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1. Classical arbitrage pricing theory (1/3)
Stock-price process, self-financing strategies, and their wealth

I Discounted market model is (Ω,F , (St), (Ft),P). The
stock-price process S takes values in Cs0,+ (continuous
positive paths on [0,T ] starting from s0).

I Non-anticipating trading strategy Φ is self-financing if its
wealth satisfies

Vt(Φ, v0;S) = v0 +

∫ t

0
Φt dSt .

Here the economic notion ‘self-financing’ is captured by the
‘forward’ construction of the Itô integral.
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1. Classical arbitrage pricing theory (2/3)
Arbitrage and replication (hedging)

I The strategy Φ is arbitrage (free lunch) if

P [VT (Φ, 0;S) ≥ 0] = 1 and P [VT (Φ, 0;S) > 0] > 0.

I Efficient market hypothesis: No arbitrage.

I Fundamental theorem of asset pricing: No arbitrage iff S is a
semimartingale.

I Option is a mapping G : Cs0,+ → R. Its fair price is the capital
v0 of a hedging strategy Φ:

G (S) = VT (Φ, v0;S).

If an option can be hedged then the hedging capital v0 is
unique. Indeed, otherwise there would be arbitrage.
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1. Classical arbitrage pricing theory (3/3)
Black-Scholes model

I Under the so-called equivalent martingale measure the
Stock-price process is the geometric Brownian motion

St = s0e
σWt−σ2

2
t .

I There is no arbitrage (S is a semimartingale, fundamental
theorem of asset pricing), all options can be hedged, and the
hedge is unique (martingale representation theorem).

I Statistically the Black-Scholes model (and more genarally
semimartingale models) and the Reality do not seem to agree
(stylized facts).
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2. Aim

Even in the classical arbitrage pricing theory one considers only
‘admissible’ strategies (e.g. doubling strategies have to be ruled
out by some ad hoc condition).

We consider a class of pricing models that includes
non-semimartingale models. Our aim is to construct a class of
‘allowed’ strategies for this model class that is

(i) sufficiently small to exclude arbitrage,

(ii) sufficiently large to contain hedges for relevant option,

(iii) economically meaningful.
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3. A model class
I (Ω,F , (St), (Ft),P) is in the model class Mσ if

1. S takes values in Cs0,+,
2. the pathwise quadratic variation 〈S〉 of S is of the form

d〈S〉t = σ2S2
t dt,

3. for all ε > 0 and η ∈ Cs0,+ we have the small ball property

P [‖S − η‖∞ < ε] > 0.

I The model class Mσ includes

(a) the classical Black-Scholes model (which we call the reference
model (Ω̃, F̃ , (S̃t), (F̃t), P̃)),

(b) any model of the type

St = s0e
σWt+

σ2

2 t+Zt ,

Z independent of W , continuous, and satisfies the small ball
property. So, we can have heavy tails, long-range dependence,
and (almost) any autocorrelation function.
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4. Allowed strategies

A strategy Φ is allowed if

(i) it is of the form

Φt = ϕ
(
t,St ,S

∗
t ,S∗,t , S̄t

)
,

where ϕ ∈ C1([0,T ]× R+ × R3),

S∗t := max
r∈[0,t]

Sr , S∗,t := min
r∈[0,t]

Sr , S̄t :=

∫ t

0
Sr dr ,

(ii) and satisfies the classical ‘no doubling strategies’ condition∫ t

0
Φr dSr ≥ −a P− a.s

for all t ∈ [0,T ] for some a > 0.
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5. Forward integration
We consider non-semimartingales. So, we have no Itô-integrals.
However, the forward integral is economically meaningful ((πn) is a
fixed sequence of, say, dyadic partitions of [0,T ]):

I
∫ t
0 ΦrdSr is the P-a.s. forward-sum limit

lim
n→∞

∑
tk∈πn
tk≤t

Φtk−1

(
Stk − Stk−1

)
.

I Let u ∈ C1,2,1([0,T ], R+, Rm) and Y 1, . . . ,Y m be bounded
variation processes. If S has pathwise quadratic variation
(along (πn)) then we have the Itô formula for
u(t,St ,Y

1
t , . . . ,Y m

t ):

du =
∂u

∂t
dt +

∂u

∂x
dS +

1

2

∂2u

∂x2
d〈S〉+

m∑
i=1

∂u

∂yi
dY i .

This implies that the forward integral on the right hand side
exists and has a continuous modification.
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6. A no-arbitrage result (1/2)
Theorem NA There is no arbitrage with allowed strategies.

Idea of Proof: Set, as the Itô formula suggests,

v(t, η;ϕ) := u(t, η(t), η∗(t), η∗(t), η̄(t))

−
∫ t

0

∂u

∂t
(r , η(r), η∗(r), η∗(r), η̄(r))dr

−
∫ t

0

∂u

∂y1
(r , η(r), η∗(r), η∗(r), η̄(r))dη∗(r)

−
∫ t

0

∂u

∂y2
(r , η(r), η∗(r), η∗(r), η̄(r))dη∗(r)

−
∫ t

0

∂u

∂y3
(r , η(r), η∗(r), η∗(r), η̄(r))dη̄(r)

−1

2

∫ t

0

∂ϕ

∂x
(r , η(r), η∗(r), η∗(r), η̄(r))σ2η(r)2 dr ,

where

u(t, x , y1, y2, y3) =

∫ t

s0

ϕ(t, ξ, y1, y2, y3)dξ.
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6. A no-arbitrage result (2/2)
Idea of Proof

Now we have the functional connection

Vt(Φ, v0;S) = v0 +

∫ t

0
Φt dSt = v0 + v(t,S ;ϕ).

Moreover (this is the crucial fact) the wealth functional v(t, ·;ϕ) is
continuous in the supremum norm.

Suppose then that VT (Φ, 0;S) = v(T ,S ;ϕ) ≥ 0 P-a.s. By the
small ball property and the continuity of v(t, ·;ϕ) we have the
functional inequality v(T , η;ϕ) ≥ 0 for all η ∈ Cs0,+.

Now we can go to the reference model and see that v(T , S̃ ;ϕ) ≥ 0
P̃-a.s. But the classical martingale arguments tell us that then
v(T , S̃ ;ϕ) = 0 P̃-a.s.

The claim follows now by interchanging the roles of S̃ and S . �
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Suppose then that VT (Φ, 0;S) = v(T ,S ;ϕ) ≥ 0 P-a.s. By the
small ball property and the continuity of v(t, ·;ϕ) we have the
functional inequality v(T , η;ϕ) ≥ 0 for all η ∈ Cs0,+.

Now we can go to the reference model and see that v(T , S̃ ;ϕ) ≥ 0
P̃-a.s. But the classical martingale arguments tell us that then
v(T , S̃ ;ϕ) = 0 P̃-a.s.

The claim follows now by interchanging the roles of S̃ and S . �



7. A robust-hedging result
By using, as before, continuity in the sup-norm, functional
correspondence, and the small ball property we get:

Theorem RH Suppose a continuous option G : Cs0,+ → R. If
G (S̃) can be hedged in the reference model S̃ ∈Mσ with an
allowed strategy then G (S) can be hedged in any model S ∈Mσ.

Moreover, the hedges are – as strategies of the stock-path –
independent of the model.

Moreover still, if ϕ is a ‘functional hedge’ in one model then it is a
‘functional hedge’ in all models.

Corollary PDE In the Black-Scholes model hedges for European,
Asian, and lookback-options can be constructed by using the
Black-Scholes partial differential equation. These hedges hold for
any model that is continuous, satisfies the small ball property, and
has the same quadratic variation as the Black-Scholes model.
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8. Quadratic variation and volatility
Preaching and bold words

I The hedges depend only on the quadratic variation.

I The quadratic variation is a path property. It tells nothing
about the probabilistic structure of the stock-price (Black and
Scholes tell us the mean return is irrelevant. We boldly
suggest that probability is irrelevant, as far as option-pricing is
concerned).

I Don’t be surprised if the implied and historical volatility do
not agree: The latter is an estimate of the variance and the
former is an estimate of the quadratic variation. In the
Black-Scholes model these notions coincide. But that is just
luck (consider a mixed fractional Black-Scholes model).

I Don’t use the historical volatility! Instead, use either implied
volatility or estimate the quadratic variation (which may be
difficult).
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9. Extensions

(a) We can consider quadratic variation functions of the type
σ(t,St). The small ball property just becomes more involved.

(b) In addition to running maximum, minimum, and average we
can use other hindsight factors g : [0,T ]× Cs0,+ → R:

1. g(t, η) = g(t, η̃) whenever η(r) = η̃(r) on r ∈ [0, t],
2. g(·, η) is of bounded variation and continuous,
3. ∣∣∣∣∫ t

0

f (u)dg(u, η)−
∫ t

0

f (u)dg(u, η̃)

∣∣∣∣ ≤ K‖f 1[0,t]‖∞ ·‖η−η̃‖∞

(c) The ‘strategy functional’ ϕ needs only to be piecewise smooth.

(d) We can relax the smoothness of ϕ at t = T (this is needed in
many classical hedges).

(e) The continuity of the payoff G can be relaxed to include e.g.
digital options.
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