, they are also the probabilities that an arriving
customer finds n clients in the system (insider’s view): πn = π∗n .

The line-of-attack in solving the stationary distribution π is to use the flux in= flux out
principle. For a non-empty state n ≥ 1 the influx is λπn−1 +µπn+1 (λ arrivals from state
n − 1 and µ departures from state n + 1). The outflux is (λ + µ)πn (λ arrivals and µ
departures from state n). So, for n≥ 1 we have the full balance equation

λπn−1 +µπn+1 = (λ+µ)πn.

The full balance equation can be solved by solving the detailed balance equation

µπn = λπn−1.



Lecture 14 M/M/1 Queue 155

The detailed balance equation has a clear probabilistic interpretation. It means that the
flux from the state n to the state n − 1 (the left-hand-side) is equal to the flux from the
state n− 1 to the state n (the right-hand-side).

14.3 Remark (Detailed and Full Balance)
In general, the detailed balance equation (a.k.a. the local balance equation) is more
restrictive than the full balance equation: detailed balance implies full balance, but not
vice versa. In our queuing models they are the same, however. The reason for this is that
our queuing models are time-reversible. We do not go into the details of reversed time
in these lectures.

To solve the detailed balance equation µπn = λπn−1 , we divide it by µ on the both
sides and recall that λ/µ= ρ . We obtain the equation

πn = ρπn−1.

This recursion is easy to solve. Indeed, working backwards a couple of times we obtain

πn = ρπn−1

= ρρπn−2

= ρ2πn+2

= ρ2ρπn−3

= ρ3πn−3.

So, we see that πn is given by

πn = ρnπ0.

The “initial condition” π0 is given by the fact that π is a probability distribution, i.e.,
∑

nπn = 1. Recognizing the geometric series, we see that

∞
∑

n=0

ρnπ0 =
π0

1−ρ
.

Therefore,

π0 = 1−ρ

(which is, by the way, the probability that the system is empty). So, we have obtained the
following:

14.4 Proposition (M/M/1 Queue Stationary Distribution)
For the M/M/1 queue with arrival rate λ , service rate µ and utilization ρ = λ/µ < 1
the stationary probabilities are

πn = ρn (1−ρ) , n ∈ N.
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14.5 Example (Mini-Market, I, Solution)
Let L be the stationary load of the mini-market’s queuing system. The probability in
question is

P[Queue length is > 6] = P[L > 7]

= 1− P[L ≤ 6]

= 1−
6
∑

n=0

ρn(1−ρ),

where

ρ =
1/2
3

= 0.16667.

We obtain that the probability of causing a great embarrassment is 3.6× 10−4 %, which
is virtually zero.

We used the interpretation that the customer being served is not queueing. If the
interpretation is that being served is also queueing, then the probability is

P[L > 6] = 1− P[L ≤ 5]

= 1−
5
∑

n=0

ρn(1−ρ)

= 2.1× 10−3 %,

which is still incredibly small.

Before going into more complicated models than the M/M/1 queue, let us see how
Proposition 14.4 combines with the Little’s law. In the Little’s law

` = λw

for an M/M/1 queue with input rate λ and output rate µ , the λ is simply λ . For the load
` we have

` =
∞
∑

n=0

nπn

=
∞
∑

n=0

nρn(1−ρ)

=
ρ

1−ρ
,

where we used the well-known power series formula
∞
∑

n=0

nxn =
x

(1− x)2
.
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The waiting time w is then given by the Little’s law as

w =
`

λ

=
ρ/(1−ρ)

λ
.

So, after a little bit of extremely simple algebra we obtain the following:

14.6 Proposition (M/M/1 characteristics)
For the M/M/1 queue with arrival rate λ , service rate µ and utilization ρ = λ/µ < 1
the average load ` and the average waiting time w are given by

` =
ρ

1−ρ
,

w =
1/µ

1−ρ
.

14.7 Remark (Power Series)
In probability theory, and in life in general, one is often required to calculate power series
of type

∞
∑

n=0

p(n)xn,

where p(n) is a polynomial of n , i.e., of the form

p(n) = ad nd + ad−1nd−1 + · · ·+ a2n2 + a1n+ a0.

These can be calculated by using the following (relatively general) facts in a reasonably
clever way

(i)

∞
∑

n=0

xn =
1

1− x
,

(ii)

dk

dxk

�∞
∑

n=0

p(n)xn

�

=
∞
∑

n=0

dk

dxk
[p(n)xn]
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M/M/1/K Queue

Having understood the infinite-capacity M/M/1 queue, let us then consider the same queue,
but with finite capacity K , i.e., in the semi-short Kendall’s notation, the M/M/1/K queue.

14.8 Definition (M/M/1/K Queue)
The M/M/1/K queue is a single-server queue with capacity K , where the queue is fed by
a Poisson process with rate λ and the service times are independent and exponentially
distributed with rate µ . If there are K clients in the system, the next arriving client will
be thrown out (i.e., denied service).

The full balance equation for the M/M/1/K queue is precisely the same as for the
M/M/1 queue:

λπn−1 +µπn+1 = (λ+µ)πn.

As before, denoting ρ = λ/µ , we obtain after some clever algebra (or by using a detailed
balance equation just as in the case of the M/M/1 queue) that

πn = ρnπ0.

Now, the difference to the M/M/1 queue is in the probability π0 . Indeed, we have
∑K

n=0πn = 1, which is a (incomplete) geometric series. We obtain

π0 =
1−ρ

1−ρK+1
.

Consequently, we have the following:

14.9 Proposition (M/M/1/K Queue Stationary Distribution)
For the M/M/1/K queue with arrival rate λ , service rate µ and utilization ρ = λ/µ the
stationary probabilities are

πn = ρn 1−ρ
1−ρK+1

, n= 0, 1, . . . , K .

14.10 Remark (Stability through Denial of Access)
In the finite-capacity queue M/M/1/K, there is no need to assume that ρ < 1. Indeed,
the balance is guaranteed by the fact that the state-space of the system is finite.
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M/M/c Queue

Let us then consider a queue with many servers. The queue itself has infinite capacity.

14.11 Definition (M/M/c Queue)
The M/M/c queue is an unlimited queue which is fed by a Poisson process with rate λ
and there are c servers, each having independent and exponentially distributed service
times with rate µ . The customers wait in a single queue.

The output rate of the M/M/c queue is, intuitively, cµ . Rigorously, the output rate of
cµ follows from the following lemma.

14.12 Lemma (Minimum of Exponentials)
Let T1, . . . , Tc be independent identically distributed exponential random variables with
parameter µ . Then min(T1, . . . , Tc) is exponentially distributed with parameter cµ .

To see why Lemma 14.12 is true, let us consider the case c = 2. The general case is
then pretty obvious. It turns out that it is convenient to work with the complementary
cumulative distribution functions, since

P [min(T1, T2)> t] = P[T1 > t , T2 > t].

Now, by the independence,

P [min(T1, T2)> t] = P[T1 > t] P[T2 > t].

By plugging in the complementary cumulative distribution function of the exponential dis-
tribution with parameter µ , we see that

P [min(T1, T2)> t] = P[T1 > t] P[T2 > t]

= e−µt e−µt

= e−(2µ)t .

This means that min(T1, T2) is exponentially distributed with parameter 2µ . The general
case for c ≥ 2 can be shown by iterating the arguments above. Thus, the claim of Lemma
14.12 should be obvious now.

In order to have balance (full or detailed, they are the same in this model), we assume
that

ρ =
λ

cµ
< 1.
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The M/M/c queue is actually a birth-and-death queue with parameters

λn = λ,

µn = min(n, c)µ.

The input rate (or birth rate) is constant λ . The output rate (or death rate) is state-
dependent µn =min(n, c)µ , since at most n of the c servers can be active, and by Lemma
14.12 the minimum of n independent exponentials, each having rate µ , is exponential
with rate nµ .

Let us then consider the balance equations. The detailed balance equation is

λπn−1 = min(n, c)µπn

with the normalization (coming from the (incomplete) geometric series)

1
π0

=
c−1
∑

k=0

(cρ)k

k!
+
(cρ)c

c!
1

1−ρ
,

which is unfortunately as simple as it gets.

14.13 Proposition (M/M/c Queue Stationary Distribution)
For the M/M/c queue with arrival rate λ , c server with each having service rate µ and
utilization ρ = λ/(cµ)< 1 the stationary probabilities are

π0 =

�c−1
∑

k=0

(cρ)k

k!
+
(cρ)c

c!
1

1−ρ

�−1

,

πn = π0
(cρ)n

n!
, for n= 1, . . . , c − 1,

πn = π0
(cρ)c

c!
, for n= c, c + 1, . . . .

Birth-and-Death Queues

Let us then consider briefly the general birth-and-death queue. This gives us a framework
that can be applied to, e.g., queues with finite capacity or/and many servers. Consequently,
the results of the previous sections of this lecture follow as corollaries of the results given
in this section.

14.14 Definition (Birth-and-Death Queue)
A Markovian queue with state-dependent arrival rates λ = [λn]n∈N and service rates
µ= [µn]n∈N is called the birth-and-death queue.
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The stationary probabilities for the birth-and-death queues, the balance of birth and
death if you will, can be found in the normal way by using the flux in = flux out principle.
The flux-in to the state n is λn−1πn−1 births from the state n−1 plus the µn+1πn+1 deaths
from the state n+1. The flux-out from the state n is (λn+µn)πn : λnπn births to the state
n+1 plus µnπn deaths to the state n−1. Consequently, the full balance equation for the
birth-and-death queues takes the form

λn−1πn−1 +µn+1πn+1 = (λn +µn)πn.

This birth-and-death balance can be written in a more simple form as the detailed balance
equation

λnπn = µn+1πn+1.

The interpretation of this form is analogous to the M/M/1 case: The left-hand-side is the
flux from the state n to the state n+ 1 and the right-hand-side is the flux from the state
n+ 1 to the state n .

Denoting

ρn =
λn

µn+1
,

we can write the detailed balance equation above in a form of a simple recursion

πn+1 = ρnπn,

This recursion cannot be solved in closed from in this generality. Thus, we have to do with
the following theorem.

14.15 Theorem (Stationary Birth-And-Death Queue)
The stationary distribution, when it exists, of a birth-and-death queue with parameters
λ= [λn]n∈N and µ= [µn]n∈N is given by

πn =

∏n−1
k=0ρk

∑∞
m=0

∏m−1
k=0 ρk

, n ∈ N,

where

ρk =
λk

µk+1
.

A sufficient condition for the existence of the stationary distribution is ρk ≤ ρ < 1 for all
k ∈ N .
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14.16 Remark (Empty Sums and Products)
In the above and below, we use the convenient standard interpretations that empty sum
is 0 and empty product is 1.

The characteristics λ , ` and w in the Little’s law can also be given for the general birth-
and-death queue in terms of the parameters λ= [λn]n∈N and µ= [µn]n∈N . The input rate
for the birth-and-death queue is

λ =
∞
∑

n=0

λnπn

=

∑∞
n=0λn

∏n−1
k=0ρk

∑∞
m=0

∏m−1
k=0 ρk

.

The average load is

` =
∞
∑

n=0

nπn

=

∑∞
n=0 n

∏n−1
k=0ρk

∑∞
m=0

∏m−1
k=0 ρk

,

and the average waiting time is

w =
`

λ

=

∑∞
n=0 n

∏n−1
k=0ρk

∑∞
m=0

∏m−1
k=0 ρk

�
∑∞

n=0λn
∏n−1

k=0ρk
∑∞

m=0

∏m−1
k=0 ρk

=

∑∞
n=0 n

∏n−1
k=0ρk

∑∞
n=0λn

.

Unfortunately, in the general case of birth-and-death process the formulas above can-
not be simplified, at least not much. Fortunately, the formulas above are easy enough to
implement in any reasonable programming language or mathematical software (probably
even with unreasonable ones like Excel; I have not tried, for I am not a masochist).
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Exercises

14.1 Exercise
A single-server Markovian queue with unlimited capacity is fed by 3 customers per minute
on average, and the service times are, on average, 10 seconds.

(a) What is the probability that a customer arriving to the system finds it empty?
(b) What is the average time a customer spends in the system?

14.2 Exercise
A single-server Markovian queue with unlimited capacity is fed by 5 customers per minute
on average, and it can server, on average, 8 customers per minute.

(a) What is the probability that a customer arriving to the system finds its queue empty?
(b) How many customers are the, on average, in the queue?

14.3 Exercise
A Markovian queue with capacity 12 customers is fed by 10 customers per minute on
average, and the service times are, on average, 5 seconds. If the queue is full, then the
arriving customer will be denied service.

(a) What is the probability that a customer arriving to the system will be denied service?
(b) What is the probability that a customer arriving to the system will get service with-

out waiting?

14.4 Exercise
The local hardware store has two clerks. The clerks can either work together or separately.
If they work together, they can serve at the rate of 4 customers per hour. If they work
separately, they can serve each at the rate of 2 customers per hour.

(a) The manager of the local hardware store wants to maximize the service rate. Should
the clerks work together or separately?

(b) The manager wants to minimize the probability that an arriving customer has to
wait in line. Should the clerks work together or separately?
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14.5 Exercise (Focus Problem)
You are queuing in the Ministry of Love to get access to Room 101. There are 5 clerks
serving the customers, and a single queue using the fist-in-first-out queuing policy. At the
moment all the clerks are a busy and there are 12 customers in line in front of you. You
have been waiting for 20 minutes. During that time you have observed the service times
of 3 customers. They were 1 minute, 5 minutes and 18 minutes.

(i) What is the probability that your total waiting time plus service time in the Ministry
of Love will exceed 1 hour?

(ii) Suppose you have now waited 25 minutes and there are 11 customers in front of
you and you have recorded an extra service time which was 10 seconds. What is
now the probability that your total waiting time plus service time in the Ministry of
Love will exceed 1 hour?
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Appendix A

Exam Questions

There will be four questions in the exam that will last 3 hours. The questions are chosen
randomly from the following list of problems by using the Sottinen(n, p, q,ρ,λ,µ, ö) distri-
bution. Each problem and each part has equal weight in grading. For probabilistic reasons
there is some slight repetition in the problems. The exam will be closed-book and only
pocket calculators will be allowed, so no Octave in the exam.

Conditioning Tricks

A.1 Problem
Consider a branching process with offspring distribution

p = [0.30 0.15 0.50 0.05].

Calculate

(a) The mean of the 7th generation,
(b) The variance of the 7th generation,

A.2 Problem
Consider a branching process with offspring distribution

p = [0.30 0.19 0.50 0.00 0.01].

Calculate

(a) The mean of the 6th generation,
(b) The variance of the 6th generation,
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A.3 Problem
Explain briefly

(a) the Adam’s law,
(b) the Eve’s law.

A.4 Problem
Explain briefly

(a) the law of total probability,
(b) the law of total variance.

A.5 Problem
Consider a branching process with offspring distribution

p = [0.25 0.00 0.75].

Calculate the distributions of

(a) the second generation,
(b) the third generation.

A.6 Problem
Consider a branching process with offspring distribution

p = [0.80 0.00 0.20].

Calculate the distributions of

(a) the second generation,
(b) the third generation.

A.7 Problem
Calculate the probability generating function of N-valued random variables with proba-
bility mass functions
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(a)

P[X = x] =







0.20 if x = 0,
0.00 if x = 1,
0.80 if x = 2.

(b)

P[X = x] = e−3 3x

x!
, x ∈ N.

A.8 Problem
Calculate the probability generating function of N-valued random variables with proba-
bility mass functions

(a)

P[X = x] =



















0.90 if x = 0,
0.05 if x = 1,
0.00 if x = 2,
0.04 if x = 3,
0.01 if x = 4.

(b)

P[X = x] =
�

4
x

�

0.1x × 0.94−x , x = 0,1, 2,3, 4.

A.9 Problem
Calculate the ultimate extinction probabilities for the branching processes having off-
spring distributions

(a) p = [0.20 0.30 0.50] ,
(b) p = [0.75 0.15 0.05 0.00 0.05] .

A.10 Problem
Calculate the ultimate extinction probabilities for the branching processes having off-
spring distributions
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(a) p = [0.20 0.10 0.70] ,
(b) p = [0.00 0.85 0.05 0.00 0.10] .

Some Interesting Probability Distributions

A.11 Problem
Let X be binomially distributed with parameters 3 and 0.2. Let Y be binomially dis-
tributed with parameters 2 and 0.2. Let X and Y be independent. Calculate the proba-
bilities

(a) P[X + Y = 3] ,
(b) P[Y = 2 | X = 0] .

A.12 Problem
Let X be binomially distributed with parameters 6 and 0.5. Let Y be binomially dis-
tributed with parameters 3 and 0.5. Let X and Y be independent. Calculate the proba-
bilities

(a) P[X + Y = 5] ,
(b) P[Y = 3 | X = 0] .

A.13 Problem
There are 3 clients in a teletraffic system sharing a common link. Each client is idle
with probability 50 %. When the clients transmit, they transmit with a constant rate of
1 Mb/s. How big should the link capacity be to provide 95 % quality-of-service

(a) from the system’s point of view,
(b) from the clients’ point of view?

A.14 Problem
There are 4 clients in a teletraffic system sharing a common link. Each client is idle
with probability 90 %. When the clients transmit, they transmit with a constant rate of
3 Mb/s. How big should the link capacity be to provide 95 % quality-of-service

(a) from the system’s point of view,
(b) from the clients’ point of view?
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A.15 Problem
Let X be Poisson distributed with parameter 2. Let Y be Poisson distributed with pa-
rameter 4. Suppose that X and Y are independent. Calculate

(a) P[X + Y = 2] ,
(b) P[Y = 0 | X + Y = 1] .

A.16 Problem
Let X and Y be independent and Poisson distributed with parameter 3. Calculate

(a) P[X + Y = 1] ,
(b) P[Y = 0 | X + Y = 1] .

A.17 Problem
The Lake Diarrhea has, on average, 0.1 Malus particles per one liter. Magnus Flatus
lives on the shore of the Lake Diarrhea. He drinks daily 2 liters of water from the Lake
Diarrhea. The lethal daily intake of Malus particles is 3.

(a) What is the probability that Magnus Flatus will have a lethal intake of Malus parti-
cles in a given day?

(b) What is the probability that Magnus Flatus will have a lethal intake of Malus parti-
cles during a given year?

A.18 Problem
The Lake Diarrhea has, on average, 0.05 Malus particles per one liter. Magnus Flatus
lives on the shore of the Lake Diarrhea. He drinks daily 1 liter of water from the Lake
Diarrhea. The lethal daily intake of Malus particles is 4.

(a) What is the probability that Magnus Flatus will have a lethal intake of Malus parti-
cles in a given day?

(b) What is the probability that Magnus Flatus will have a lethal intake of Malus parti-
cles during a 40 year period?
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A.19 Problem
Let T be exponentially distributed with parameter 1.5. Calculate

(a) P[T ≤ 1]
(b) P[1≤ T ≤ 2 | T ≥ 1] .

A.20 Problem
Let T be exponentially distributed with mean 0.667. Calculate

(a) P[T ≤ 1]
(b) P[0.5≤ T ≤ 1 | T ≥ 0.2] .

A.21 Problem
Let T1 and T2 be independent exponentially distributed random variables with parameter
2. Calculate

(a) P[0.2≤ T1 + T2 ≤ 0.4]
(b) P[0.5≤ T1 ≤ 1 | T2 ≥ 0.5] .

A.22 Problem
Let T1 and T2 be independent exponentially distributed random variables with mean
1/2. Calculate

(a) P[0.2≤ T1 + T2 ≤ 0.8]
(b) P[T1 ≤ T2] .

A.23 Problem
Explain briefly what is

(a) the exponential distribution,
(b) the Erlang distribution.
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A.24 Problem
Explain briefly

(a) how the Erlang distribution is related to the exponential distribution,
(b) and where the Erlang distribution gets its name?

A.25 Problem
Explain briefly

(a) the law of small numbers,
(b) the central limit theorem.

A.26 Problem
Let X1, X2, . . . , X60 be independent Bernoulli trials each having success probability p =
1/4. Let S = X1 + · · ·+ X60 .

(a) What is the law of small numbers approximation of S ?
(b) What is the central limit theorem approximation of S ?

Stochastic Processes

A.27 Problem
Consider a time-homogeneous Markov chain Xn , n ∈ N , with state space S = {0,1, 2,3}
and transition probability matrix

P =







0.95 0.00 0.05 0.00
0.30 0.10 0.00 0.60
0.50 0.45 0.00 0.05
0.20 0.10 0.10 0.60






.

Calculate the transition probabilities

(a) P[X1 = 2 |X0 = 1] ,
(b) P[X8 = 3 |X6 = 1] .
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A.28 Problem
Consider a time-homogeneous Markov chain Xn , n ∈ N , with state space S = {0,1, 2,3}
and transition probability matrix

P =







0.90 0.00 0.10 0.00
0.30 0.60 0.00 0.10
0.50 0.40 0.00 0.10
0.25 0.25 0.25 0.25






.

Calculate the transition probabilities

(a) P[X1 = 1 or X1 = 2 |X0 = 1] ,
(b) P[X2 = 0 |X0 = 0] .

A.29 Problem
Consider a time-homogeneous Markov chain Xn , n ∈ N , with state space S = {0, 1,2}
and transition probability matrix

P =





0.95 0.00 0.05
0.30 0.70 0.00
0.50 0.50 0.00



 .

Suppose the initial distribution is

p = [0.10 0.80 0.10].

Calculate the probabilities

(a) P[X0 = 0 , X1 = 2] ,
(b) P[X3 = X2 = X1] .

A.30 Problem
Consider a time-homogeneous Markov chain Xn , n ∈ N , with state space S = {0, 1,2}
and transition probability matrix

P =





0.95 0.00 0.05
0.30 0.70 0.00
0.50 0.00 0.50



 .

Suppose the initial distribution is

p = [0.20 0.00 0.80].
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Calculate the probabilities

(a) P[X1 = 0] ,
(b) P[X2 = X1 = X0] .

A.31 Problem
Find out which states of the following Markov chains are transient and which are recur-
rent (null or positive). Also, find out the period of each state.

(a)




0.1 0.9 0.0
0.0 0.2 0.8
1.0 0.0 0.0





(b)





0.0 0.0 1.0
0.0 0.2 0.8
0.5 0.0 0.5





A.32 Problem
Find out which states of the following Markov chains are transient and which are recur-
rent (null or positive). Also, find out the period of each state.

(a)




0.1 0.9 0.0
0.0 0.0 1.0
0.5 0.0 0.5





(b)





0.0 1.0 0.0
1.0 0.0 0.0
0.1 0.0 0.9





A.33 Problem
Suppose that the probability whether it rains tomorrow depends only on whether it has
rained today. Let Xn , n ∈ N , be the Markov chain modeling the weather: Xn = 0 if it
rains at day n and Xn = 1 if it does not rain at day n . Let

P =

�

0.95 0.05
0.30 0.70

�

be the transition probability matrix of Xn , n ∈ N .

(a) Suppose that on Monday it rains with probability 0.25. What is the probability that
it rains on Wednesday?

(b) In the long run, how may rainy and non-rainy days would you expect in this model?
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A.34 Problem
Suppose that the probability whether it rains tomorrow depends only on whether it has
rained today. Let Xn , n ∈ N , be the Markov chain modeling the weather: Xn = 0 if it
rains at day n and Xn = 1 if it does not rain at day n . Let

P =

�

0.90 0.10
0.50 0.50

�

be the transition probability matrix of Xn , n ∈ N .

(a) Suppose that on Monday it rains. What is the probability that it rains on Thursday?
(b) In the long run, how may rainy and non-rainy days would you expect in this model?

A.35 Problem
Explain briefly

(a) what is Cesàro mean,
(b) and how is it related to the long-run behavior of Markov chains.

A.36 Problem
Explain briefly

(a) what ergodicity means in connection to Markov chains,
(b) and where aperiodicity is needed for the ergodic theorem.

A.37 Problem
Explain briefly

(a) what is the balance equation,
(b) and how it is related to limiting probabilities.

A.38 Problem
Explain briefly

(a) what is the balance equation,
(b) and how it is related to eigenvalues and eigenvectors.
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A.39 Problem
Mr. S. and Ms. L. are playing a coin-tossing game with a fair coin. If the coin lands on
heads, Ms. L. will give Mr. S. one euro. If the coin lands on tails, Mr. S. will give Ms. L.
one Euro. Mr. S. has capital of 500 euros and Ms. L. has capital of 50 euros. The game
is played until either Mr. S. or Ms. L. loses his/her capital.

(a) What is the probability that Mr. S. wins the game?
(b) Suppose the coin is not fair. Let p be the probability that Mr. S. wins. What should

p be so that the game is fair, i.e., the probability for Mr. S. to win is 1/2?

A.40 Problem
A symmetric random walk Xn , n ∈ N , with state-space S = Z start at point X0 = c . Let
l < c < u

(a) What is the probability that the random walk hits the boundary u before it hits the
boundary l ?

(b) What is the probability that the random walk does not hit either of the boundaries
l or u?

A.41 Problem
Let N(t) , t ≥ 0, be a Poisson process with intensity 2. Calculate

(a) P[N(3) = 5 |N(1) = 4] ,
(b) P[N(3) = 5 , N(2) = 1 , N(1) = 1] .

A.42 Problem
Let N(t) , t ≥ 0, be a Poisson process with intensity 3. Calculate

(a) P[N(1) = 0] ,
(b) P[N(3) = 5 , N(2) = 1 |N(1) = 0] .

A.43 Problem
Explain briefly how

(a) the Poisson process and the exponential distribution are connected,
(b) and the Poisson process and the Erlang distribution are connected.
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A.44 Problem
Explain briefly how one can construct a Poisson process by using

(a) independent exponentially distributed random variables,
(b) or a biased coin with the law of small numbers.

Queueing

A.45 Problem
(a) A fast food hamburger restaurant uses 3 500 kilograms of hamburger mince each

week. The manager of the restaurant wants to ensure that the meat is always fresh
i.e. the meat should be no more than two days old on average when used. How
much hamburger mince should be kept in the refrigerator as inventory?

(b) The Acme Australia insurance company processes 12 000 insurance claims per year.
At any point in time, there are 480 insurance claims in head office in various phases
of processing. Assuming that the office works 50 weeks per year, find out the
average processing time of an insurance claim in days.

A.46 Problem
(a) Don Guido has on average 150 cases of wine his basement. Don Guido consumes

25 cases per year. How long does Don Guido hold each case?
(b) A hardware vendor manufactures 300 million euros worth of PCs per year. On

average, the company has 45 million euros in accounts receivable. How much
time elapses between invoicing and payment?

A.47 Problem
Explain briefly the following queueing concepts:

(a) Palm probability.
(b) PASTA.

A.48 Problem
Explain briefly the following queueing concepts:
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(a) Little’s law.
(b) Waiting paradox.

A.49 Problem
A Markovian queue with unlimited capacity is fed by 2 customers per minute on average,
and the service times are, on average, 10 seconds.

(a) What is the probability that a customer arriving to the system finds it empty?
(b) What is the average time a customer spends in the system?

A.50 Problem
A Markovian queue with unlimited capacity is fed by 3 customers per minute on average,
and the service times are, on average, 15 seconds.

(a) What is the probability that a customer arriving to the system finds it busy?
(b) What is the average time a customer spends queueing in the system?

A.51 Problem
A Markovian queue is fed clients with intensity 10 per minute.

(a) The clients are served with intensity 20 per minute. What is the average workload
of the system?

(b) There are, on average, 1 500 clients in the system. What is the average time a
client spends in the system?

A.52 Problem
A Markovian queue serves client with intensity 50 per minute.

(a) There are on average 2 000 clients in the system. What is the rate of arrival of new
clients?

(b) On average, 40 clients come to the system each minute. What is the average num-
ber of clients in the system?
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A.53 Problem
A Markovian queue with capacity 10 customers is fed by 8 customers per minute on
average, and the service times are, on average, 5 seconds. If the queue is full, then the
arriving customer will be denied service.

(a) What is the probability that a customer arriving to the system will be denied service?
(b) What is the probability that a customer arriving to the system will get service with-

out waiting?

A.54 Problem
A Markovian queue with capacity 20 customers is fed by 10 customers per minute on
average, and the service times are, on average, 2 seconds. If the queue is full, then the
arriving customer will be denied service.

(a) What is the proportion of customers arriving to the system that will be denied ser-
vice?

(b) What is the probability that a customer arriving to the system will have to wait to
be served?
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distribution, 78, 79
sum, 84
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flux in = flux out principle, 129, 143, 161
focus problem, 6, 164
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fundamental theorem of calculus, 40
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Gaussian distribution, 90
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mean
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Mellin transform, 42
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normal approximation, 94
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Appendix 182

client side, 61
system side, 61

quantile function, 58

random
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variable

generation of, 104
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non-symmetric, 122, 126
symmetric, 122, 126
with reflecting boundaries, 109

recurrence, 118
null, 118
positive, 118

return time, 118

skeleton, 141
sojourn
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time, 141

state-space, 101
stationary

probability, 128
state, 129

Steiner’s translation formula, 21
Stirling’s approximation, 97
stochastic

matrix, 104
process, 101

system’s view, 147

Taylor
approximation, 40, 95
series, 41

time-homogeneity, 102, 137
time-reversibility, 155
transience, 118
transition probability matrix, 102

n-step, 105

utilization, 154

waiting paradox, 148
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