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Preface

These notes are for the six week 5 ECTS course ORMS1020 Operations Research in the
University of Vaasa. I expect that it will take four weeks to go through the material
presented here in the course. The first two weeks of the course will contain a short in-
troduction to GNU Octave as presented in the notes Octave with Spice: Or a Gentle
Introduction to GNU Octave Towards Linear Programming that can be downloaded from
www.uwasa.fi/∼tsottine/spicy or/octave with spice.pdf

These notes are a shortened version of previous notes ORMS1020 Operations Research with
GNU Octave (2011–09–19) used in 2011–2020. If you are interested, you can download the old
notes here: www.uwasa.fi/∼tsottine/or with octave/or with octave.pdf

I would like to thank Matti Laaksonen and Rudi Wietsma for carefully reading the
manuscript and for pointing out several mistakes.

T.S.
Vaasa November 28, 2022

https://www.uwasa.fi/~tsottine/spicy_or/octave_with_spice.pdf
https://lipas.uwasa.fi/~tsottine/or_with_octave/or_with_octave.pdf


Contents

5 Product-Mix Problem Revisited 3

Modeling Product-Mix Problem Revisited . . . . . . . . . . . . . . . . . . . . . . . . 3

Solving Product-Mix Problem with GLPK Revisited . . . . . . . . . . . . . . . . . . 5

6 Diet and Nutrient Problems 9

Diet Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Nutrient Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 Sensitivity 15

Shadow Prices a.k.a. Dual Variables a.k.a. Marginal Prices . . . . . . . . . . . . . . . 16

Reduced Costs a.k.a. Opportunity Costs . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Duality 25

Standard Form, Dual Standard Form, and Slack Form . . . . . . . . . . . . . . . . . 25

Duality Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9 Transportation Problems 37

Primal Transportation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Dual Transportation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10 More Transportation Problems 50

Transshipment Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Assignment Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

11 Data Envelopment Analysis 59

Primal Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Dual Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

12 A Look Under the Hood 65

The Truth is in the Corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



Chapter 5

Product-Mix Problem Revisited

I this chapter we revisit the product-mix problem of Muad’Dib bakery that we studied in
Chapter 4 of the notes Octave with Spice: Or a Gentle Introduction to GNU Octave Towards
Linear Programming. The problem is the same as there. The solution should be the same also.
Indeed, they are, but we present the problem and the solution slightly differently here.

Modeling Product-Mix Problem Revisited

5.1 Problem (Muad’Dib Bakery Revisited)
Muad’Dib Bakery produces three types of Fremen cakes: Atreides, Corrino and Harkonnen.
Each cake is made out of nutrient powders that are: fat, sugar, protein, water and spice
Melange. The composition and selling prices of the cakes and the available nutriet powders
are explained in the table below:

Fremen cake type
Nutrient powder Atreides Corrino Harkonnen Availability
Fat 70 g 50 g 150 g 100 kg
Sugar 500 g 300 g 500 g 400 kg
Protein 280 g 180 g 50 g 150 kg
Water 600 ml 800 ml 500 ml 300 l
Spice Melange 8 mg 35 mg 10 mg 10 g
Selling Price 120 sol 170 sol 100 sol

Muad’Dib Bakery wants to maximize daily revenues. What should Muad’Dib Bakery do?

In modeling optimization problems it is usually a good idea to follow the three-step algorithm
given in Chapter 4 of Octave with Spice: Or a Gentle Introduction to GNU Octave Towards
Linear Programming. We repeat the algorithm here for the readers’ convenience:

http://www.uwasa.fi/~tsottine/spicy_or/octave_with_spice.pdf
http://www.uwasa.fi/~tsottine/spicy_or/octave_with_spice.pdf
http://www.uwasa.fi/~tsottine/spicy_or/octave_with_spice.pdf
http://www.uwasa.fi/~tsottine/spicy_or/octave_with_spice.pdf
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5.2 Algorithm (Optimization modeling)
Step 1 Find the decision variables, i.e. find out what are the variables whose values you

can choose.

Step 2 Find the objective function, i.e. find out how your objective to be minimized or
maximized depends on the decision variables.

Step 3 Find the constraints, i.e. find out the (in)equalities that the decision variables must
satisfy. (Don’t forget the possible sign constraints!)

The idea of Algorithm 5.2 is that you do not try to do everything at once. Indeed, remember
that according to Archbishop Emeritus Desmond Tutu there is only one way to eat an elephant:
a bite at a time.

Usually, finding the decision variables is the most natural starting point. Hence it is
Step 1. Mind here that we do not what to do everything at once. So, we do not care if some
decisions are possible or not. We simply identify what we can in principle decide. In the
Muad’Dib Bakery problem 5.1 above this is quite obvious. We can decide the number of each
types of cakes we are going to make. Let us denote the decision variables unimaginatively as

x1 = number of Atreides cakes produced daily,

x2 = number of Corrino cakes produced daily,

x3 = number of Harkonnen cakes produced daily.

Of course, we could have chosen more descriptive variable names. Whether to use descriptive
names or standard names, is mostly a matter of taste. Both choices have good and bad aspects.

In Step 2 we have to find the objective function. If we already know the decision
variables, then this step is typically an easy one. Indeed, in Problem 5.1 the objective is to
maximize the revenue, which, given the decision variables x1 , x2 and x3 , can be easily read
from the last line of the table:

z = 120x1 + 170x2 + 100x3.

Again, we could have used a more descriptive name for the objective function, like revenue

instead of the standard name z .

Finally, in Step 3 we have to find out all the constraints the problem has. This is typically
the step where most of the work is done. Luckily the problem data in 5.1 was given in a tabular
form that corresponds nicely to the LP formulation we need. Indeed, the constraints can be
read from the lines entitled “Fat”, “Sugar”, “Protein”, “Water”, and “Spice Melange”. We
can, if we wish, write them mathematically as

70x1 + 50x2 + 150x3 ≤ 100 000 (fat)
500x1 + 300x2 + 500x3 ≤ 400 000 (sugar)
280x1 + 180x2 + 50x3 ≤ 150 000 (protein)
600x1 + 800x2 + 500x3 ≤ 300 000 (water)
8x1 + 35x2 + 10x3 ≤ 10 000 (spice)

Note that we wrote 70x1 instead x1×70 g, which would have been more “correct”. This way
or writing, and removing the units, turns out to be more convenient, as we shall soon see. Note
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that since we removed the units, we had to scale the units to be the same in each row. Different
rows can have different units. For example, it would have been no problem to measure protein
in kilograms rather than in grams. So, we can change the (protein) row to

0.280x1 + 0.180x2 + 0.050x3 ≤ 150.

Indeed, the inequality is the same.

Remembering the implied sign constraints we have arrived to the LP model for the Muad’Dib
Bakery problem 5.1:

(5.3)

max z = 120x1 + 170x2 + 100x3 (revenue)
s.t. 70x1 + 50x2 + 150x3 ≤ 100 000 (fat)

500x1 + 300x2 + 500x3 ≤ 400 000 (sugar)
280x1 + 180x2 + 50x3 ≤ 150 000 (protein)
600x1 + 800x2 + 500x3 ≤ 300 000 (water)
8x1 + 35x2 + 10x3 ≤ 10 000 (spice)

x1, x2, x3 ≥ 0 (sign constraints)

5.4 Remark (LP vs. Table)
You should note how similar the table in Problem 5.1 and the LP in (5.3) are. Basically the
only difference is that in Problem 5.1 table the prices of cakes are in the bottom while in the
LP (5.3) they are in the top.

Solving Product-Mix Problem with GLPK Revisited

We have modeled Muad’Dib Bakery Problem 5.1 as an LP in (5.3). Now we are going to
implement the problem with GNU Octave and solve it by using the LP solver glpk. Since GNU
Octave is matrix oriented it makes sense to rewrite (5.3) in matrix form. But nothing could be
easier! Indeed, let us define

c =

 120
170
100

 , A =


70 50 150
500 300 500
280 180 50
600 800 500
8 35 10

 and b =


100 000
400 000
150 000
300 000
10 000

 .

Then (5.3) can be written in matrix notation as

(5.5)
max z = c′x
s.t. Ax ≤ b

x ≥ 0
.
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5.6 Remark (LP in Tabular Form)
The reader is invited to compare the matrix form (5.5) and the table in Problem 5.1. Indeed,
by using the matrix A and the vectors c and b we can write the table in Problem 5.1
schematically as

Fremen cake type
Nutrient powder · · · Availability

... A b
Selling Price c′

Solving Problem 5.1 (Muad’Dib Bakery Revisited) with GNU Octave and glpk is now rela-
tively straingforward, since we have modeled it as a (standrard form) LP in (5.3).

5.7 Solution (Muad’Dib Bakery Revisited)
Here is the script m-file that solves the Muad’Dib Bakery problem 5.1 (you can download it
from www.uwasa.fi/∼tsottine/spicy or/muaddib revisited.m)

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% Muad’ Dib Bakery Rev i s i t ed . ( Problem 5 .1 from Linear Programming with Spice )
4 %%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 %% Data
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
10
11 %% Pr i c e s f o r the cakes Atre ides , Corrino , Harkonnen ( S o l a r i )
12 c (1 ) = 120 ; %% Pr ice f o r Atre ide s
13 c (2 ) = 170 ; %% Pr ice f o r Corr ino
14 c (3 ) = 100 ; %% Pr ice f o r Harkonnen
15
16 %% Nutr ient powder compos it ion o f the cakes Atre ides , Corrino , Harkonnen
17 A( 1 , : ) = [ 70 50 1 5 0 ] ; %% Fat ( g )
18 A( 2 , : ) = [500 300 5 0 0 ] ; %% Sugar ( g )
19 A( 3 , : ) = [280 180 5 0 ] ; %% Prote in ( g )
20 A( 4 , : ) = [600 800 5 0 0 ] ; %% Water (ml )
21 A( 5 , : ) = [ 8 35 1 0 ] ; %% Spice Melange (mg)
22
23 %% Ava i l ab l e nu t r i e n t s
24 b (1 ) = 100 ; %% Fat ( kg )
25 b (2 ) = 400 ; %% Sugar ( kg )
26 b (3 ) = 150 ; %% Prote in ( kg )
27 b (4 ) = 300 ; %% Water ( l )
28 b (5 ) = 10 ; %% Spice Melange ( g )
29
30 %% Unit changes kg => g l => ml , and g => mg.
31 b = 1000*b ;
32

http://www.uwasa.fi/~tsottine/spicy_or/muaddib_revisited.m


Chapter 5 Solving Product-Mix Problem with GLPK Revisited 7

33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34 %% So lut i on with GLPK
35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
36
37 ctype = ”UUUUU” ;
38 vtype = ”CCC” ;
39 [ x max , z max ] = glpk ( c ,A, b , [ ] , [ ] , ctype , vtype , =1) ;
40
41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
42 %% Output : x max f o r the optimal d e c i s i o n and z max f o r the optimal va lue .
43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
44 x max
45 z max
46
47 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48 %% Test r e s u l t :
49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
50 %%>> muadd ib rev i s i t ed
51 %%x max =
52 %%
53 %% 171.2329
54 %% 246.5753
55 %% 0
56 %%
57 %%z max = 6.2466 e+04

The code above is slightly different that the solution written in Chapter 4 of Octave with
Spice: Or a Gentle Introduction to GNU Octave Towards Linear Programming and the m-file
muaddib.m there. The reader is strongly encouraged to review that solution now. Here we only
point out some differences to that solution.

Like the code muaddib.m the code muaddib revisited.m above is split into blocks. The first
block, lines 1–6, is just a title. The second block, lines 7–32 sets the data of the problem. The
third block 33–40 calculates the actual solution. The fourth block 41–46 prints the solution to
Command Window. Finally, in the fifth block there is (in comments) how the solution should
look like.

The revisited version muaddib.m differs from the earlier version muaddib revisited.m in follow-
ing ways

� In the data section, the problem data c, A and b are built row-by-row instead of giving
the vectors and the matrices in single commands. It turns out that this way the vectors
c and b become row vectors instead of column vectors. It also turns out that glpk does
not care about this at all.

� In solution section the glpk parameter ctype and vtype are defined before calling the
function glpk. This difference is very minor, almost no worth of mentioning.

Finally, here is the solution: Run the m-file muaddib revisited.m in the GNU Octave console
(make sure that the m-file is in you current directory):

1 >> muadd ib rev i s i t ed
2 x max =
3
4 171.2329
5 246.5753

http://www.uwasa.fi/~tsottine/spicy_or/octave_with_spice.pdf
http://www.uwasa.fi/~tsottine/spicy_or/octave_with_spice.pdf
http://www.uwasa.fi/~tsottine/spicy_or/muaddib.m
http://www.uwasa.fi/~tsottine/spicy_or/muaddib.m
http://www.uwasa.fi/~tsottine/spicy_or/muaddib_revisited.m
http://www.uwasa.fi/~tsottine/spicy_or/muaddib.m
http://www.uwasa.fi/~tsottine/spicy_or/muaddib_revisited.m
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6 0
7
8 z max = 6.2466 e+04

So, Muad’Dib Bakery should produce 171.239 Atreides cakes, 246.5753 Corrino cakes, and
no Harkonnen cakes at all. With this choice the daily revenue is maximized and it is 62 466
solaris.

5.8 Exercise (Corrino Copyright)
The Padishah Emperor Shaddam Corrino IV decreed that Corrino cakes are his exclusive
copyright: no-one else is allowed to make them. What should Muad’Dib Bakery in Problem
5.1 do now?

Hint: You might want to modify either the m-file muaddib.m or the m-file muaddib revisited.m

to solve this. Extra glory is given to a student who solves this problem in the quick-and-dirty
way by modifying a single number in the m-file.

5.9 Exercise (Fenring Cake)
Muad’Dib Bakery of Problem 5.1 is considering to launch a new type of the: Fenring. This
cake would contain 120 g of fat, 450 g of sugar, 250 g of protein, 750 ml of water, and no spice
at all. The price for Fenring cake would be 120 solaris. Would it be profitable to sell Fenring
cakes?

5.10 Exercise (Corrino Licence)
The Padishah Emperor Shaddam Corrino IV decreed that Corrino cakes are his exclusive
copyright. To make Corrino cakes, one must pay royalty (imperialty?). How big can this
royalty be so that it would still be profitable for Muad’Dib Bakery in Problem 5.1 to make
them?

Hint: The obvious way to solve this is to calculate optimal solutions with different royalty
prices in a for-loop. Later, when we study sensitivity analysis we will learn a more elegant
solution.

5.11 Exercise (Muad’Dib with Promises)
Muad’Dib Bakery of Problem 5.1 has made some promises. It has promised to have at least
3 of each cake types for sale each day and also it has promised to deliver 2 g of spice Melange
to the imperial treasury and 1 Atreides cake to the planet Caladan each day. What should
Muad’Dib Bakery do now?

http://www.uwasa.fi/~tsottine/spicy_or/muaddib.m
http://www.uwasa.fi/~tsottine/spicy_or/muaddib_revisited.m


Chapter 6

Diet and Nutrient Problems

Diet Problem

The diet problem is arguably the first linear optimization problem (LP) studied. Its history
dates back to the 1930s and 1940s. The problem was motivated by the U.S. Army’s desire to
minimize the cost of feeding its soldiers while still providing a healthy diet. So, the goal of the
diet problem is to select a set of foods that will satisfy a set of daily nutritional requirement at
minimum cost.

Problem 6.1 below is a diet problem version of the product-mix problem of Muad’Dib bakery
(Problem 5.1).

6.1 Problem (Sietch Tabr Diet)
Naib Stilgar must feed his sietch. The people in his sietch require five kind of nutrients: fat,
sugar, protein, water and spice Melange. In Arrakis there are only three kinds of food: Atreides
cakes, Corrino cakes, and Harkonnen cakes. The nutritional requirements of the sietch, the
nutritional contents of the cakes, and the prices of the cakes are listed in the table below:

Fremen cake type
Nutrient powder Atreides Corrino Harkonnen Requirement
Fat 70 g 50 g 150 g 100 kg
Sugar 500 g 300 g 500 g 400 kg
Protein 280 g 180 g 50 g 150 kg
Water 600 ml 800 ml 500 ml 300 l
Spice Melange 8 mg 35 mg 10 mg 10 g
Price 120 sol 170 sol 100 sol

Naib Stilgar wants to feed his sietch at minimum cost. What should Naib Stilgar buy?

The diet problem 6.1 is very close to the product-mix problem 5.1. So, one might think that
their solutions are the same, since the Sietch Tabr nutrient requirements are exactly the same
as Muad’Dib Bakery’s available nutrients. This is not however the case. Indeed, the solutions
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are not the same, as we shall see soon. However modeling and solving the problem is very
similar to the product-mix problem of Muad’Dib bakery 5.1.

To model the diet problem 6.1 we can use the same approach as used in modeling the
product-mix problem 5.1. Since the differences are minor, we only give the solution here:

(6.2)

minw = 120x1 + 170x2 + 100x3 (cost)
s.t. 70x1 + 50x2 + 150x3 ≥ 100 000 (fat)

500x1 + 300x2 + 500x3 ≥ 400 000 (sugar)
280x1 + 180x2 + 50x3 ≥ 150 000 (protein)
600x1 + 800x2 + 500x3 ≥ 300 000 (water)
8x1 + 35x2 + 10x3 ≥ 10 000 (spice)

x1, x2, x3 ≥ 0 (sign constraints)

The reader is encouraged to compare the LP model (6.2) to the LP model (5.3).

6.3 Solution (Sietch Tabr Diet)
Here is the script m-file that solves the Sietch Tabr Diet Problem 6.1 (you can download it
from www.uwasa.fi/∼tsottine/spicy or/tabr diet.m)

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% Sie t ch Tabr Diet . ( Problem 6 .1 from Linear Programming with Spice )
4 %%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 %% Data
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
10
11 %% Pr i c e s f o r Atre ides , Corrino , Harkonnen ( S o l a r i )
12 c = [120 170 1 0 0 ] ’ ;
13
14 %% Nutr ient powder compos it ion o f the cakes Atre ides , Corrino , Harkonnen
15 A = [ 70 50 150 ; %% Fat ( g )
16 500 300 500 ; %% Sugar ( g )
17 280 180 50 ; %% Prote in ( g )
18 600 800 500 ; %% Water (ml )
19 8 35 10 ] ; %% Spice Melange (mg)
20
21 %% Required nu t r i e n t s ( note un i t s c a l e )
22 b = 1000* [100 400 150 300 1 0 ] ’ ;
23
24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25 %% So lut i on with GLPK
26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27
28 [ x , w] = glpk ( c ,A, b , [ ] , [ ] , ”LLLLL” , ”CCC” , 1) ;
29
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31 %% Output : x f o r the optimal d e c i s i o n and w f o r the optimal va lue .
32 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33 x , w
34
35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

http://www.uwasa.fi/~tsottine/spicy_or/tabr_diet.m
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36 %% Test r e s u l t a t a b r d i e t vs . muaddib
37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38
39 %%>> t a b r d i e t
40 %%x =
41 %%
42 %% 415.385
43 %% 61.538
44 %% 452.308
45 %%
46 %%w = 1.0554 e+05
47
48 %%>> muaddib
49 %%x max =
50 %%
51 %% 171.2329
52 %% 246.5753
53 %% 0
54 %%
55 %%z max = 6.2466 e+04

The reader should note that the code tabr diet .m is almost identical to the code muaddib.m

(see www.uwasa.fi/∼tsottine/spicy or/muaddib.m). The only essential differences are in
the line 28.

� In the diet problem the constraints are of type ≥ . Therefore the ctype input paramer is
”LLLLL” instead of ”UUUUU”.

� In the diet problem we are minimizing instead of maximizing. Therefore the sense input
parameter is 1 instead of =1. (Since minimization is default for glpk, we could have
simply omitted this input parameter).

The solution is given in the comments in the lines 39–46: Naib Stilgar should buy 415.3859
Atreides cakes, 61.538 Corrino cakes, and 452.308 Harkonnen cakes. The total cost of the
cakes is 105 538.46 solaris.

Finally, in the lines 48–55 there is in the comments the solution of Muad’Dib product-mix
problem 5.1 for comparison.

6.4 Exercise (Muad’Dib Needs More Nutrients)
Note that Muad’Dib Bakery of Problem 5.1 does not have enough daily nutrients to feed Sietch
Tabr of Problem 6.1. How much nutrients should Muad’Dib bakery have in order to be able
meet Sietch Tabr’s needs?

6.5 Exercise (Buy–Sell Comparison Theorem)
This exercise was wrong. Sorry for the confusion!

http://www.uwasa.fi/~tsottine/spicy_or/muaddib.m
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Nutrient Problem

The product-mix problem 5.1 and the diet problem 6.1 were closely related but somehow not in
balance: while the Muad’Dib bakery has all the nutrients Sietch Tabr needs, it cannot provide
for the sietch. The reason is that Muad’Dib bakery sells fremen cakes, not nutrient powders and
some of the nutrients remain unused. If Muad’Dib bakery allows to directly buy the powders,
the situation changes.

6.6 Problem (Sietch Tabr Nutrient Diet)
Naib Stilgar must feed his sietch. The people in his sietch require five kind of nutrients: fat,
sugar, protein, water and spice Melange. The requirements of the sietch are

Nutrient powder Requirement
Fat 100 kg
Sugar 400 kg
Protein 150 kg
Water 300 l
Spice Melange 10 g

Naib Stilgar wants to buy the nutrient powders from Muad’Dib bakery. What should Naib
Stilgar’s offer to Muad’Dib bakery be?

Let us model Problem 6.6 by using Algorithm 5.2.

In Step 1 we should find out the decision variables. So what can Naib Stilgar decide?
He wants to buy nutrient powders to feed his sietch. So, the decision variables are the offered
prices (per unit) for the nutrient powders. Let us call these prices y = [y1 y2 y3 y4 y5]

′ . So, x
will denote the solution for Muad’Dib bakery Problem 5.1 and y will denote the solution for
Naib Stilgar’s Problem 6.6. So, we have the decision variables

y1 = price (in solaris) for 1 g of fat powder,

y2 = price (in solaris) for 1 g of sugar powder,

y3 = price (in solaris) for 1 g of protein powder,

y4 = price (in solaris) for 1 ml of water powder,

y5 = price (in solaris) for 1 mg of spice Melange powder.

In Step 2 we need to find out the objective function. So what is Naib Stilgar’s objective?
It is obviously to feed his sietch with minimal cost. So, this is a minimization problem. Therefore
we call the objective function w , and for comparison z will denote the objective for Muad’Dib’s
Problem 5.1. Since the nutrient requirements are given in the problem data and the price per
unit for the nutrients are the decision variables, the objective function to be minimized is

w = 100 000 y1 + 400 000 y2 + 150 000 y3 + 300 000 y4 + 10 000 y5

In Step 3 we need to find out the constraints. To figure out what they are we have to
think what kind of offers would Muad’Dib Bakery accept. Suppose Naib Stilgar gives an offer
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y = [y1 y2 y3 y4 y5]
′ per unit for nutrients to buy all the nutriets Muad’Dib Bakery has. Now

Muad’Dib bakery has two choices: either accept the offer and sell all its nutrients or refuse the
offer and use its nutrients to make fremen cakes. Recall what the Muad’Dib’s business is:

Fremen cake type
Nutrient powder Atreides Corrino Harkonnen Availability
Fat 70 g 50 g 150 g 100 kg
Sugar 500 g 300 g 500 g 400 kg
Protein 280 g 180 g 50 g 150 kg
Water 600 ml 800 ml 500 ml 300 l
Spice Melange 8 mg 35 mg 10 mg 10 g
Selling Price 120 sol 170 sol 100 sol

Let us consider the first column “Atreides”. This column tells that Muad’Dib Bakery can turn
70 g of fat, 500 g of sugar, 280 g of protein, 600 ml of water, and 8 mg of spice into a cake that
sells for 120 solaris. Now, suppose that Naib Stilgar’s offer y is such that

70y1 + 500y2 + 280y3 + 600y4 + 8y5 ≥ 120.(6.7)

This means that Naib Stilgar is offering to buy nutrients in a better price than Muad’Dib
Bakery could get from baking them into Atreides cakes. Suppose Naib Stilgar’s offer is better
for Corrino and Harkonnen cakes also, i.e., we have in addition to (6.7)

50y1 + 300y2 + 180y3 + 800y4 + 35y5 ≥ 170,(6.8)

150y1 + 500y2 + 50y3 + 500y4 + 10y5 ≥ 100.(6.9)

Inequalities (6.7), (6.8), and (6.9) mean that Naib Stilgar’s offer is better than making the cakes.
So, Muad’Dib Bakery should accept the offer. On the other hand, if any of the constraints (6.7),
(6.8), or (6.9) is not satisfied, then it would be better for Muad’Dib Bakery to make some cakes
instead of selling all its nutrients to Naib Stilgar. This means that Step 3 is finished. We have
found out the constraints, and we can collect collect what we have found out as an LP:

(6.10)

minw = 100ky1 + 400ky2 + 150ky3 + 300ky4 + 10ky5
s.t. 70y1 + 500y2 + 280y3 + 600y4 + 8y5 ≥ 120

50y1 + 300y2 + 180y3 + 800y4 + 35y5 ≥ 170
150y1 + 500y2 + 50y3 + 500y4 + 10y5 ≥ 100

y1, y2, y3, y4, y5 ≥ 0

We used kilo units in the objective line. The reason for this was marginal.

6.11 Remark (Bakery–Sietch Duality)
We have seen our first duality. Indeed, consider the Muad’Dib table

Fremen cake type
Nutrient powder Atreides Corrino Harkonnen Availability
Fat 70 g 50 g 150 g 100 kg
Sugar 500 g 300 g 500 g 400 kg
Protein 280 g 180 g 50 g 150 kg
Water 600 ml 800 ml 500 ml 300 l
Spice Melange 8 mg 35 mg 10 mg 10 g
Selling Price 120 sol 170 sol 100 sol
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Recall that setting

c =

 120
170
100

 , A =


70 50 150
500 300 500
280 180 50
600 800 500
8 35 10

 and b =


100 000
400 000
150 000
300 000
10 000


we can write the table above formally as

Fremen cake type
Nutrient powder · · · Availability

... A b
Selling price c′

and the Muad’Dib product-mix problem can be written as an LP as

max z = c′x
s.t. Ax ≤ b

x ≥ 0
.

Now, the dual way of looking at the Fremen cake type table is to read it row-wise instead
of column-wise (or the other way around). This means that we are looking at the transposed
table

Nutrient powder
Fremen cake type · · · Selling price

... A′ c
Requirement b′

and the Naib Stilgar’s nutrient purchase problem can be written as an LP as

min w = b′y
s.t. A′y ≥ c

y ≥ 0
.

6.12 Exercise (Sietch Tabr Nutrient Diet)
Solve the Nutrient Diet Problem 6.6 by using glpk. Compare the solution with the Muad’Dib
Bakery product-mix problem solution 5.7.
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Sensitivity

The optimal value of (a standard form) LP

max z = c′x
s.t. Ax ≤ b

x ≥ 0
.

can be considered as a function of its parameters (or arguments, if you like) c , A , and b :

z∗ = z∗(c,A,b).

Of course, this function is a black box to us. We no not know how e.g. glpk calculates it. But
it is a function, nevertheless.

As for any function, for function z∗ , it is important to understand how it changes when its
parameters change. These changes are of course the partial derivatives

∂z∗

∂ci
for the changes in the objective function,

∂z∗

∂Ai,j

for the changes in the technology coefficient,

∂z∗

∂bj
for the changes in the available resources.

The changes ∂z∗/∂ci or ∂z∗/∂Aij have no standard name, and we shall not consider them.

The changes ∂z∗/∂bj are called the shadow prices and they are usually denoted by λj ’s
(or µj ’s or πj ’s).

The so-called reduced costs are related to the changes in the objective function, but they
are not the partial derivatives with respect to c . Instead, they are related to the decision
variables xi we decide not to produce, i.e., x∗

i = 0. So, one could say that the reduced costs
are related also to the optimal decision

x∗ = x∗(c,A,b).

However, they are not the partial derivatives ∂x∗/∂ci either (whatever does that even mean).
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Shadow Prices a.k.a. Dual Variables a.k.a. Marginal

Prices

In this section we are interested in the changes

λj =
∂z∗

∂bj

for an optimal solution z∗ = z∗(c,A,b). So, we have a change in one of the resources b .

7.1 Problem (Muad’Dib’s Jihad)
Having won the war against the Corrino imperial dynasty, the new emperor Paul Muad’Dib
of the house Atreides needs to consolidate his power. Paul Muad’Dib wants to build a rapid
deployment force that can be sent to different planets if needed.

Paul Muad’Dib has unlimited supply of three kinds of forces: the zealous elite force fe-
daykin, standard Atreides conscripts, and deserted sardaukar troops. In consolidating the new
imperial power, the relative efficiency for fedaykin, conscripts, and sardaukar are 10, 1, and 7,
respectively. Thus, if the rapid deployment force has

x1 = “fedaykin legions”,

x2 = “conscript legions”,

x3 = “sardaukar legions”,

then the influence of the rapid deployment force is

z = 10x1 + x2 + 7x3.

Depending on the planet where the rapid deployment force may be deployed, some troops
will generate more resentment than other troops. Also, sometimes the troops are welcome, i.e.,
they generate negative resentment. Finally, the level of tolerance for resentment is different
for different planets. If the tolerance level is exceeded, the planet will rebel. The tolerance
to resentment and resentment generated by different types of legions of troops is presented in
the table below:

Resentment
Planet Fedaykin Conscript Sardaukar Tolerance
Arrakis -1 0 2 89
Caladan 0 -1 1 780
Chapterhouse -1 1 1 68
Giedi Prime 2 1 0 740
Ix 1 0 1 599
Kaitain 3 2 -1 1250
Tleilax 1 1 1 595
Influence 10 1 7

So, for example, people in Arrakis like the Fedaykin, don’t care about the conscripts, but hate
the sardaukar, while people in Tleilax dislike all the troops equally.
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Emperor Paul Muad’Dib wants to maximize the influence of his rapid deployment force
and in the same time keep the planets from rebelling because of resentment to the rapid
deployment force.

To increase the resentment tolerance, Paul Muad’Dib can bestow one planet “special impe-
rial” status. This does not cost anything (since it is a purely ceremonial status), but increase
that planet’s tolerance by 10 units. Which planet should have the “special imperial” status?

7.2 Remark (Jihad Differential)
Let z∗ = z∗(c,A,b) be the solution of the Muad’Dib Jihad’s LP of Problem 7.1. That is, c
is influence to be optimized, A is the technology (tolerance) matrix, b is the tolerance levels,
and z∗ is the optimal influence.

By using vector notation , the “special imperial” status should be given to the planet i
(i = 1, 2, 3, 4, 5, 6, 7) for which

z∗(c,A,b+ 10ei)(7.3)

is the greatest. Here ei is the 7-dimensional vector having 1 at the ith element and 0
otherwise.

A safe way of solving Problem 7.1 is to calculate the optimal influences of (7.3) for all the
7 different choices and then to choose the best one. This is left as an exercise.

An unsafe, but more informative, way of solving Problem 7.1 is to check the shadow
prices of the original LP solution (z∗,x∗), where z∗ = z∗(c,A,b). This is what we do next.

7.4 Solution (Muad’Dib’s Jihad)
The following m-file, jihad.m solves Problem 7.1. It can be downloaded by using the link
www.uwasa.fi/∼tsottine/spicy or/jihad.m.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% Muad’ Dib ’ s Jihad . ( Problem 7 .1 from Linear Programming with Spice )
4 %%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 %% Data
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
10
11 %% In f l u en c e from fedaykin , c on s c r i p t s , and sardaukar .
12 c = [
13 10 ; %% Feadykin
14 1 ; %% Conscr ipt s
15 7 ; %% Sardaukar
16 ] ;
17
18 %% Resentment t o l e r a n c i e s f o r the p l ane t s :

http://www.uwasa.fi/~tsottine/spicy_or/jihad.m
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19 b = [
20 89 ; %% Arrak i s
21 780 ; %% Caladan
22 68 ; %% Chapterhouse
23 740 ; %% Giedi Prime
24 599 ; %% Ix
25 1250 ; %% Kaita in
26 595 ; %% Tl e i l a x
27 ] ;
28
29 %% Tolerance matrix ( fedaykin , consc r ip t , sardaukar ) f o r the p l ane t s
30 A = [
31 =1 0 2 ; %% Arrak i s
32 0 =1 1 ; %% Caladan
33 =1 1 1 ; %% Chapterhouse
34 2 1 0 ; %% Giedi Prime
35 1 0 1 ; %% Ix
36 3 2 =1; %% Kaita in
37 1 1 1 ; %% Tl e i l a x
38 ] ;
39 %% Fedaykin Conscr ipt s Sardaukar
40
41 %% Set c on s t r a i n t s ”U” f o r a l l the p l ane t s
42 ctype = ”” ;
43 for i =1: length (b)
44 ctype = [ ctype ”U” ] ;
45 end
46
47 %% Set va r i ab l e type ”C” f o r a l l the troop types
48 vtype = ”” ;
49 for i =1: length ( c )
50 vtype = [ vtype ”C” ] ;
51 end
52
53 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
54 %% So lut i on with GLPK
55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56
57 [ x , z , e , xtra ] = glpk ( c ,A, b , [ ] , [ ] , ctype , vtype , =1) ;
58 lambda = xtra . lambda ;
59
60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
61 %% Output : Al l the ve c t o r s are transposed f o r ”compact” view .
62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
63
64 op t ima l l e g i on s = x ’
65 op t ima l i n f l u en c e = z ’
66 ma r g i n a l i n f l u e n c e g a i n s = lambda ’
67 f r e e t o l e r a n c e s = (b=A*x ) ’
68
69 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
70 %% Test r e s u l t :
71 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
72
73 %%>> j i had
74 %%op t ima l l e g i on s =
75 %%
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76 %% 370 0 225
77 %%
78 %%opt ima l i n f l u en c e = 5275
79 %%marg i n a l i n f l u e n c e g a i n s =
80 %%
81 %% 0 0 0 1.5000 0 0 7 .0000
82 %%
83 %%f r e e t o l e r a n c e s =
84 %%
85 %% 9 555 213 0 4 365 0

The m-file jihad.m works pretty much the same way as our previous m-files. There are however
a couple of new fine points that are worth mentioning:

� In lines 47–51 the glpk’s input parameters ctype and vtype are set in a dynamic way so that
the glpk call in the line 57 will work even if you change the dimensions of the problem
data c , A , b . That means that adding or removing planets and troop types will work
just fine for the rest of the file: the data section and the solution section are now truly
independent.

� In line 57 we ask glpk to give us the full answer. A particularly interesting additional
part in the full answer is the field xtra.lambda, which we decided to call simply lambda

(λ) in the line 58.

� Finally, in the output section we decided to give the output parameters descriptive names
and transposed them for more convenient reading. Finally, we also added a new output
vector free tolerances that tells us how much tolerance there is left in the planets if they
are occupied by the rapid deployment force.

Finally, the solution is to grant the planet Tleilax the “special imperial” status. Indeed,
that would (if the change of 10 units is small) increase the influence of the rapid deployment
force by 7× 10 = 70 units. For comparison, giving the “special imperial” status to the planet
Giedi Prime would increase the rapid deployment force’s influence by 1.5× 10 = 15 units. All
other choices would not increase the influence at all for the obvious reason: their tolerances
are not fully used, so increasing them should not change anything.

7.5 Exercise (Safe Jihad Policy)
Solve the “special imperial” bestowing selection of Problem 7.1 in the safe way by solving all
the 7 different LP’s (7.3) as explained in Remark 7.2.

7.6 Exercise (Tleilax Rebellion)
The planet Tleilax decided to rebel against the just and holy rule of Emperor Paul Muad’Dib.
Therefore a permanent garrison was stationed there. So, there is no point in sending rapid
deployment forces nor granting Tleilax the “special imperial” status.

In this new situation, which planet should be bestowed the “special imperial” status in
Problem 7.1?



Chapter 7 Shadow Prices a.k.a. Dual Variables a.k.a. Marginal Prices 20

7.7 Exercise (Muad’Dib Bakery’s Nutrient Purchase)
Recall Muad’Dib Bakery from Problem 5.1. Suppose Muad’Dib Bakery is given the oppor-
tunity to buy the nutrient powders from the notorious Sietch Jacurutu. How much should
Muad’Dib Bakery be willing to pay for each of the nutrient powders?

Let us end this section with a discussion on what and why the shadow prices are.

7.8 Remark (On Shadow Prices, What and Why)
� Shadow prices are the partial derivatives ∂z∗/∂bj . They are also denoted by λj . (Some-
times πj or µj )

� Shadow prices are called shadow prices, since they are the optimal solution of a
shadow problem, the so called the dual problem. We will learn about this later.
This is also the reason why shadow prices are also called dual variables.

� Shadow prices are also called marginal prices. This means that they tell the price
of the resources in the margin: one unit of increase in resource bj will increase the
(previous) optimal solution z∗ by λj units, if the change of one unit is “small”.

� Actually, the function z∗ is linear for “small” changes (but not for “big” ones). This
means that if δ = [δ1 · · · δn] is “small” then the differential approximation is not an
approximation at all, but an equality:

z∗(c,A,b+ δ) = z∗(c,A,b) +
∂z∗

∂b
(c,A,b)′δ(7.9)

= z∗(c,A,b) + λ′δ,

where we have used the vector gradient notation:

∂z∗

∂b
=


∂z∗

∂b1
∂z∗

∂b2
...

∂z∗

∂bm

 .

Equation (7.9) gives a compact answer to the question why for shadow prices (and also
to the what). If the changes δ are “small”, we can see the changes in the optimal
solution neatly without any reason to calculate huge number of LP’s for all the changes.

� If a shadow price λj = 0, this usually means that not all the resources bj are used in
the optimal solution. In other words

Aj1x
∗
1 + · · ·+ Ajnx

∗
n < bj,

where x∗ = [x1 · · · xn]
′ is the optimal solution of the (standard form) LP.
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Reduced Costs a.k.a. Opportunity Costs

In this section we are interested in the changes in the objective parameter c for both on the
optimal decision x∗ = x∗(c,A,b), and on the optimal value z∗ = z∗(c,A,b).

The slightly complicated definition for the reduced cost is as follows: The reduced cost ui

associated with the coefficient ci is zero if x∗
i ̸= 0. If x∗

i = 0, then ui is the amount ci has to
improve (reduce for minimization and increase for maximization) to make x∗

i non-zero.

7.10 Problem (Bene Gesserit Conscript Training)
The optimal solution to Problem 7.1 was to compose the rapid deployment force with

x∗
1 = 370 legions of fedaykin zealots,

x∗
2 = 0 legions of Atreides conscripts,

x∗
3 = 225 legions of sardaukar deserters

(see Solution 7.4). This means that the Atreides conscripts are not influential enough to be
included in the rapid deployment force.

The Bene Gesserit have promised to teach the Atreides conscripts the Weirding Way fight-
ing technique. This should make them more influential. Of course, the Bene Gesserit demand
a price for their services. How much should the Weirding Way increase the Atreides conscripts
influence before any negotiations of the price with the Bene Gesserit makes any sense?

7.11 Remark (Bene Gesserit Training Reduced Cost)
Let z∗ = z∗(c,A,b) be the solution of the Muad’Dib Jihad’s LP of Problem 7.1. That is, c
is influence to be optimized, A is the technology (tolerance) matrix, b is the tolerance levels,
and z∗ is the optimal influence.

By using vector notation, the Bene Gesserit training for the Atreides conscripts (i = 2)
would increase the influence to

z∗(c+ δ2e2,A,b).(7.12)

In order for this training to make sense for Emperor Paul Muad’Dib, it must be so that

z∗(c+ δ2e2,A,b) > z∗(c,A,b),(7.13)

and, consequently, x∗
2 > 0.

As safe but tedious way to solve Problem 7.10 is to calculate (7.12) in a for loop for δ2 to
find out the breaking point, where (7.13) holds.

An unsafe, but more informative, way of solving Problem 7.1 is to check the reduced
costs of the original LP solution (z∗,x∗), where z∗ = z∗(c,A,b). This is what we do next.
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7.14 Solution (Bene Gesserit Conscript Training)
The unsafe solution is of course to look at the reduced cost of the original solution of the
Jihad problem presented in jihad.m. Here is a quick-and-dirty modification of jihad.m, called
consript .m, downloadable from www.uwasa.fi/∼tsottine/spicy or/conscript.m)

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% Bene Ge s s e r i t Atre ide s Conscr ipt Train ing
4 %% (Problem 7.10 from Linear Programming with Spice )
5 %%
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 %% Data
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11
12 %% In f l u en c e from fedaykin , c on s c r i p t s , and sardaukar .
13 c = [
14 10 ; %% Feadykin
15 1 ; %% Conscr ipt s
16 7 ; %% Sardaukar
17 ] ;
18
19 %% Resentment t o l e r a n c i e s f o r the p l ane t s :
20 b = [
21 89 ; %% Arrak i s
22 780 ; %% Caladan
23 68 ; %% Chapterhouse
24 740 ; %% Giedi Prime
25 599 ; %% Ix
26 1250 ; %% Kaita in
27 595 ; %% Tl e i l a x
28 ] ;
29
30 %% Tolerance matrix ( fedaykin , consc r ip t , sardaukar ) f o r the p l ane t s
31 A = [
32 =1 0 2 ; %% Arrak i s
33 0 =1 1 ; %% Caladan
34 =1 1 1 ; %% Chapterhouse
35 2 1 0 ; %% Giedi Prime
36 1 0 1 ; %% Ix
37 3 2 =1; %% Kaita in
38 1 1 1 ; %% Tl e i l a x
39 ] ;
40 %% Fedaykin Conscr ipt s Sardaukar
41
42 %% Set c on s t r a i n t s ”U” f o r a l l the p l ane t s
43 ctype = ”” ;
44 for i =1: length (b)
45 ctype = [ ctype ”U” ] ;
46 end
47
48 %% Set va r i ab l e type ”C” f o r a l l the troop types
49 vtype = ”” ;
50 for i =1: length ( c )
51 vtype = [ vtype ”C” ] ;

http://www.uwasa.fi/~tsottine/spicy_or/conscript.m
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52 end
53
54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
55 %% So lut i on with GLPK
56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57
58 [ x , z , e , xtra ] = glpk ( c ,A, b , [ ] , [ ] , ctype , vtype , =1) ;
59 u = xtra . r ed co s t s ;
60
61 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
62 %% Output : Reduced co s t s
63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64 u
65
66 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
67 %% Test output :
68 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
69 %%>> c on s c r i p t
70 %%u =
71 %%
72 %% 0
73 %% =7.5000
74 %% 0

What does this mean? Apparently, the solution is that the Atreides conscript influence
should be increased by 7.5 points (never mind the sign). Since the original efficiency was 1,
this means that the new atreides influence should be c2 = 1 + 7.5 = 8.5.

7.15 Exercise
Find the breaking point (7.13) for the Bene Gesserit Weirding Way training gain δ2 for the
Atreides conscripts as explained in Remark 7.11 by running the parameter δ2 with small
increments in a for loop.

Is the breaking point solution you found the same as in Solution 7.14? If yes, then why?
If not, then why?

7.16 Exercise
Recall the Muad’Dib Bakery Problem 5.1. In Solution 5.7 it turned out that Harkonnen cakes
are not produced at all. So, their price is too low. What would be the “correct” price for the
Harkonnen cakes so that it would make sense for the Muad’Dib bakery to make them?

Let us end this section, and the whole chapter, with a discussion on what and why the
reduced costs are.
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7.17 Remark (On Reduced Costs, What and Why)
� Reduced costs are related to the objective function coefficients ci . They are usually
denoted by ui .

� Reduced costs, like the shadow prices, are also related to the shadow problem, a.k.a.
the dual problem. We will later learn how.

� Reduced costs are also called opportunity costs. Indeed, suppose we are given the
forced opportunity (there are no problems — only opportunities) to produce one unit
of xi that we would not otherwise manufacture at all. This opportunity would cost us,
since our optimized objective would decrease to a suboptimal value. Indeed, we have
now one more constraint — the forced opportunity — in our optimization problem. So,
the optimal solution can only get worse. The decrease of the objective value is the
opportunity cost ui .
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Duality

In this chapter we consider LP’s rather formally, or theoretically, if you like. We start in the
first section “Standard Form, Dual Standard Form, and Slack Form” with a rather lengthy
study on how to present LP’s in different but equivalent forms. The actual duality between
LP’s is then given in the second section “Duality Theorems”.

Standard Form, Dual Standard Form, and Slack Form

An LP is in standard form if it is of the form

(8.1)
max z = c′x
s.t. Ax ≤ b

x ≥ 0
.

We have used, even assumed, this standard form many times previously. So, it seems that we
have restricted our considerations only to standard form LP’s and it could be the case that our
analysis is not valid for all LP’s. Fortunately, this is not the case. Indeed, any LP can be
written in a standard form.

In general, LP’s can take many different forms. Also, we have not even given a formal
definition of an LP. We continue not to do so. Instead, we proceed with problems and examples.

Let us start with a simple example.

8.2 Example (Simple Standard LP Transformation)
Consider the non-standard form LP

(8.3)

min z = 8x1 − 10x2 + 7x3 (I)
s.t. 9x1 + 5x2 − 3x3 ≥ 3 (II)

x1 + 6x3 ≤ 42 (III)
x1, x2, x3 ≥ 0 (IV)

Consider the objective (I) in (8.3). It is a minimization. But to minimize z is to maximize
−z . So, we can simply multiply the objective by −1, and our objective becomes

max −z = −8x1 + 10x2 − 7x3 (I’)
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Consider then the inequality (II) in (8.3). Multiply the inequality by −1, and you see that
(II) is the same as

−9x1 − 5x2 + 3x3 ≤ −3 (II’)

Finally, the lines (III) and (IV) look just fine for standard form purposes. Therefore we have
found out that the LP (8.3) is the same as the following LP:

(8.4)

max −z = −8x1 + 10x2 − 7x3 (I’)
s.t. −9x1 − 5x2 + 3x3 ≤ −3 (II’)

x1 + 6x3 ≤ 42 (III)
x1, x2, x3 ≥ 0 (IV)

.

8.5 Exercise (Standard and Non-Standard LP’s with GLPK)
Solve both the non-standard form LP (8.3) and the standard form LP (8.4) with glpk. Note
that someting will go wrong with glpk! To understand what, happens ask for the full outputs
[x opt, z opt, errnro, xtra]. You might also want to tune the workings of glpk by setting msglev

to the maximum and turn the presolver off.

Let us then consider an LP that is pretty far from a standard form.

8.6 Problem (Non-Standard LP)
Consider the LP

(8.7)

min z = 11x1 − 10x2 + 7x3 (I)
s.t. 9x1 + 5x2 − 3x3 ≥ 21 (II)

2 ≤ x1 + 6x3 ≤ 40 (III)
x1 − 4x2 + 8x3 = 50 (IV)

x1, x3 ≥ 0 (V)
x2 urs (VI)

The LP (8.7) is obviously not in standard form (8.1). Our task is to write it in standard form.

8.8 Remark (urs)
In (8.7) the final “constraint” (VI) is redundant: urs is short for “unrestricted in sign”. Since
the sign constraints are so typical, it is sometimes a good idea to emphasize when we don’t
have them.

To write an LP like the one in Problem 8.6 in standard form, one can follow Algorithm 8.10
given below. All the other parts of Algorithm 8.10 are probably quite obvious except Step 4
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where the urs (unrestricted in sign) variables are split into “restricted in sign” variables. The
next remark elaborates this point.

8.9 Remark (Positive and Negative Part)
Let x be any real number. We can always split x into its positive and negative part as

x = x+ − x−,

where both x+ and x− are positive (i.e. non-negative). Indeed, we can set

x+ = max(x, 0),

x− = max(−x, 0).

For example

42 = max(42, 0)−max(−42, 0)

= 42− 0,

−7 = max(−7, 0)−max(−(−7), 0)

= 0−max(7, 0)

= 0− 7.

8.10 Algorithm (LP Standard Form Algorithm)
Step 1 Change into maximization: if the objective is to maximize, do nothing. If the

objective is to minimize, change it to maximize by multiplying the objective by −1:

min z = c′x ; max −z = −c′x.

Step 2 Remove double inequalities: If there are both lower and upper bounds in a single
constraint, change that constraint into two constraints:

li ≤ Ai1x1 + · · ·+ Ainxn ≤ ui

;

{
li ≤ Ai1x1 + · · ·+ Ainxn

Ai1x1 + · · ·+ Ainxn ≤ ui
.

Note that and equality is actually a double inequality. So, transform

Ai1x1 + · · ·+ Ainxn = bi

= bi ≤ Ai1x1 + · · ·+ Ainxn ≤ bi

;

{
bi ≤ Ai1x1 + · · ·+ Ainxn

Ai1x1 + · · ·+ Ainxn ≤ bi
.

Step 3 Remove lower bounds: If there is a lower bound constraint li , change it to an
upper bound constraint by multiplying the corresponding inequality by −1:

li ≤ Ai1x1 + · · ·+ Ainxn ; −Ai1x1 − · · · − Ainxn ≤ −li.

Step 4 Impose sign constraints by splitting the decision variables: If the decision
variable xi is not restricted in sign to be positive (or is urs), then replace it everywhere
with xi = x+

i − x−
i where x+

i , x
−
i ≥ 0 are now restricted in sign to be positive.
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8.11 Solution (Non-Standard LP)
Let us transform the LP (8.7) of Problem 8.6 into a standard form LP by using Algorithm
8.10. So, we are dealing with the non-standard form LP

min z = 11x1 − 10x2 + 7x3 (I)
s.t. 9x1 + 5x2 − 3x3 ≥ 21 (II)

2 ≤ x1 + 6x3 ≤ 40 (III)
x1 − 4x2 + 8x3 = 50 (IV)

x1, x3 ≥ 0 (V)
x2 urs (VI)

We start with Step 1. Since our LP is not a maximization, we turn it into a maximization
by multiplying the objective row (I) by −1. Thus, our LP is now in the form

max −z = −11x1 + 10x2 − 7x3 (I’)
s.t. 9x1 + 5x2 − 3x3 ≥ 21 (II)

2 ≤ x1 + 6x3 ≤ 40 (III)
x1 − 4x2 + 8x3 = 50 (IV)

x1, x3 ≥ 0 (V)
x2 urs (VI)

In Step 2 we have to remove double inequalities. Constraint (III) is a double inequality,
and so is also constraint (IV). Rewriting the double inequalities as two inequalities each, we
obtain the following form or our LP:

max −z = −11x1 + 10x2 − 7x3 (I’)
s.t. 9x1 + 5x2 − 3x3 ≥ 21 (II)

x1 + 6x3 ≤ 40 (III.1’)
2 ≤ x1 + 6x3 (III.2’)

x1 − 4x2 + 8x3 ≤ 50 (IV.1’)
50 ≤ x1 − 4x2 + 8x3 (IV.2’)

x1, x3 ≥ 0 (V)
x2 urs (VI)

Putting the inequalities (upper and lower bounds) so that the variables are all on the right-
hand side, we obtain

max −z = −11x1 + 10x2 − 7x3 (I’)
s.t. 9x1 + 5x2 − 3x3 ≥ 21 (II)

x1 + 6x3 ≤ 40 (III.1’)
x1 + 6x3 ≥ 2 (III.2”)
x1 − 4x2 + 8x3 ≤ 50 (IV.1’)
x1 − 4x2 + 8x3 ≥ 50 (IV.2”)

x1, x3 ≥ 0 (V)
x2 urs (VI)

Step 2 is now finished.
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In Step 3 we have to remove lower bounds (≥) by multiplying inequalities by −1 when
needed. We need to do this for the inequalities (II), (III.2”) and (IV.2”). We obtain the LP

max −z = −11x1 + 10x2 − 7x3 (I’)
s.t. −9x1 − 5x2 + 3x3 ≤ −21 (II’)

x1 + 6x3 ≤ 40 (III.1’)
−x1 − 6x3 ≤ −2 (III.2”’)
x1 − 4x2 + 8x3 ≤ 50 (IV.1’)

−x1 + 4x2 − 8x3 ≤ −50 (IV.2”’)
x1, x3 ≥ 0 (V)

x2 urs (VI)

Finally, in Step 4 we need to impose sign constraints to all the decision variables. For x1

and x3 we already have sing constraints, but x2 is unrestricted in sign (urs). Therefore, to
get rid of the “anti-constraint” (VI) we need to replace x2 = x+

2 − x−
2 everywhere and add

the sign constrains x+
2 , x

−
2 ≥ 0. To make completely clear what happens, we do this in two

substeps. First substep is almost a “search and replace”. We obtain

max −z = −11x1 + 10(x+
2 − x−

2 ) − 7x3 (I’)
s.t. −9x1 − 5(x+

2 − x−
2 ) + 3x3 ≤ −21 (II’)

x1 + 6x3 ≤ 40 (III.1’)
−x1 − 6x3 ≤ −2 (III.2”’)
x1 − 4(x+

2 − x−
2 ) + 8x3 ≤ 50 (IV.1’)

−x1 + 4(x+
2 − x−

2 ) − 8x3 ≤ −50 (IV.2”’)
x1, x

+
2 , x

−
2 , x3 ≥ 0 (V’)

In the second substep we “open the parentheses”. This is the final step, and we obtain the
standard form LP

(8.12)

max −z = −11x1 + 10x+
2 − 10x−

2 − 7x3 (I”)
s.t. −9x1 − 5x+

2 + 5x−
2 + 3x3 ≤ −21 (II”)

x1 + 6x3 ≤ 40 (III.1”)
−x1 − 6x3 ≤ −2 (III.2””)
x1 − 4x+

2 + 4x−
2 + 8x3 ≤ 50 (IV.1”)

−x1 + 4x+
2 − 4x−

2 − 8x3 ≤ −50 (IV.2””)
x1, x

+
2 , x

−
2 , x3 ≥ 0 (V’)

Thus we have found the standard form (8.12) for the LP (8.7).

An LP is in dual standard form if it is of the form

(8.13)
min z = c′x
s.t. Ax ≥ b

x ≥ 0
.

Any LP can be transformed into a dual standard form. Indeed, it is not difficult to see
how to modify Algorithm 8.10 so that it gives the dual standard form.
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8.14 Remark (Primal Standard Form)
To compare with the dual standard from (8.13), the standard form (8.1) is sometimes called
the primal standard form.

Finally, let us consider the so-called slack forms, or slack & surplus forms for LP’s.
The reason behind these forms is that “inequalities are nasty – equalities are nice”, especially
for computers.

The idea of the slack forms is that by using auxiliary decision variables s+i for the constraints
i , we can write any upper bound inequality constraint

Ai1x1 + Ai2x2 + · · ·+ Ainxn ≤ bi

as an equality constraint

Ai1x1 + Ai2x2 + · · ·+ Ainxn + s+i = bi,

where s+i ≥ 0 is the slack in the constraint. Therefore s+i is a non-negative dummy decision
variable that we can choose. The inequality constraint becomes an equality constraint where
we can choose how much slack there is below the upper limit bi .

In the same way, any lower bound inequality

Ai1x1 + Ai2x2 + · · ·+ Ainxn ≥ bi

can be written as an equality

Ai1x1 + Ai2x2 + · · ·+ Ainxn − s−i = bi,

where s−i ≥ 0 is the surplus, or excess in the constraint. Thus s−i is a non-negative dummy
decision variable we can choose. This means we can choose how much will the bound bi will
be exceeded.

An LP is in a slack form if all of its constraints are equalities and all the decision variables
are restricted in sign to be non-negative. So, we only insist equality constraints and sign
constraints. In particular, a slack form can be either maximization or minimization. Any LP
can be written in a slack form. Indeed, this can be done by introducing for each inequality
constraint i a unique slack or surplus variable, s+i or s−i , as explained above. We do not give an
explicit algorithm here. We hope that the next example is enough to make the transformation
clear.

8.15 Example (Slack Form Transformation)
Consider the LP

min z = 8x1 − 8x2 + 7x3

s.t. 9x1 + 5x2 − 3x3 ≥ 14
x1 + 6x3 ≤ 42

x1, x2 ≥ 0
x3 urs

.



Chapter 8 Standard Form, Dual Standard Form, and Slack Form 31

We want to write this LP in a slack form. We need to impose the sign constraint to x3 and
to introduce surplus to the first constraint, and slack to the second constraint. Let us first
impose the sign constraint by splitting x3 as x3 = x+

3 − x−
3 . We obtain the LP

min z = 8x1 − 8x2 + 7x+
3 − 7x−

3

s.t. 9x1 + 5x2 − 3x−
3 + 3x−

3 ≥ 14
x1 + 6x+

3 − 6x−
3 ≤ 42

x1, x2, x
−
3 , x

+
3 ≥ 0

.

Then we add surplus s−1 to the first constraint and slack s+2 to the second constraint. We
obtain the slack form LP

min z = 8x1 − 8x2 + 7x+
3 − 7x−

3

s.t. 9x1 + 5x2 − 3x−
3 + 3x−

3 − s−1 = 14
x1 + 6x+

3 − 6x−
3 + s+2 = 42

x1, x2, x
−
3 , x

+
3 , s

−
1 , s

+
2 ≥ 0

.

8.16 Remark (Pure Slack Form)
It is possible to write any LP in the so-called pure slack form with only slack variables
si = s+i without the surplus variables s−i . Indeed, if we first transform the LP into a primal
standard form, then we have only upper bounds, and consequently no need for the surplus
variables. By using block matrix formalism this means that the primal standard form LP

max z = c′x
s.t. Ax ≤ b

x ≥ 0

can be written a the pure slack form as

max z =
[
c′ 0′] [ x

s

]

s.t.
[
A I

] [ x
s

]
= b

[
x
s

]
≥ 0

,

where I is the identity matrix.
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8.17 Exercise (Primal Standard Form, Dual Standard Form, and Slack Form)
Consider the LP

max z = 10x2 + 7x3

s.t. 4x1 + 5x2 − 3x3 ≥ 21
2 ≤ x1 + 6x3 ≤ 40

x1 − 4x2 + 8x3 = 50
x1, x3 ≥ 0

x2 urs

.

Express this LP in (i) primal standard form, (ii) dual standard form, and (iii) slack form.
Solve all these three different (but equivalent) forms with glpk.

8.18 Exercise (GLPK Standard Form)
If glpk is called with only three input arguments — c , A , and b — then it assumes that the
LP is in what it calls a “standard LP”:

(8.19)
min z = c′x
s.t. Ax = b

x ≥ 0
.

Transform the LP (8.7) of Problem 8.6 into this GLPK standard form and solve it by using
glpk in the form

1 [ x min , z min ] = glpk ( c , A, b)
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Duality Theorems

The dual of an LP is another LP that is constructed from the original (the primal) LP
according to the following rules:

� The objective is inversed: maximum in the primal LP becomes minimum in the dual LP,
and vice versa.

� Decision variables in the primal LP become constraints in the dual LP.

� Constraints in the primal LP become decision variables in the dual LP.

� Upper bounds are turned into lower bounds, and vice versa.

� Technology matrix is transposed.

� Sign constraints are kept.

More precisely, if the primal LP is given in the primal standard form

(8.20)
max z = c′x
s.t. Ax ≤ b

x ≥ 0
,

then its dual LP is in the dual standard from

(8.21)
min w = b′y
s.t. A′y ≥ c

y ≥ 0
.

8.22 Example (Dual Transformation)
Consider the LP

min z = 50x1 + 20x2 + 30x3

s.t. 2x1 + 3x2 + 4x3 ≥ 11
12x1 + 13x2 + 14x3 ≤ 111
x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0

The LP is not in standard form. So, before constructing its dual, we transform it into standard
form. This is not necessary. Sometimes we can be clever, and find the dual without first
transforming the primal into standard form. But we don’t feel clever right now. So, here is
the standard form:

max −z = −50x1 − 20x2 − 30x3

s.t. −2x1 − 3x2 − 4x3 ≤ −11
12x1 + 13x2 + 14x3 ≤ 111
x1 + x2 + x3 ≤ 1

−x1 − x2 − x3 ≤ −1
x1, x2, x3 ≥ 0

Now we are ready to present the dual:

min −w = −11y1 + 111y2 + y3 − y4
s.t. −2y1 + 12y2 + y3 − y4 ≥ −50

−3y1 + 13y2 + y3 − y4 ≥ −20
−4y1 + 14y2 + y3 − y4 ≥ −30

y1, y2, y3, y4 ≥ 0

.
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(We used variable −w in the dual because there was variable −z in the standard form primal).
Note now that the dual LP is in dual standard form: It is a minimization problem with only
inequalities of type ≥ . The original primal LP was also a minimization problem. So, it is
natural to express the dual LP as a maximization problem. Also, inequalities of type ≤ are
more natural to maximization problems than the opposite type inequalities ≥ . So, let us
transform the dual LP above into a maximization problem with ≤ type inequalities. In fact,
let us transform the dual LP into a standard form. We obtain

max w = 11y1 − 111y2 − y3 + y4
s.t. 2y1 − 12y2 − y3 + y4 ≤ 50

3y1 − 13y2 − y3 + y4 ≤ 20
4y1 − 14y2 − y3 + y4 ≤ 30

y1, y2, y3, y4 ≥ 0

.

8.23 Remark (Dual is Not Primal)
Note that the dual LP (8.21) is not the same problem as the primal LP (8.20). So, the LP
(8.21) is not the LP (8.20) written in a different, but equivalent, form. Nevertheless the primal
and the dual are very closely related, as explained in Theorem 8.27 later in this section.

8.24 Remark (Dual of Dual is Primal)
The duality transformation (8.20);(8.21) is convenient in the sense that its inverse is twice
itself. Indeed, suppose we have started with the LP (8.20) and we have now the LP (8.21).
In order to perform the dual transformation to the LP (8.21) we can first rewrite it in the
(primal) standard form by using Algorithm 8.10. So, we have the (dual) LP

min w = b′y
s.t. A′y ≥ c

y ≥ 0
.

By using Step 1 of Algorithm 8.10 we can write this LP equivalently as

max −w = −b′y
s.t. A′y ≥ c

y ≥ 0
.

Step 2 of Algorithm 8.10 is not needed. Step 3 gives us

max −w = −b′y
s.t. −A′y ≤ −c

y ≥ 0
.

Step 4 of Algorithm 8.10 is not needed. Indeed, we have a (primal) standard from. Now,
we can formally perform the dual transformation to this standard form. Since A′′ = A , we
obtain, by switching the roles of x and y , and w and z , that

min −z = −c′x
s.t. −Ax ≥ −b

x ≥ 0
.
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Now we should rewrite this LP in the (primal) standard from. This can be done by using
Algorithm 8.10 again. Only Step 1 and Step 3 are needed. We obtain

max z = c′x
s.t. Ax ≤ b

x ≥ 0
.

So, we are back to the LP (8.20) where we started with.

8.25 Exercise (Find the Dual)
Find the dual LP of the following LP:

(8.26)

min z = −5x1 +3x2 −x4 +3x6

s.t. −x2 +7x3 −2x5 −2x7 ≥ 13
x1 −2x3 +4x4 +7x7 ≤ 74

x1, x2, x3, x4, x5, x6, x7 ≥ 0

.

Note that it is extremely helpful, but not strictly necessary, to rewrite the LP (8.26) first in
the primal standard form.

In the following theorem we see how the primal LP and the dual LP solutions go nicely
hand-in-hand.

8.27 Theorem (Duality Theorem)

z∗primal = w∗
dual(8.28)

x∗
primal = λdual(8.29)

λprimal = y∗
dual(8.30)

uprimal = s−∗
dual(8.31)

s+∗
primal = udual.(8.32)

Every theorem needs a formal and rigorous proof. The proof of Theorem 8.27 is left for
the students who want to complete the course without the weekly exercises. In these notes we
just ask a reasonable argument for why Theorem 8.27 is true by using Problem 5.1 and it dual,
Problem 6.6, as an exercise.

8.33 Exercise (Muad’Dib Bakery–Sietch Tabr Duality)
Consider Problem 5.1 (Muad’Dib Bakery) and Problem 6.6 (Sietch Tabr Nutrient Diet). These
problems are in duality. Check that Duality Theorem 8.27 holds true with Problem 5.1 as the
primal LP and Problem 6.6 as the dual LP.
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8.34 Remark (Unboundedness and Infeasibility in Duality)
An LP can be unbounded (meaning that the optimal solution for maximization is, in principle,
+∞ and for minimization, in principle, −∞) or infeasible (meaning there are no solutions at
all). The duality theorem tells us that

� If the primal LP is unbounded, then the dual LP is infeasible.

� If the dual LP is unbounded, then the primal LP is infeasible.

You should be careful about the logic here! It is possible for both the dual LP and the primal
LP to be infeasible at the same time.

8.35 Exercise (Dual Jihad)
We have learned that every LP has a dual LP. Construct the dual LP of Muad’Dib’s Jihad
LP of Problem 7.1. Solve this dual LP, and compare the solution with Solution 7.4. Try to
interpret the dual LP somehow, if possible.
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Transportation Problems

“If the only tool you have is a hammer, you will start treating all your problems like a nail.”
Fair enough, but the LP way of thinking is a pretty good hammer. In this chapter we will
treat transportation problems as LP’s. There are also specialized algorithms for solving these
problems that work much faster than the general LP algorithms, but of course they work only
in the special type of problems.

In a transportation problem one has to ship products from ports (or sources) to markets
(or destinations) so that the total shipping cost is as small as possible while still meeting the
demands of each market (destination). The basic ingredients (the data) of a transportation
problem are

� Supplies of the sources (or ports).

� Demands of the destinations (or markets).

� Shipping costs (or route costs) per unit from sources to destinations.

More formally, in a transportation problem we have

� n sources (i = 1, . . . , n) each having supply denoted by si . Thus the supplies are given
by a vector s .

� m destinations (j = 1, . . . ,m) each having demand denoted by dj . Thus the demands
are given by a vector d .

� Shipping costs per unit (i = 1, . . . , n , j = 1, . . . ,m) from the source i to the destination
j denoted by Cij . Thus the shipping costs are given by a matrix C .

To solve a transportation problem as an LP we must first express it in a LP form. In practice
this means figuring out the typical LP parameters c,A,b from the transportation parameters
s,d,C . Finding c and b are not too difficult. Finding A is, unfortunately, rather complicated.
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Primal Transportation Problem

We start with a problem description that is given in a pretty annoying form. (It was probably
written by the Imperial Legal Department.)

9.1 Problem (Spice Must Flow with Heighliners)
The Spacing Guild transports Spice Melange from Arrakis and Tleilax with its heighliners.
The spice is transported to Caladan, Kaitain, and Giedi Prime. In Arrakis there are 15
megatons (15 Mton) of spice to be transported. In Tleilax there are 20 megatons (20 Mton)
to be transported. The Spacing Guild has promised to transport 17 megatons (17 Mton) to
Caladan, 8 megatons (8 Mton) to Kaitain, and 10 megatons (10 Mton) to Giedi Prime. The
shipping costs are 3 billion solaris (3 bsol) per megaton from Arrakis to Caladan, 4 billion
solaris (4 bsol) per megaton from Arrakis to Kaitain, and 6 billion solaris (6 bsol) per megaton
from Arrakis to Giedi Prime. The shipping costs from Tleilax are 5 billion solaris (6 bsol) per
megaton to Caladan, 7 billion solaris (7 bsol) per megaton to Kaitain, and 5 billion solaris
(5 bsol) per megaton to Giedi Prime. The Spacing guild want to minimize its transportation
costs. How should the Spacing Guild transport the spice from Tleilax and Arrakis to Giedi
Prime, Kaitain and Caladan?

Problem 9.1 above was given in an annoying form in purpose. It had a lot of stuff that was
simply not relevant. Also, the data was hidden inside the non-essential babbling.

One natural way to represent the data of Problem 9.1 is to realize that we are working with
a flow network. Thus, the following representation is natural:

3 bsol

4 bsol

6 bsol

5 bsol

7 bsol

5 bsol

15 Mton

Arrakis

20 Mton

Tleilax

17 Mton

Caladan

8 Mton

Kaitain

10 Mton

Giedi Prime
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Another natural way of representing the data in Problem 9.1 is the following tabular form:

Heighliner Spice Transportation
Source/Destination Caladan Kaitain Giedi Prime Supply
Arrakis 3 bsol 4 bsol 6 bsol 15 Mton
Tleilax 5 bsol 7 bsol 5 bsol 20 Mton
Demand 17 Mton 8 Mton 10 Mton

Problem 9.1 (Spicy Must Flow with Heighliners) is a typical transportation problem,
and it, as all transportation problems, can be modeled as an LP. Let us follow Algorithm 5.2
to see how to do this:

We start with a clever trick. We set

Xij = Mtons of Spice shipped from source i to destination j.

These are the decision variables for Problem 9.1, or for any transportation problem for that
matter, save the actual product to be shipped. We can enumerate the sources and destinations
any way we want. We choose to use the numeration corresponding to the tabular form, or read
the graph from the bottom up. Thus, we have 2× 3 = 6 decision variables:

X11 = Mtons of Spice shipped from Arrakis to Caladan,

X12 = Mtons of Spice shipped from Arrakis to Kaitain,

X13 = Mtons of Spice shipped from Arrakis to Giedi Prime,

X21 = Mtons of Spice shipped from Tleilax to Caladan,

X22 = Mtons of Spice shipped from Tleilax to Kaitain,

X23 = Mtons of Spice shipped from Tleilax to Giedi Prime.

9.2 Remark (Cleverness Comes with a Price)
Note the clever use of indexes here: we consider the decision variables in a matrix form. There
is a small price we have to pay for this cleverness later, however.

The objective of any transportation problem is to minimize the total shipping cost. So,
the objective is (in general form)

min z =
∑
i

∑
j

CijXij

where

Cij = the cost of shipping one Mton of Spice from source i to destination j.

Since

C =

[
3 4 6
5 7 5

]
,



Chapter 9 Primal Transportation Problem 40

the objective for the particular case of Problem 9.1 is

min z = 3X11 + 4X12 + 6X13 + 5X21 + 7X22 + 5X23.

What about the constraints then?

There are the supply and demand constraints.

Each source has only so many Mtons of Spice it can supply. So, if si is the supply limit for
source i then we have the supply constraints (in general form)∑

j

Xij ≤ si for all sources i.

(Please, do not confuse si with a slack variable here. We are sorry for the clashing notation!)
Since there are two sources, we have two supply constraints. Plugging in the numbers, we
obtain

X11 +X12 +X13 ≤ 15,

X21 +X22 +X23 ≤ 20.

Each destination also demands so many Mtons of Spice, and according to the problem we
are committed to meet these demands. So, if dj is the demand for Spice in the destination j
then we have the demand constraints (in general form)∑

i

Xij ≥ dj for all destinations j.

In Problem 9.1 we have 3 destinations with demands 17 Mton, 8 Mton and 10 Mton. Thus, we
have the particular demand constraints

X11 +X21 ≥ 17,

X12 +X22 ≥ 8,

X13 +X23 ≥ 10.

Finally, there are of course the sign constraints (in general form)

Xij ≥ 0 for all sources i and destinations j.

Indeed, it would be pretty hard to transport negative amounts of Spice. So, in the particular
case of Problem 9.1 we have the six sign constraints

X11, X12, X13, X21, X22, X23 ≥ 0.

Finally, here is the LP model for Problem 9.1:

(9.3)

min z = 3X11 +4X12 +6X13 +5X21 +7X22 +5X23

s.t. X11 +X12 +X13 ≤ 15
X21 +X22 +X23 ≤ 20

X11 +X21 ≥ 17
X12 +X22 ≥ 8

X13 +X23 ≥ 10
X11, X12, X13, X21, X22, x23 ≥ 0

.
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Note how we have used columns to put the decision variables Xij in their right place by
“unfolding” the matrix X = [Xij]i=1,2;j=1,2,3 into a vector.

Next we solve the LP formulation (9.3) of Problem 9.1 by using glpk in a quick and dirty
way.

9.4 Solution (Spice Must Flow with Heighliners, Quick and Dirty)
The following scrpit m-file heighliner qd .m, which can be downloaded from
http://lipas.uwasa.fi/∼tsottine/spicy or/heighliner qd.m solves Problem 9.1 in a quick
and dirty way.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% Spice must Flow with He igh l ine r s , quick and d i r t y s o l u t i o n
4 %% (Problem 9 .1 from Linear Programming with Spice )
5 %%
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 %% Data
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11
12 s = [15 2 0 ] ’ ; %% Supp l i e s in Mtons .
13 d = [17 8 1 0 ] ’ ; %% Demands in Mtons .
14 C = [ %% Route c o s t s b so l per Mton .
15 3 4 6 ;
16 5 7 5
17 ] ;
18
19 c = C’ ( : ) ; %% Unfold matrix C in to a vec to r c .
20 A = [
21 1 1 1 0 0 0 ; %% Supply c on s t r a i n t f o r source 1 .
22 0 0 0 1 1 1 ; %% Supply c on s t r a i n t f o r source 2 .
23 1 0 0 1 0 0 ; %% Demand con s t r a i n t f o r d e s t i n a t i on 1 .
24 0 1 0 0 1 0 ; %% Demand con s t r a i n t f o r d e s t i n a t i on 2 .
25 0 0 1 0 0 1 ; %% Demand con s t r a i n t f o r d e s t i n a t i on 3 .
26 ] ;
27 b = [ s ; d ] ; %% Upper and lower bounds .
28
29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30 %% Solve with glpk , reshape the s o l u t i o n and pr in t out .
31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
32
33 [X, co s t ] = glpk ( c , A, b , [ ] , [ ] , ”UULLL” , ”CCCCCC” ) ;
34 X = reshape (X, 3 , 2 ) ’ %% Reshape and pr in t out .
35 co s t %% Print out .
36
37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38 %% Test r e s u l t :
39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40 %%>> he i gh l i n e r qd
41 %%X =
42 %%
43 %% 7 8 0
44 %% 10 0 10
45 %%

http://lipas.uwasa.fi/~tsottine/spicy_or/heighliner_qd.m
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46 %%cos t = 153

Let us explain this quick and dirty solution a little bit. Lines 1–10 are comments for the
human reader. Nothing new there. Lines 12–17 set the transportation problem data. This
should be clear also. The line 19 is something new. This is where we pay the price of having
our transportation costs in a matrix form. What happens in the line 19 is that we unfold the
matrix C into a vector by glueing its rows one after each other. This unfolding would happen
with the construct C(:). Unfortunately this works the “wrong way around”: C(:) would work
comlumn-wise and we want it to work row-wise. The obvious solution is to transpose the
original matrix and the apply the unfolding. This is precisely what line the 19 does. The most
complicated and tedious part of the script is the lines 22–26 where we build the technology
matrix A. The first 2 rows of matrix A correspond to the supply side constraints. Compare
this with the LP (9.3) and the “≤” constraints there. Similarly, the last 3 rows of the matrix
A correspond to the demand side constraints. Compare this with the LP (9.3) and the “≥”
constraints there. The LP bounds b should be obvious from the LP formulation (9.3): first we
have the supply constraints s and then we have the demand constraints d. The beef-line 33
should be clear by now. Finally, in the line 34 we reshape the vector X into a matrix X. This
is the price we have to pay for our cleverness of having the decision variables as a matrix. The
reader is strongly recommended to type help reshape on GUN Octave command prompt and
run some examples to understand what this reshaping means.

Finally, let consider the solution. The minimal shipping cost is 153 bsol and the optimal
shipping schedule is

X =

[
7 8 0
10 0 10

]
meaning that, for example, X11 = 7 is the Mtons of Spice transported from Arrakis to Caladan.
To make the meaning of X completely clear, let us give the optimal transportation schedule
in a tabular form with the names attached:

Heighliner Spice Transportation
(Optimal schedule)

Source/Destination Caladan Kaitain Giedi Prime Supply
Arrakis 3 bsol (7 Mton) 4 bsol (8 Mton) 6 bsol (0 Mton) 15 Mton
Tleilax 5 bsol (10 Mton) 7 bsol (0 Mton) 5 bsol (10 Mton) 20 Mton
Demand 17 Mton 8 Mton 10 Mton

9.5 Exercise (Excess Spice)
Problem 9.1 was balanced: the total spice supply was the same as the total spice demand.
Suppose now that there are 22 Mton of spice in Arrakis. So, there is 7 Mton excess supply.
What is the optimal transportation schedule now? What happens to the excess spice?



Chapter 9 Primal Transportation Problem 43

9.6 Exercise (Arrakis–Kaitain Blockade)
Consider Problem 9.1 of transporting spice. Suppose the route from Arrakis to Kaitain is
blocked. What is the new optimal transportation schedule?

Hint: Make the transportation cost from Arrakis to Kaitain so big that it will not be used
in the optimal solution. This is what is typically called the big-M trick.

Finally, let us criticize the quick and dirty solution 9.4. What was so quick and dirty there?
Obviously the fact that the solution was ad hoc. It only works for the special problem. It would
be nice to have a function, let us call it transsolver , that takes the transportation data s,d,C
as its arguments and returns the optimal schedule and its associated cost.

Here is the function transsolver . You can, and indeed should, download it from
http://lipas.uwasa.fi/∼tsottine/spicy or/transsolver.m. You can also use it to solve the
exercises.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %% Function [ schedule , co s t ] = t r an s s o l v e r ( s , d , C) s o l v e s the t r an spo r t a t i on
3 %% problem
4 %%
5 %% ===== =====

6 %% \ \
7 %% min > > C( i , j ) *X( i , j )
8 %% / /
9 %% ===== =====

10 %% i j
11 %%
12 %% =====

13 %% \
14 %% s . t . > X( i , j ) <= s ( i ) f o r a l l por t s i
15 %% /
16 %% =====

17 %% j
18 %%
19 %% =====

20 %% \
21 %% > X( i , j ) >= d( j ) f o r a l l markets j
22 %% /
23 %% =====

24 %% i
25 %%
26 %% Input :
27 %%
28 %% s , d , C
29 %% Supply vector , demand vector , and co s t matrix .
30 %%
31 %% Output :
32 %%
33 %% schedule , co s t
34 %% The optimal schedu le and the a s s o c i a t ed minimal t r an spo r t a t i on co s t .
35 %%
36 %% See a l s o : g lpk .
37 function [ schedule , co s t ] = t r an s s o l v e r ( s , d , C)
38 %% Some short=hands .

http://lipas.uwasa.fi/~tsottine/spicy_or/transsolver.m
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39 m1 = length ( s ) ; %% Number o f s ou r c e s .
40 m2 = length (d) ; %% Number o f d e s t i n a t i o n s .
41 n = m1*m2; %% Number o f d e c i s i o n s .
42
43 %% Build the technology ( f low=c on s t r a i n t ) matrix A
44 A = zeros (m1+m2, n) ; %% I n i t i a l i z a t i o n .
45 for i = 1 :m1
46 A( i , ( 1 :m2)+( i =1)*m2) = ones (1 ,m2) ; %% Supply s i d e .
47 A( ( 1 :m2)+m1, ( 1 :m2)+( i =1)*m2) = eye (m2) ; %% Demand s i d e .
48 end
49
50 %% Set the sense o f the bounds ( upper f o r sources , lower f o r d e s t i n a t i o n s ) .
51 ctype = ”” ;
52 for i =1:m1
53 ctype = [ ctype ”U” ] ;
54 end
55 for i =1:m2
56 ctype = [ ctype ”L” ] ;
57 end
58
59 %% Set the type o f each d e c i s i o n va r i ab l e as cont inuous .
60 vtype = ”” ;
61 for i =1:n
62 vtype = [ vtype ”C” ] ;
63 end
64
65 %% Solve the system by c a l l i n g glpk .
66 [ schedule , co s t ] = glpk (C ’ ( : ) , A, [ s ; d ] , [ ] , [ ] , ctype , vtype ) ;
67
68 %% Reshape the schedu le vec to r to a matrix .
69 schedu le = reshape ( schedule , m2, m1) ’ ;
70 end

The workings of transsolver should be relatively obvious, except maybe for the lines 44–48, where
the technology matrix A is constructed. To understand what is going on there, the reader is
invited to compare this with the quick and dirty solution 9.4 and try to see how this generalizes
what was going on there.

Let us then solve Problem 9.1 by using transsolver to see how convenient it is.

9.7 Solution (Spice Must Flow with Heighliners)
Here is the script m-file heighliner .m that solves Problem 9.1 by using our
hand-made function transsolver . You can download the script file from
http://lipas.uwasa.fi/∼tsottine/spicy or/heighliner.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% Spice must Flow with He igh l ine r s , s o l u t i o n with t r a n s s o l v e r .
4 %% (Problem 9 .1 from Linear Programming with Spice )
5 %%
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 %% Data
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11

http://lipas.uwasa.fi/~tsottine/spicy_or/heighliner.m
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12 s = [15 2 0 ] ’ ; %% Supp l i e s in Mtons .
13 d = [17 8 1 0 ] ’ ; %% Demands in Mtons .
14 C = [ %% Route c o s t s b so l per Mton .
15 3 4 6 ;
16 5 7 5
17 ] ;
18
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 %% Solve with t r a n s s o l v e r and pr in t out the s o l u t i o n .
21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22
23 [X, co s t ] = t r an s s o l v e r ( s , d ,C)
24
25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26 %% Test r e s u l t :
27 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28 %%>> h e i g h l i n e r
29 %%X =
30 %%
31 %% 7 8 0
32 %% 10 0 10
33 %%
34 %%cos t = 153

Dual Transportation Problem

Every LP has a dual LP, this someting we know. Transportation problem can be modeled as
an LP. This is also something we know. That is actually why we called (in the section title) the
transportation problem as the “primal” transportation problem. But what is exactly a dual
transportation problem?

Recall that in the dual problem constraints become variables and variables be come con-
straints. Also the sense, maximization or minimization, is reversed. Since the primal trans-
portation problem was a minimization, we expect the dual transportation problem to be a
maximization. Also, the constraints in the primal were twofold: supplies and demands. So,
we expect to have in the dual two kinds of decision variables: those related to supplies and
those related to demands. Let us denote by u (sorry for the clashing notation with reduced
costs!) the dual decision variables associated with the supply constraints, and let us denote
by v the dual decision variables associated with the demand constraints. The constraints in
the dual transportation problem will be associated with the objective function of the primal
transportation problem. So, we expect to have constraints for all Cij for different i and j .

Let us then try to guess what the dual transportation problem is. Let us first write the
primal transportation problem in a form that resembles a dual standard form (since it is a
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minimization problem). The normal LP formulation for the primal transportation problem is

min z =
∑
i

∑
j

CijXij

s.t.
∑
j

Xij ≤ si for all i,∑
i

Xij ≥ dj for all j,

Xij ≥ 0 for all i and j.

This is pretty close to a dual standard form. Indeed, if we do not mind the matrix formulation,
we can rewrite the primal transportation problem as

min z =
∑
i

∑
j

CijXij

s.t. −
∑
j

Xij ≥ −si for all i,∑
i

Xij ≥ dj for all j,

Xij ≥ 0 for all i and j.

This is a dual standard from (although it might not be completely obvious). Therefore its dual
(remember that the dual of a dual is primal) takes the following primal standard form

maxw = −
∑
i

uisi +
∑
j

vjdj

s.t. vj − ui ≤ Cij for all i and j,(9.8)

ui, vj ≥ 0 for all i and j.

Now we know, formally, what the dual transportation problem is. It is the LP (9.8) above.
But what does it mean? The next problem gives us one interpretation.

9.9 Problem (Spice Must Flow with No-Ships)
The Ixians have invented the no-ships that do not need the Spacing Guild Navigators. Thus
they can compete in providing interstellar travel. The Ixians want to make an offer to take
care of the spice flow of Problem 9.1. They offer to buy from the sources with unit prices ui

and sell in the destinations with unit prices vj . What should be the actual offer so that the
sources and destinations will abandon the Spacing Guild and turn their transportation over
to the Ixians.

9.10 Remark (Heighliner–No-Ship Duality)
To understand the different points of view in Problem 9.1 and Problem 9.9 think that the
Spacing Guild transportation costs are public information while the Ixian transportation costs
are secret. The sources and destinations have already agreed on transporting the spice and are
now only interested in the cost of transportation. They do not care how the transportation is
handled.
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Problem 9.9 is the dual of Problem 9.1. Indeed, the Ixians want to take over the business
of transporting spice. If ui is the offer per unit to buy from the source i and vj is the offer per
unit to sell for the destination j , then the total revenue the Ixians want to maximize is

maxw = −
∑
i

uisi +
∑
j

vjdj.

Now, any source i can use the Spacing Guild to transport its spice to any destination j . The
Spacing Guild price is Cij per Mton of spice. Now the source–destination pair can consider
whether to use the Ixian no-ships or the Spacing Guild heighliners. If the Ixian offer is such
that

vj − ui ≤ Cij,

then moving spice with the Ixian no-ships is cheaper than using the Spacing Guild heighliners.
Consequently the Ixian can take over the transportation business.

9.11 Solution (Spice Must Flow with No-Ships, Quick and Dirty)
The following script m-file heighliner qd .m, which can be downloaded by using the link
http://lipas.uwasa.fi/∼tsottine/spicy or/noship qd.m, solves Problem 9.9 in a quick and dirty
way.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% Spice must Flow with No=Ships , quick and d i r t y s o l u t i o n
4 %% (Problem 9 .9 from Linear Programming with Spice )
5 %%
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 %% Data
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11
12 s = [15 2 0 ] ’ ; %% Supp l i e s in Mtons .
13 d = [17 8 1 0 ] ’ ; %% Demands in Mtons .
14 C = [ %% Route c o s t s b so l per Mton .
15 3 4 6 ;
16 5 7 5
17 ] ;
18
19 c = [= s ; d ] ; %% Buy with =u , s e l l with v .
20 A = [
21 =1 0 1 0 0 ; %% v1=u1
22 =1 0 0 1 0 ; %% v2=u1
23 =1 0 0 0 1 ; %% v3=u1
24 0 =1 1 0 0 ; %% v1=u2
25 0 =1 0 1 0 ; %% v2=u2
26 0 =1 0 0 1 %% v3=u2
27 ] ;
28 %% u1 u2 v1 v2 v3
29
30 %% Dirty but c l e a r . Compare with the rows o f A above .
31 b = [
32 C(1 , 1 ) ;

http://lipas.uwasa.fi/~tsottine/spicy_or/noship_qd.m
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33 C(1 , 2 ) ;
34 C(1 , 3 ) ;
35 C(2 , 1 ) ;
36 C(2 , 2 ) ;
37 C(2 , 3 )
38 ] ;
39
40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41 %% Solve with glpk , s p l i t the so lu t i on , and pr in t out .
42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
43
44 [ uv , co s t ] = glpk ( c , A, b , [ ] , [ ] , ”UUUUUU” , ”CCCCC” , =1) ;
45 u = uv ( 1 : 2 )
46 v = uv ( 3 : 5 )
47 co s t
48
49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
50 %% Test r e s u l t :
51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
52 %%>> noship qd
53 %%u =
54 %%
55 %% 2
56 %% 0
57 %%
58 %%v =
59 %%
60 %% 5
61 %% 6
62 %% 5
63 %%
64 %% cos t = 153

There is really nothing new in this code that we have not yet seen. So, further explanations
are probably not needed. Also, it should be clear why this code is quick and dirty: it only
works for this very specific case.

As for the solution, the prices per Mton of spice offered for the sources (to buy) and to
the destinations (to sell) are

Arrakis Buy with 2 bsol per Mton.

Tleilax Transport for free, but pay nothing.

Caladan Sell with 5 bsol per Mton.

Kaitain Sell with 6 bsol per Mton.

Giedi Prime Sell with 5 bsol per Mton.

With these prices, the Ixians get the revenue of 153 bsol, which just happens to be the same
as the optimal shipping costs for the Spacing Guild. Of course, this is no coincidence. Also,
it is quite curious that Tleilax should give its spice away for transportation for free!
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9.12 Exercise (Spice Must Flow with No-Ships)
Solution 9.11 works only with the very special case in question. Make a GNU Octave function
dualtranssolver that works like the function transsolver , but solves dual transportation problems.
Solve Problem 9.9 by using dualtranssolver.

Hint: The easiest way to code the dualtranssolver is to extend transsolver to solve both the
primal and the dual problem.

9.13 Exercise (More Spice)
More spice was found in Arrakis: there is now 23 Mtons there. Because of this excess supply,
the planet Chapterhouse was promised 8 Mtons of spice. Transportation costs from Arrakis
and Tleilax were negotiated with the Spacing Guild. The result is stated in the following
transportation table:

Heighliner Spice Transportation
Source/Destination Caladan Kaitain Giedi Prime Chapterhouse Supply
Arrakis 3 bsol 4 bsol 6 bsol 3 bsol 23 Mton
Tleilax 5 bsol 7 bsol 5 bsol 2 bsol 20 Mton
Demand 17 Mton 8 Mton 10 Mton 8 Mton

Solve the optimal transportation schedule for the Spacing Guild. Also, solve the optimal Ixian
counteroffer. (See Problem 9.1 and Problem 9.9 for reference).
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More Transportation Problems

In this chapter we continue to study transportation problems. In the first section we study a
generalization of a transportation problem called the transshipment problem. In the second
section we consider a (almost) special case of a transportation problem called the assignment
problem.

Again it should be noted that we use LP as a hammer, and everything is a nail to us.
There are other, more efficient, ways of solving the transshipment problems and the assign-
ment problems than the LP formulation. Indeed, for the assignment problems there is a very
efficient and elegant algorithm called the Hungarian algortihm. Readers interested in the
Hungarian algorithm can just google for it, or check the old ORMS1020 notes (page 147) here:
www.uwasa.fi/∼tsottine/or with octave/or with octave.pdf

We will not consider dual transshipment or dual assignment problems. It is left for the
readers’ curiosity to find out what they are.

Transshipment Problem

In a transshipment problem one has to ship goods from sources to destinations as in a trans-
portation problem, but in addition to the sources and the destinations there are transshipment
points at one’s disposal. So, one can ship goods directly from sources to destinations, or one
can use transshipment points in the shipping.

We will consider only the case of one transshipment point. The case of multiple transship-
ment points is similar, but messy, especially if transportation between transshipment points is
allowed.

At first sight the transshipment problems are network problems. At least, they seem to
be much more complicated than transportation problems. It turns out, however, that we
can express transshipment problems as transportation problems. So the generalization from
transportation problems to transshipment problems is in theory no generalization at all. In
practice, it can be tedious at times.

Our key problem in this section is the transportation problem 9.1 with an added transship-
ment point.

http://lipas.uwasa.fi/~tsottine/or_with_octave/or_with_octave.pdf
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10.1 Problem (Spice with Folded Space)
The Spacing Guild transports Spice Melange from Arrakis and Tleilax with its heighliners.
The spice is transported to Caladan, Kaitain, and Giedi Prime; as explained in Problem 9.1.

The Spacing Guild has built a secret warehouse in the folded space. The Folded Space
warehouse has capacity of 3 Mton. The Spacing Guild can now transport the spice directly or
it can use its Folded Space warehouse as a transshipment point. The demands, supplies, and
route costs are given in the graph below.

What is the optimal transportation schedule for the Spacing Guild?

3 bsol

4 bsol

6 bsol

5 bsol

7 bsol

5 bsol

1 bsol

2 bsol

2 bsol

3 bsol

2 bsol

15 Mton

Arrakis

20 Mton

Tleilax

3 Mton

Folded Space

17 Mton

Caladan

8 Mton

Kaitain

10 Mton

Giedi Prime

The general idea of modeling transshipment problems as transportation problems is to
understand that each transshipment point is both a source and a destination. So, each
transshipment point has two duplicates: one on the source side and one on the destination
side.

The costs for shipping to (destination duplicate) and from (source duplicate) a transship-
ment point are given in the problem.

The cost of shipping from the source duplicate to the destination duplicate is obviously zero.
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The only remaining question is to figure out what are are the supplies for transshipment
points (for their supply side duplicates), and what are the demands of for the transshipment
points (for their demand side duplicates). It is maybe a bit unintuitive, but both the demand
and the supply for each transshipment point is its capacity. If the capacity of a
transshipment point is unlimited, then both the supply and demand for the transshipment
point can be taken as its total potential supply.

Let us explain a little bit why both the supply and demand for a transshipment point is
its capacity. Suppose that the transshipment point is not used at all. Then it will satisfy
its supply and demand itself, and this will cost nothing. Suppose then that some amount of
goods are sent to the (destination duplicate) transshipment point. If this outside supply does
not exceed the capacity of the transshipment point, then the remaining demand is provided
from the supply side duplicate of the transshipment point. If the outside supply exceeds the
transshipment point’s capacity, then the remaining demand from the supply side duplicate
from the transshipment point would be negative. This would violate the sign constraints of
the transportation problem. I hope you get the picture. If not, please draw it. I mean it!
Please redraw the picture above by duplicating the yellow circle to the source side (left) and
the destination side (right), and fill in the supplies, demands, and the route costs.

Here is the transportation formulation of the transshipment Problem 10.1:

Transshipment with Folded Space
Source/Destination Caladan Kaitain Giedi Prime Folded Space Supply
Arrakis 3 bsol 4 bsol 6 bsol 1 bsol 15 Mton
Tleilax 5 bsol 7 bsol 5 bsol 2 bsol 20 Mton
Folded Space 2 bsol 3 bsol 2 bsol 0 bsol 3 Mton
Demand 17 Mton 8 Mton 10 Mton 3 Mton

10.2 Solution (Spice with Folded Space)
We solve Problem 10.1 by modeling it as a transportation problem as figured out
in the table above, and then use the home-made function transsolver . Below is
the script m-file foldedspace.m that solves the problem. It can be downloaded from
http://lipas.uwasa.fi/∼tsottine/spicy or/foldedspace.m.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% Folded Space , s o l u t i o n with t r a n s s o l v e r .
4 %% (Problem 10 .1 from Linear Programming with Spice )
5 %%
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 %% Data
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11
12 %% Or ig ina l data without Folded Space warehouse
13 s = [15 2 0 ] ’ ; %% Supp l i e s in Mtons .
14 d = [17 8 1 0 ] ’ ; %% Demands in Mtons .
15 C = [ %% Route c o s t s b so l per Mton .
16 3 4 6 ;
17 5 7 5
18 ] ;

http://lipas.uwasa.fi/~tsottine/spicy_or/foldedspace.m
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19
20 %% Inc l u s i on o f Folded Space warehouse
21 s = [ s ; 3 ] ; %% Folded Space supply dup l i c a t e capac i ty .
22 d = [ d ; 3 ] ; %% Folded Space demand dup l i c a t e capac i ty .
23 C = [C [ 1 ; 2 ] ] ; %% Route c o s t s i n to Folded Space .
24 C = [C; [ 2 3 2 0 ] ] ; %% Route c o s t s out o f Folded Space .
25
26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27 %% Solve with t r a n s s o l v e r and pr in t out the s o l u t i o n .
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29
30 [X, co s t ] = t r an s s o l v e r ( s , d ,C)
31
32 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33 %% Test r e s u l t :
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %%>> f o l d ed space
36 %%X =
37 %%
38 %% 10 5 0 0
39 %% 7 0 10 3
40 %% 0 3 0 0
41 %%
42 %%cos t = 150

The workings of foldedspace.m should be quite clear at this point of readers’ education. The
only new thing here is that we decided ot emphasize the role of the Folded Space warehouse
by first declaring the data without the warehouse in the lines 13–18 and then add the data
related to the warehouse in the lines 21–24. Indeed, in the lines 21–22 both the supply and
demand vectors are added on component: the Folded Space capacity. In the line 23, we add
one column to the cost matrix giving the costs to the warehouse. In the line 24, twe add one
row to he cost matrix giving the costs out of the Folded Space warehouse.

The solution is listed in the Test result section. The optimal transshipment schelude is X

and the optimal transshipment cost is cost. For the readers’ convenience we show below the
optimal transshipment schedule with the problem data. (We have suppressed the units for
marginal reasons.)

Transshipment with Folded Space
(Optimal Transshipment Schedule)

Source/Destination Caladan Kaitain Giedi Prime Folded Space Supply
Arrakis 3 (10) 4 (5) 6 (0) 1 (0) 15
Tleilax 5 (7) 7 (0) 5 (10) 2 (3) 20
Folded Space 2 (0) 3 (3) 2 (0) 0 (0) 3
Demand 17 8 10 3

In particular, we can see that the Folded Space warehouse is used in full capacity by the source
Tleilax and all the spice in the warehouse is transported to Kaitain. The total price is 150
bsol. So, the warehouse decreased the total shipping cost by 153 − 150 = 3 bsol (compare
with Problem 9.1 and its Solution 9.7).
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10.3 Exercise (Folded Space with Unlimited Capacity)
Consider Problem 10.1. The Spacing Guild is thinking of expanding the Folded Space ware-
house to have unlimited capacity. How much should this improvement cost at most?

10.4 Exercise (transshipsolver)
Write a GNU Octave function transshipsolver that returns an optimal transshipment schedule
and the optimal transshipment cost for a general transshipment problem with one trans-
shipment point. The input parameters of the fuction transshipsolver should be s ,d,C as in the
associated transportation problem, and cap for the capacity of the transshipment point, Cin

for the transportation costs into the transshipment point and Cout for the transportation costs
out of the transshipment point. Test with Problem 10.1 that your function works.

Hint: A good starting point is to modify the script m-file foldedspace.m and to use the
function transsolver .
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Assignment Problem

In this section we consider assignment problems that are — although it may not seem so at
first sight — special cases of transportation problems. In an assignment problem one has to
assign each worker to each task (or vice versa) in a most efficient way.

Problem 10.5 below is a typical assignment problem.

10.5 Problem (Ghola Production)
Tleilaxu Master Scytale needs to build 4 different types of Gholas in 4 different types of Axlotl
tanks. Each tank can build each type of gholas, except tank 1, that can only produce gholas
of types 1–3. The Axlotl tanks have different setup times for different gholas given in the table
below:

Task
Worker Ghola 1 Ghola 2 Ghola 3 Ghola 4
Tank 1 14 5 8 −
Tank 2 2 12 6 5
Tank 3 7 8 3 9
Tank 4 2 4 6 10

Master Scytale wants to minimize the total setup time. What should he do?

If you think about it a while, you see that an assignment problem is a transportation
problem with equal amount of ports and markets, where the demands and supplies for each
port and market are equal to one.

Let us build the LP representing Problem 10.5 by using Algorithm 5.2.

The key point in modeling the ghola production problem 10.5 is to find out the decision
variables — everything else is easy after that. So what are the decisions Tleilaxu Master
Scytale must make? He must choose which Axlotl tank is assigned to build which ghola. Now,
how could we write this analytically with variables? A common trick here is to use binary
variables, i.e., variables that can take only two possible values: 0 or 1. So, we set binary
variables Xij , i = 1, . . . , 4, j = 1, . . . , 4, for each machine and each job to be

Xij =

{
1 if tank i is assigned to meet the demands of ghola j,
0 if tank i is not assigned to meet the demands of ghola j.

In the above we explained the decision variables Xij in a funny way in order to make the link to
a transportation problem. A more natural way of explaining the decision variables is of course:
Xij is an indicator of the claim “Axlotl tank i is assigned to build ghola j”. The indicator of
any claim is 1 if the claim is true, and 0 otherwise.

The rest of the steps in Algorithm 5.2 are now relatively straightforward.

The objective is to minimize the total setup time. With our binary variables we can write
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the total setup time as

z = 14X11 + 5X12 + 8X13 +MX14

+2X21 + 12X22 + 6X23 + 5X24

+7X31 + 8X32 + 3X33 + 9X34

+2X41 + 4X42 + 6X43 + 10X44

Note that there will be a lot of zeros in the objective function above. Indeed, only 4 of the 16
decision variables will be 1’s, the rest will be 0’s. Also note the big-M trick. Since the setup
where X14 = 1 is not allowed, we make it so expensive (choose big M ), that in the solution we
will have X14 = 0.

What about the constraints for ghola production? First, we have to ensure that each
Axlotl tank is assigned to a ghola. This will give us the supply constraints

X11 + X12 + X13 + X14 = 1
X21 + X22 + X23 + X24 = 1
X31 + X32 + X33 + X34 = 1
X41 + X42 + X43 + X44 = 1

Second, we have to ensure that each ghola is produced, i.e., each ghola has an Axlotl tank
assigned to it. This will give us the demand constraints

X11 + X21 + X31 + X41 = 1
X12 + X22 + X32 + X42 = 1
X13 + X23 + X33 + X43 = 1
X14 + X24 + X34 + X44 = 1

So, putting the objective and the constraints we have just found together, and not forgetting
the binary nature of the decisions, we have obtained the following program for Problem 10.5:

(10.6)

min z = 14X11 + 5X12 + 8X13 +MX14

+2X21 + 12X22 + 6X23 + 5X24

+7X31 + 8X32 + 3X33 + 9X34

+2X41 + 4X42 + 6X43 + 10X44

s.t. X11 + X12 + X13 + X14 = 1 (Tanks)
X21 + X22 + X23 + X24 = 1
X31 + X32 + X33 + X34 = 1
X41 + X42 + X43 + X44 = 1

X11 + X21 + X31 + X41 = 1 (Gholas)
X12 + X22 + X32 + X42 = 1
X13 + X23 + X33 + X43 = 1
X14 + X24 + X34 + X44 = 1

Xij = 0 or Xij = 1

In (10.6) we have binary constraints Xij = 0 or Xij = 1 for the decision variables. So,
at first sight it seems that the program (10.6) is not a linear one. Indeed, it is a special case
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of an integer program (IP) called binary integer program (BIP). However, the structure of
the assignment problems is such that if one omits the assumption Xij = 0 or Xij = 1, and
simply assumes that Xij ≥ 0, one will (usually) get an optimal solution where the decisions
X∗

ij are either 0 or 1. Hence, the program (10.6) is a linear one, i.e., it is an LP. Or, to be
more precise, the program (10.6) and its linear relaxation, or LP relaxation

(10.7)

min z = 14X11 + 5X12 + 8X13 +MX14

+2X21 + 12X22 + 6X23 + 5X24

+7X31 + 8X32 + 3X33 + 9X34

+2X41 + 4X42 + 6X43 + 10X44

s.t. X11 + X12 + X13 + X14 = 1 (Tanks)
X21 + X22 + X23 + X24 = 1
X31 + X32 + X33 + X34 = 1
X41 + X42 + X43 + X44 = 1

X11 + X21 + X31 + X41 = 1 (Gholas)
X12 + X22 + X32 + X42 = 1
X13 + X23 + X33 + X43 = 1
X14 + X24 + X34 + X44 = 1

Xij ≥ 0

are equivalent. Equivalence of programs means that they have the same optimal decision and
the same optimal objective value. Finally, we note that the programs (10.6) and (10.7) are
equivalent to the following transportation problem:

(10.8)

min z = 14X11 + 5X12 + 8X13 +MX14

+2X21 + 12X22 + 6X23 + 5X24

+7X31 + 8X32 + 3X33 + 9X34

+2X41 + 4X42 + 6X43 + 10X44

s.t. X11 + X12 + X13 + X14 ≤ 1 (Tanks are supplies)
X21 + X22 + X23 + X24 ≤ 1
X31 + X32 + X33 + X34 ≤ 1
X41 + X42 + X43 + X44 ≤ 1

X11 + X21 + X31 + X41 ≥ 1 (Gholas are demands)
X12 + X22 + X32 + X42 ≥ 1
X13 + X23 + X33 + X43 ≥ 1
X14 + X24 + X34 + X44 ≥ 1

Xij ≥ 0

10.9 Exercise (Ghola Production)
Solve Problem 10.5.

Hint: Use the LP interpretation (10.8) and the function transsolver .



Chapter 10 Assignment Problem 58

10.10 Exercise (asssolver)
Write a GNU Octave function asssolver that returns an optimal setup and setup cost for an
assignment problem. Test with Problem 10.5 that your function works.

Hint: A good starting point is to use the function transsolver .
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Data Envelopment Analysis

Data Envelopment Analysis (DEA) is a method of determining efficiencies of units (the so-called
Decision Making Units, or DMU’s). DEA is a data-driven approach in which the efficiencies
are calculated solely on the basis of the inputs and outputs of the different DMU’s.

We give only a very brief explanation of DEA. For more information the reader is referred
to the notes www.uwasa.fi/∼tsottine/or with octave/or with octave.pdf Chapter 6.

Primal Approach

11.1 Problem (Imperial Universities)
God-emperor Leto II has decided to give special imperial status to universities that are efficient.
Four universities, University of Caladan, University of Giedi Prime, University of Ix, and
University of Kaitain have applied for the special imperial status. To assess the efficiency,
god-emperor decided to consider the inputs and the outputs of the universities be:

Inputs: solaris, students, professors, and spice melange.

Outputs: suk doctors, mentats, and Ixian technology.

The inputs and the outputs of the applicant universities are given in the following table:

Inputs Outputs
DMU Solaris Students Profs Spice Suk Drs Mentats Ixtech
U Caladan 9 msol 12 500 1 300 3 kg 9 500 500 12 pats
U Giedi Prime 8 msol 10 600 700 2 kg 9 000 1 100 510 pats
U Ix 2 msol 0 1 100 72 kg 0 0 250 pats
U Kaitain 27 msol 47 200 2 520 5 kg 9 200 1 200 0 pats

The god-emperor decided to compare only the applicants to each others and give those that
are 100 % efficient the special imperial status. Which universities should be given the status?

Before going into analysis, let us note that the data of the problem can be represented by
two matrices: the input matrix X and the output matrix Y . We can choose to put the

https://www.uwasa.fi/~tsottine/or_with_octave/or_with_octave.pdf
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universities (henceforth called the DMU’s or Decision Making Units) in the rows or in the
columns of the matrices X and Y . We choose the confusing way of putting them into columns
(not as rows as in Problem 11.1). Thus

Xio = the amount of the input i for the DMUo,

Yjo = the amount of the output j for the DMUo.

Thus the data of Problem 11.1 is given by the matrices

X =


9 8 2 27

12500 10600 0 47200
1300 700 1100 2520

3 2 72 5


and

Y =

 9500 9000 0 9200
500 1100 0 1200
12 510 250 0


Let us consider the efficiency of the University of Caladan, so the DMU under consideration

is DMUo = DMU1 .

The most obvious way to measure efficiencies (let us call them θ and in particular θo for
the DMU under consideration) with multiple inputs and outputs is to use weighted rations:
Informally

θ =
weighted outputs

weighted inputs
.

In the case of U Caladan, which is our DMUo now, this would mean that

θo =
9 500u1 + 500u2 + 12u3

9v1 + 12 500v2 + 1 300v3 + 3v4

=

∑
i uiYio∑
j vjXjo

=
u′Y•o

v′X•o

Here the u and v are the weights for the outputs and for the inputs. Now the problem is: how
to choose the weights?

The most generous way to choose the weight is to let the DMU under consideration to
choose them. The DMU under consideration will then of course choose them in the way that
makes it look good. Thus DMUo is given the maximization problem

max θo =
u′Y•o

v′X•o

This is a fractional objective function, not a linear one. This may be a problem, since GLPK
can only solve linear problems. But since we are dealing with fractions, we can always scale
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the solution so that the denominator is 1. Thus the fractional optimization becomes a linear
one with a constraint:

max θo = u′Y•o
s.t. v′X•o = 1.

But we need more constraints! Indeed the poblem above would obviously have unbounded
solution. The clever trick here is that all the other DMU’s will be weighted with our
weights and no-one should have more than 100% efficiency. Thus we end up with the
following near LP for the DMUo when there are n DMU’s in total:

max θo = u′Y•o
s.t. v′X•o = 1

u′Y•1
v′X•1

≤ 1
u′Y•2
v′X•2

≤ 1
...

u′Y•n
v′X•n

≤ 1

u,v ≥ 0

.

The constrants for the other DMUs seem fractional, not linear. But this is not a problem.
Indeed, we can write the near LP above as

(11.2)

max θo = u′Y•o
s.t. v′X•o = 1

u′Y•1 − v′X•1 ≤ 0
u′Y•2 − v′X•2 ≤ 0

...
u′Y•n − v′X•n ≤ 0

u,v ≥ 0

.

This is an LP with variable x = [u′ v′]′ . The objective comes from Y and the technology
matrix is a combitation of X and Y . To find the precise LP formulation is the next exercise.

11.3 Exercise (DEA LP)
Find c , A and b such that the problem (11.2) is a standard from LP with the decision
variable x = [u′ v′]′ .

Hint: Look at the code impuni.m, especially the lines 55–58.

11.4 Solution (Imperial Universities)
Here is the script m-file impuni.m that solves Problem 11.1. The file impuni.m is written in a
way that is easily extended to any input and output matrices X and Y . The script file can
be downloaded from www.uwasa.fi/∼tsottine/spicy or/impuni.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% Imper ia l u n i v e r s i t i e s DEA problem 11 .1
4 %%

https://lipas.uwasa.fi/~tsottine/spicy_or/impuni.m
https://www.uwasa.fi/~tsottine/spicy_or/impuni.m
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5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 %% Data : X i s inputs and Y i s outputs ( note that DMU’ s are in the columns :
9 %% hence the t ranspo s e s ) . Also , some shorthands .
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11
12 X = [
13 9 12500 1300 3 ; %% U Caladan
14 8 10600 700 2 ; %% U Giedi Prime
15 2 0 1100 72 ; %% U Ix
16 27 47200 2520 5 %% U Kaita in
17 ] ’ ;
18 %% s o l a r i s Students Pro f s Sp ice
19
20 nDMU = columns (X) ; %% Number o f DMUs.
21 oDMU = zeros (1 ,nDMU) ; %% Zeros f o r DMUs.
22
23 nin = rows (X) ; %% Number o f inputs .
24 o in = zeros (1 , nin ) ; %% Zeros f o r inputs .
25
26 Y = [
27 9500 500 12 ; %% U Caladan
28 9000 1100 510 ; %% U Giedi Prime
29 0 0 250 ; %% U Ix
30 9200 1200 0 %% U Kaita in
31 ] ’ ;
32 %% Suk Drs Mentats Ixtech
33
34 nout = rows (Y) ; %% Number o f outputs .
35 oout = zeros (1 , nout ) ; %% Zeros f o r outputs .
36
37
38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
39 %% Calcu la te the e f f i c i e n c i e s in a f o r loop f o r each DMU.
40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41
42 %% ctype and vtype are the same f o r each DMU.
43 ctype = ”S” ;
44 for i = 1 :nDMU
45 ctype = [ ctype ”U” ] ;
46 end
47
48 vtype = ”” ;
49 for j = 1 : ( nout+nin )
50 vtype = [ vtype ”C” ] ;
51 end
52
53 %% The f o r loop i t s e l f
54 for o = 1 :nDMU
55 c = [Y( : , o ) ’ o in ] ’ ; %% Object ive .
56 A = [ oout X( : , o ) ’ ; Y’ =X’ ] ; %% Technology .
57 b = [1 oDMU] ’ ; %% Bounds .
58 [ tmp , theta ( o ) ] = glpk ( c ,A, b , [ ] , [ ] , ctype , vtype ,=1) ; %% The BEEF!
59 end
60
61 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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62 %% E f f i c i e n c i e s p r i n t i n g .
63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64 theta
65
66 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
67 %% Test output :
68 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
69 %%>> impuni
70 %%theta =
71 %%
72 %% 0.9383 1 .0000 1 .0000 0 .4364

We see that the efficiencies are

University of Caladan 94%

University of Giedi Prime 100%

University of Ix 100%

University of Kaitain 44%

So, University of Giedi Prime and University of Ix will be given special imperial status.

11.5 Exercise
Make a function dea(X,Y) that takes in the input matrix X and the ouput matrix Y and
returns the efficiencies of the associated DMUs.

Hint: Start with the code impuni.m.

Dual Approach

We know that every LP has a dual LP. So does the DEA LP. In the primal approach for DEA
each DMU found weights for their inputs and outputs so that their efficiencies were maximized.
The constraints were related to the other DMU’s. In the dual approach the decision variables
are related to the (other) DMU’s. It turns out that these decision variables, let us call them
λ = [λ1 · · · λn]

′ for the n DMU’s for each DMUo , can be considered to form a virtual DMU

DMUvirtual =
n∑

k=1

λkDMUk.

This virtual DMU will have the same business mix than DMUo and it will be 100% efficient.

The virtual coefficients λ and the efficiency ϑ for DMUo come from the following dual DEA
problem:

(11.6)

min ϑ
s.t. Yλ ≥ Y•o

Xλ ≤ ϑX•o
λ, ϑ ≥ 0

https://www.uwasa.fi/~tsottine/spicy_or/impuni.m
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11.7 Exercise (Dual Imperial Universities)
Solve the Imperial Univiersities problem 11.1 by using the dual LP formulation (11.6).

11.8 Exercise (Dual DEA LP)
Derive the dual DEA LP (11.6) from the primal DEA LP (11.2).
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A Look Under the Hood

In this chapter we will briefly look under the hood of glpk. That is, we explain a little bit how
and why does it work; and as true mentats we adhere to the ban of thinking machines and do
everything by hand in this chapter.

We give only a very brief explanation. For more information the reader is referred to the
notes www.uwasa.fi/∼tsottine/or with octave/or with octave.pdf Chapters 3 and 4.

The Truth is in the Corners

Recall that every LP can be given in standard form

(12.1)
max z = c′x
s.t. Ax ≤ b

x ≥ 0
.

The constraints
Ax ≤ b
x ≥ 0

define the so-called feasible region, i.e. the region of those points x = [x1 x2 · · · xn]
′ in an

n-dimensional space where the possible solutions x of the maximization problems lie. It can
be shown that the feasible region is an n-dimensional polygon. Moreover, it can be shown that
the optimal values x∗ of the LP can be found in the corners of the feasible region.

To identify the corners of the feasible region, it is convenient to rewrite the standard from
LP (12.1) in the following so-called slack form

(12.2)
max z = c′x
s.t. Ax+ s = b

x, s ≥ 0
.

Here the slack s = [s1 s2 · · · sm]
′ tells how much there is slack in each constraint. Note that

taking x̄ = [x′ s′]′ to be the augmented decision variables, we can write the slack form as

max z = [c′ 0]x̄
s.t. [A I]x̄ = b

x̄ ≥ 0
.

https://www.uwasa.fi/~tsottine/or_with_octave/or_with_octave.pdf
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To find the corners of the feasible region on simply omits the non-negativity constraints and
solves the system of equations

[A I]x̄ = b.(12.3)

Since there are n +m variables and only m equations, the system (12.3) has many solutions.
Indeed, it has

(
m+n
m

)
solutions. So, for example an LP with 3 decision variables and 4 constraints

yields a system with (
7

4

)
=

7!

4!3!
= 35

solutions. Thus, the feasible region of the original LP has 35 potential corners.

All the corners of the original LP’s feasible region are some solutions of the system (12.3).
They are found by choosing m components of x̄ to be so-called basic variables (BV) and
setting the remaining components to be zero. There remaining zero components are called
non-basic variables (NBV). For each m BV’s the solutions x̄ are called basic feasible
solutions (BFS) if they are also feasible solutions. In other words, the corners of the feasible
region are basic feasible solutions. Yet in other words a solution x̄ of the system (12.3) that
also satisfies the non-negativity constraints x̄ ≥ 0 is a BFS of the original LP and consequently
a corner of the feasible region.

12.4 Example (Checking Corners)
Let us Consider the LP

max z = 3x1 + 4x2

s.t. x1 + x2 ≤ 40
x1 + 2x2 ≤ 60

x1, x2 ≥ 0

.

This LP is in standard form, so its slack form is easy to find:

max z = 3x1 + 4x2

s.t. x1 + x2 + s1 = 40
x1 + 2x2 + s2 = 60

x1, x2, s1, s2 ≥ 0

Let us solve this slack form by checking all the potential corners of the feasible region.

We choose successively 2 = m of the 4 = n+m variables x1, x2, s1, s2 to be our BV’s
and set the remaining 2 = n variables to be zero, or NBV’s, and solve the system above. If
the solution turns out to be feasible (it may not be since we are omitting the non-negativity
constraints) we check the value of the objective at this solution. Since we this way we check
all the BFS’s of the system we must find the optimal value.

From the next table (or the next picture) we read that the optimal decision is x1 = 20,
x2 = 20 with the slacks s1 = 0, s2 = 0. The corresponding optimal value is z = 140.
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BV Linear system x1 x2 s1 s2 BFS z Pt

s1, s2
0 + 0 + s1 = 40
0 + 0 + s2 = 60

0 0 40 60 Yes 0 F

x2, s2
0 + x2 + 0 = 40
0 + 2x2 + s2 = 60

0 40 0 −20 No – A

x2, s1
0 + x2 + s1 = 40
0 + 2x2 + 0 = 60

0 30 10 0 Yes 120 C

x1, s2
x1 + 0 + 0 = 40
x1 + 0 + s2 = 60

40 0 0 20 Yes 120 B

x1, s1
x1 + 0 + s1 = 40
x1 + 0 + 0 = 60

60 0 −20 0 No – D

x1, x2
x1 + x2 + 0 = 40
x1 + 2x2 + 0 = 60

20 20 0 0 Yes 140 E

0

10

20

30

40
x2

−10 0 10 20 30 40 50 60
x1

A

B

C

D

E

F

12.5 Exercise (Check the Corners)
Solve the LP

min z = −2x1 + 3x2

s.t. 1 ≤ x1 + x2 ≤ 9
2x1 − x2 ≤ 4

2 ≤ 7x1 + x2 ≤ 100
x2 ≥ 0

by checking the corners of its feasible region.

Hint: Transform the LP first into a standard form, and then into a slack form, and follow
Example 12.4 above. Or, just draw a picture.
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12.6 Remark (Combinatorial Curse)
It seems we now have a very simple algorithm for finding an optimum: Just check all the
corners! And, indeed, this naive approach works well with such petty examples we have in
this course. The problem with this brute force approach in practice is a manifestation of the
combinatorial curse: an LP with n decision variables and m constraints has(

n+m

m

)
=

(n+m)!

n!m!

corners (in the slack form system). So, an LP with 15 decision variables and 15 constraints
has (

30

15

)
= 155 117 520

corners. Suppose you have a computer that checks 1 000 corners per second (this is pretty
fast for today’s computers, and right-out impossible if you program with JavaTM). Then it
would take almost two days for the computer to check all the 155 117 520 corners. You may
think this is not a problem: maybe two days is not such a long time, and a problem with 15
decision variables is way bigger than anything you would encounter in the real life anyway.
Well, think again! Two days is a long time if you need to update your optimal solution in a
changing environment of, say, a stock exchange, and LP’s with at 15 decision variables are
actually rather small. Indeed, let us be a bit more realistic now: Consider a stock broker
who has 50 stocks in her stock (pun intended). Suppose the broker has 50 constraints in
selecting the stocks for her portfolio (not unreasonable) and a super-computer that checks 100
million corners per second (very optimistic, even if one does not program with JavaTM ). Then
checking all the corners to optimize the portfolio would take 6.89 × 1044 years. The author
doubts that even the universe can wait that long!

The bottom line: Checking all the corners would take too long.

Simplex Algorithm

By Remark 12.6 we cannot in practice check all the corners. So what do we do then. The
natural idea is to start with one corner and then, if needed, go to a next, possibly better,
corner, and continue until we hopefully hit the best corner. This is what the so-called simplex
algorithm (and glpk) does in practice.

We will solve the following LP by hand by using the simplex algorithm:

(12.7)

max z = 60x1 + 30x2 + 20x3

s.t. 8x1 + 6x2 + x3 ≤ 48
4x1 + 2x2 + 1.5x3 ≤ 20
2x1 + 1.5x2 + 0.5x3 ≤ 8

x2 ≤ 5
x1, x2, x3 ≥ 0
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This is a standard form LP, so it is easy to write its slack form:

max z = 60x1 + 30x2 + 20x3

s.t. 8x1 + 6x2 + x3 + s1 = 48
4x1 + 2x2 + 1.5x3 + s2 = 20
2x1 + 1.5x2 + 0.5x3 + s3 = 8

x2 + s4 = 5
x1, x2, x3, s1, s2, s3, s4 ≥ 0

Treating z as a “decision” variable we can go even further into an augmented slack form

(12.8)

max z
s.t. z − 60x1 − 30x2 − 20x3 = 0

8x1 + 6x2 + x3 + s1 = 48
4x1 + 2x2 + 1.5x3 + s2 = 20
2x1 + 1.5x2 + 0.5x3 + s3 = 8

x2 + s4 = 5
x1, x2, x3, s1, s2, s3, s4 ≥ 0

Now the idea is to look a corner (also called bastic feasible solution, BFS) that is defined
by solving the system above by what is so-called basic variables (BV). The rest of the variables
are called non-basic variables (NBV), and they are set to 0. So, there will be 4 (number of
constraints) BV’s and the rest 3 are set to zero as NBV’s.

We see that the slack form is already solved for slacks. Thus, taking s1, s2, s3, s4 to be our
first BV our first simplex tableau for (12.7), or equally for (12.8), is

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
1 1 −60 −30 −20 0 0 0 0 z = 0
2 0 8 6 1 1 0 0 0 s1 = 48
3 0 4 2 1.5 0 1 0 0 s2 = 20
4 0 2 1.5 0.5 0 0 1 0 s3 = 8
5 0 0 1 0 0 0 0 1 s4 = 5

In a very small nut-shell the simplex algorithm works now as follows:

If the simplex algorithm identifies the current simplex tableau to be solved with an optimal
BFS there is nothing to be done any more, and the optimal solution can be read from the
tableau with the given BV corresponding the BFS. If the current BFS is not optimal the
simplex algorithm starts to look for a better BFS by changing the BV and then solving the
tableau with respect to the new, hopefully better, BV. This is repeated until an optimal solution
is found (if ever).

The criterion for optimality is:

The simplex tableau is optimal if there are no negative coefficients in the
first row corresponding to the non-basic variables.

In the first simplex tableau above all the coefficients of NBV’s x1, x2, x3 are certainly neg-
ative. So, the first simplex tableau is not optimal.
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Now we need to improve the simplex tableau. The improvement routing is a very critical
part of the simplex algorithm. Indeed, so far the algorithm just starts with one BFS and checks
its optimality. If the improvement routine that gives the next BFS is not good, we might end
up looking for new BFSs for a very long time, or even forever! (This may still happen with the
improvement routine we present here, but the probability of such a bad luck is tiny.)

The general idea of the improvement routine is to find the “best” variable in the NBV and
the “worst” variable in the BV and then make a switch.

The entering variable is the one with the smallest coefficient in the first
row.

The idea is that this way (we hope) to increase the RHS of the first row as much and as fast as
possible. So, we find that the variable x1 will enter the BV since it has the smallest coefficient
−60.

The leaving BV will the one associated to the row that wins the ratio
test (the smallest finite positive value is the winner)

RHS of row

Coefficient of entering variable in row
.

The idea of the ratio test is, that we shall increase the entering variable as much as possible.
At some point the increasing of the entering variable will force one of the BVs to become zero.
This BV will then leave. The ratio test picks up the row associated to the leaving variable.

The ratio test gives

Row 2 limit for x1 = 48/8 = 6
Row 3 limit for x1 = 20/4 = 5
Row 4 limit for x1 = 8/2 = 4
Row 5 limit for x1 = 5/0 = ∞ No limit.

So, Row 4 wins the ratio test. Hence s3 is the leaving BV.

Now we have new BV: s1, s2, x1, s4 and an unsolved simplex tableau

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
1 1 −60 −30 −20 0 0 0 0 z = 0
2 0 8 6 1 1 0 0 0 s1 = 48
3 0 4 2 1.5 0 1 0 0 s2 = 20
4 0 2 1.5 0.5 0 0 1 0 x1 = 8
5 0 0 1 0 0 0 0 1 s4 = 5

Now we have to solve this Simplex tableau in terms of the BV. This means that each row
must have coefficient 1 for its BV, and that BV must have coefficient 0 on the other rows.
This can be done by pivoting with respect to the BV that just entered. After some tedious
pivoting we get the solved simplex tableau
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Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
1 1 0 15 −5 0 0 30 0 z = 240
2 0 0 0 −1 1 0 −4 0 s1 = 16
3 0 0 −1 0.5 0 1 −2 0 s2 = 4
4 0 1 0.75 0.25 0 0 0.5 0 x1 = 4
5 0 0 1 0 0 0 0 1 s4 = 5

This tableau is not yet optimal, since the NBV x3 has negative coefficient −5. It is obvious
that x3 enters the BV. To find out the leaving variable we perform the ratio test:

Row 2 limit for x3 = 16/(−1) = −16 No limit
Row 3 limit for x3 = 4/0.5 = 8
Row 4 limit for x3 = 4/0.25 = 16
Row 5 limit for x3 = 5/0 = ∞ No limit

So, row 3 wins the ratio test. Since s2 is the BV of row 3, s2 will leave. So, we have the
following unsolved simplex tableau

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
1 1 0 15 −5 0 0 30 0 z = 240
2 0 0 0 −1 1 0 −4 0 s1 = 16
3 0 0 −1 0.5 0 1 −2 0 x3 = 4
4 0 1 0.75 0.25 0 0 0.5 0 x1 = 4
5 0 0 1 0 0 0 0 1 s4 = 5

which can be solved easily (but tediously) enough by pivoting. We obtain

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
1 1 0 5 0 0 10 10 0 z = 280
2 0 0 −2 0 1 2 −8 0 s1 = 24
3 0 0 −2 1 0 2 −4 0 x3 = 8
4 0 1 1.25 0 0 −0.5 1.5 0 x1 = 2
5 0 0 1 0 0 0 0 1 s4 = 5

and note that the tableau is indeed optimal! No need to continue table-dancing!

Finally let us read the solution and some extra results from the optimal simplex tableau.
The optimal value is clearly visible: z = 280. The optimal decision is x1 = 2, x2 = 0 and
x3 = 8. The value x2 = 0 is not explicitly written, but it is implied to be 0, since x2 is a NBV.
Finally, we can read the reduced costs and shadow variables from the first row. The reduced
costs are the coefficients of the decision variables and the shadow prices are the coefficients of
the slacks in the row 1.
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12.9 Exercise (Manual Labor)
Solve the following LP manually by using simplex algorithm

max z = 30x1 + 40x2 + 10x3

s.t. 8x1 + 6x2 + x3 ≤ 40
4x1 + 2x2 + 2x3 ≤ 25
2x1 + 5x3 ≤ 10

x1, x2, x3 ≥ 0

.

12.10 Exercise (Simplex Fail)
Simplex algortihm presented here will fail if b has negative components in the standard from
LP

max z = c′x
s.t. Ax ≤ b

x ≥ 0
.

Why is this and can you figure out a solution?
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