Conditional Small Balls and No-Arbitrage

Tommi Sottinen

University of Helsinki and Reykjavík University

May 5th, 2007

Tommi Sottinen Conditional Small Balls and No-Arbitrage

This talk is based on the manuscript

[BSV] Bender, C., Sottinen, T., and Valkeila, E. (2006) *Pricing by hedging and no-arbitrage beyond semimartingales*, 20 p.

So this is ongoing joint work with Christian Bender (TU-Braunschweig) and Esko Valkeila (TKK).

Preliminaries from [BSV]

- Quadratic variation
- Model classes
- Hindsight factors
- Allowed strategies
- Robust hedging and no-arbitrage results

- Preliminaries from [BSV]
 - Quadratic variation
 - Model classes
 - Hindsight factors
 - Allowed strategies
 - Robust hedging and no-arbitrage results
- Shortcomings of [BSV]
 - No stopping times

- Preliminaries from [BSV]
 - Quadratic variation
 - Model classes
 - Hindsight factors
 - Allowed strategies
 - Robust hedging and no-arbitrage results
- Shortcomings of [BSV]
 - No stopping times
- No-arbitrage with take-the-money-and-run

- Preliminaries from [BSV]
 - Quadratic variation
 - Model classes
 - Hindsight factors
 - Allowed strategies
 - Robust hedging and no-arbitrage results
- Shortcomings of [BSV]
 - No stopping times
- Solution No-arbitrage with take-the-money-and-run
- Arbitrage with wait-and-play

- Preliminaries from [BSV]
 - Quadratic variation
 - Model classes
 - Hindsight factors
 - Allowed strategies
 - Robust hedging and no-arbitrage results
- Shortcomings of [BSV]
 - No stopping times
- Invasional States and States a
- Arbitrage with wait-and-play
- No-arbitrage with simple strategies under conditional small ball property

- Preliminaries from [BSV]
 - Quadratic variation
 - Model classes
 - Hindsight factors
 - Allowed strategies
 - Robust hedging and no-arbitrage results
- Shortcomings of [BSV]
 - No stopping times
- Invasional States and States a
- Arbitrage with wait-and-play
- No-arbitrage with simple strategies under conditional small ball property
- Verifying conditional small ball property

1. Preliminaries from [BSV] Quadratic variation

Definition

Given a refining sequence of partitions (π_n)

$$\langle S
angle_t := \lim_{n \to \infty} \sum_{t_i \in \pi_n, t_i \leq t} \left(S_{t_i} - S_{t_{i-1}} \right)^2$$

is the pathwise quadratic variation of S (w.r.t. (π_n)).

1. Preliminaries from [BSV] Quadratic variation

Definition

Given a refining sequence of partitions (π_n)

$$\langle S
angle_t := \lim_{n \to \infty} \sum_{t_i \in \pi_n, t_i \leq t} \left(S_{t_i} - S_{t_{i-1}} \right)^2$$

is the pathwise quadratic variation of S (w.r.t. (π_n)).

Example

For Black-Scholes model (or geometric Brownian motion)

$$dS_t = S_t \mu \, dt + S_t \sigma \, dW_t$$

we have

$$d\langle S\rangle_t = \sigma^2 S_t^2 \, dt.$$

Model classes

Definition

A discounted market model is a 5-tuple $(\Omega, \mathcal{F}, \mathcal{F}_t, P, S)$ where $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ is a filtered probability space and S is \mathcal{F}_t -adapted.

Model classes

Definition

A discounted market model is a 5-tuple $(\Omega, \mathcal{F}, \mathcal{F}_t, P, S)$ where $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ is a filtered probability space and S is \mathcal{F}_t -adapted.

Definition

Model $(\Omega, \mathcal{F}, \mathcal{F}_t, P, S)$ belongs to model class $\mathcal{M}_{\sigma, s_0}$ if

1
$$S_0 = s_0$$
,

$$d\langle S\rangle_t = \sigma^2 S_t^2 dt,$$

● for all $\eta : [0, T] \rightarrow \mathbb{R}_+$ with $\eta(0) = s_0$ and $\epsilon > 0$

(SBP)
$$P\left[\sup_{t\in[0,T]}|S_t-\eta(t)|\leq\epsilon\right]>0.$$

Model classes

Definition

A discounted market model is a 5-tuple $(\Omega, \mathcal{F}, \mathcal{F}_t, P, S)$ where $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ is a filtered probability space and S is \mathcal{F}_t -adapted.

Definition

Model $(\Omega, \mathcal{F}, \mathcal{F}_t, P, S)$ belongs to model class $\mathcal{M}_{\sigma, s_0}$ if

1
$$S_0 = s_0$$
,

$$d \langle S \rangle_t = \sigma^2 S_t^2 dt,$$

● for all $\eta : [0, T] \rightarrow \mathbb{R}_+$ with $\eta(0) = s_0$ and $\epsilon > 0$

(SBP)
$$P\left[\sup_{t\in[0,T]}|S_t-\eta(t)|\leq\epsilon\right]>0.$$

Example

The Black-Scholes model belongs to the model class \mathcal{M}_{σ,s_0} .

1. Preliminaries from [BSV] Hindsight factors

Definition

Mapping $g : [0, T] \times C[0, T] \rightarrow \mathbb{R}$ is a hindsight factor if

•
$$g(t,\eta) = g(t,\tilde{\eta})$$
 if $\eta(u) = \tilde{\eta}(u)$ for $u \in [0,t]$,

- 2 $t \mapsto g(t, \eta)$ is continuous and of bounded variation,
- \bigcirc for all continuous functions f

$$igg| \int_0^t f(u) dg(u, \eta) - \int_0^t f(u) dg(u, ilde{\eta}) igg| \ \leq C \max_{u \in [0,t]} |f(u)| \max_{u \in [0,t]} |\eta(u) - ilde{\eta}(u)|.$$

1. Preliminaries from [BSV] Hindsight factors

Definition

Mapping $g : [0, T] \times C[0, T] \rightarrow \mathbb{R}$ is a hindsight factor if

$$\ \ \, {\bf g}(t,\eta)=g(t,\tilde{\eta}) \ \, {\rm if} \ \eta(u)=\tilde{\eta}(u) \ \, {\rm for} \ u\in[0,t], \\$$

2 $t \mapsto g(t, \eta)$ is continuous and of bounded variation,

I for all continuous functions f

$$igg| igg|_0^t f(u) dg(u,\eta) - \int_0^t f(u) dg(u, ilde \eta) igg| \ \leq C \max_{u \in [0,t]} |f(u)| \max_{u \in [0,t]} |\eta(u) - ilde \eta(u)|.$$

Example

Running maximum, minimum, and average are hindsight factors.

Definition

A trading strategy Φ is allowed if it is admissible for the Black-Scholes model and there exists a smooth φ and hindsight factors g_1, \ldots, g_m such that

$$\Phi_t = \varphi(t, S_t, g_1(t, S), \ldots, g_m(t, S)).$$

Robust hedging and no-arbitrage results

Theorem (No-arbitrage)

All models in \mathcal{M}_{σ,s_0} are free of arbitrage with allowed strategies.

Theorem (No-arbitrage)

All models in \mathcal{M}_{σ,s_0} are free of arbitrage with allowed strategies.

Theorem (Robust hedging)

If an option can be replicated in one model in \mathcal{M}_{σ,s_0} with an allowed strategy then it can be replicated in all models in \mathcal{M}_{σ,s_0} with an allowed strategy. Moreover, the replicating strategy is, as a functional of the stock-path, independent of the particular model in \mathcal{M}_{σ,s_0} .

Theorem (No-arbitrage)

All models in \mathcal{M}_{σ,s_0} are free of arbitrage with allowed strategies.

Theorem (Robust hedging)

If an option can be replicated in one model in \mathcal{M}_{σ,s_0} with an allowed strategy then it can be replicated in all models in \mathcal{M}_{σ,s_0} with an allowed strategy. Moreover, the replicating strategy is, as a functional of the stock-path, independent of the particular model in \mathcal{M}_{σ,s_0} .

• The proofs of the theorems are based on the fact that the wealth associated to an allowed strategy is continuous in the stock path.

• The Robust hedging result is satisfactory: In the Black-Scholes model the hedges for typical options are allowed.

- The Robust hedging result is satisfactory: In the Black-Scholes model the hedges for typical options are allowed.
- The No-arbitrage result is not very satisfactory: The allowed strategies are continuous in the stock path. However, from the economical point of view it is desirable that simple strategies are free of arbitrage.

- The Robust hedging result is satisfactory: In the Black-Scholes model the hedges for typical options are allowed.
- The No-arbitrage result is not very satisfactory: The allowed strategies are continuous in the stock path. However, from the economical point of view it is desirable that simple strategies are free of arbitrage.
- From now on we work on the canonical space $\Omega = C_{s_0,+}[0, T]$, $S_t(\omega) = \eta(t)$, and $\mathcal{F}_t = \mathcal{F}_t^S$.

- The Robust hedging result is satisfactory: In the Black-Scholes model the hedges for typical options are allowed.
- The No-arbitrage result is not very satisfactory: The allowed strategies are continuous in the stock path. However, from the economical point of view it is desirable that simple strategies are free of arbitrage.
- From now on we work on the canonical space $\Omega = C_{s_0,+}[0, T]$, $S_t(\omega) = \eta(t)$, and $\mathcal{F}_t = \mathcal{F}_t^S$.

Definition

A simple strategy Φ is of the form

$$\Phi_t = \sum_{i=1}^n \Phi^i \mathbb{1}_{(au_{i-1}, au_i]}(t),$$

where Φ_i 's are $\mathcal{F}_{\tau_{i-1}}$ -measurable and τ_i 's are \mathcal{F}_t -stopping times.

• Stopping times $\eta \mapsto \tau(\eta)$ are typically not continuous.

- Stopping times $\eta \mapsto \tau(\eta)$ are typically not continuous.
- Stopping times are typically lower semi-continuous:

$$\liminf_{\eta\to\eta_0}\tau(\eta)\geq\tau(\eta_0).$$

We shall assume this from now on.

- Stopping times $\eta \mapsto \tau(\eta)$ are typically not continuous.
- Stopping times are typically lower semi-continuous:

$$\liminf_{\eta\to\eta_0}\tau(\eta)\geq\tau(\eta_0).$$

We shall assume this from now on.

Lemma

Suppose that $(\Omega, \mathcal{F}, \mathcal{F}_t, P, S)$ satisfies (SBP). Then for all stopping times τ

$$P[S_{\tau} > s_0] > 0$$
 and $P[S_{\tau} < s_0] > 0$.

So, take-the-money-and-run strategies $\Phi^0 1_{[0,\tau]}(t)$ are free of arbitrage.

Proof.

We only show that $P[S_{\tau} > s_0] > 0$. The proof for $P[S_{\tau} < s_0] > 0$ is symmetric.

Proof.

We only show that $P[S_{\tau} > s_0] > 0$. The proof for $P[S_{\tau} < s_0] > 0$ is symmetric. We show that the set $\{S_{\tau} > s_0\} = \{\eta; \eta(\tau(\eta)) > s_0\}$ contains a

ball $B_{\eta_0}(\varepsilon)$. Then the claim will follow from (SBP).

Proof.

We only show that $P[S_{\tau} > s_0] > 0$. The proof for $P[S_{\tau} < s_0] > 0$ is symmetric. We show that the set $\{S_{\tau} > s_0\} = \{\eta; \eta(\tau(\eta)) > s_0\}$ contains a ball $B_{\eta_0}(\varepsilon)$. Then the claim will follow from (SBP). Fix an increasing and concave path η_0 with $\eta_0(0) = s_0$.

Proof.

We only show that $P[S_{\tau} > s_0] > 0$. The proof for $P[S_{\tau} < s_0] > 0$ is symmetric. We show that the set $\{S_{\tau} > s_0\} = \{\eta; \eta(\tau(\eta)) > s_0\}$ contains a ball $B_{\eta_0}(\varepsilon)$. Then the claim will follow from (SBP). Fix an increasing and concave path η_0 with $\eta_0(0) = s_0$. Since τ is lower semi-continuous we can find such an $\varepsilon < 1/2 (\eta_0(\tau(\eta_0)) - s_0)$ that $\tau(\eta) \ge 1/2 \tau(\eta_0)$ whenever $\eta \in B_{\eta_0}(\varepsilon)$.

Proof.

We only show that $P[S_{\tau} > s_0] > 0$. The proof for $P[S_{\tau} < s_0] > 0$ is symmetric. We show that the set $\{S_{\tau} > s_0\} = \{\eta; \eta(\tau(\eta)) > s_0\}$ contains a ball $B_{\eta_0}(\varepsilon)$. Then the claim will follow from (SBP). Fix an increasing and concave path η_0 with $\eta_0(0) = s_0$. Since τ is lower semi-continuous we can find such an $\varepsilon < 1/2 (\eta_0(\tau(\eta_0)) - s_0)$ that $\tau(\eta) \ge 1/2 \tau(\eta_0)$ whenever $\eta \in B_{\eta_0}(\varepsilon)$. Since η_0 is increasing and concave

$$\begin{array}{ll} \eta(\tau(\eta)) &> & \eta_0(\tau(\eta)) - 1/2 \; (\eta_0(\tau(\eta_0)) - s_0) \\ &\geq & \eta_0 \left(1/2 \, \tau(\eta_0) \right) - 1/2 \, \eta_0(\tau(\eta_0)) + 1/2 \, s_0 \\ &\geq & 1/2 \, \eta_0(0) + 1/2 \, s_0 = s_0. \end{array}$$

4. Arbitrage with wait-and-play

 The no-arbitrage result for take-the-money-and-run strategies is unfortunately not enough to ensure no-arbitrage for simple strategies:

4. Arbitrage with wait-and-play

 The no-arbitrage result for take-the-money-and-run strategies is unfortunately not enough to ensure no-arbitrage for simple strategies:

Example

Consider the Black-Scholes model with the following twist: Let $\alpha > s_0$ be some level, $\tau = \inf\{t; S_t \ge \alpha\} \land T$, and let $T_0 \subset [0, T)$ be some measurable set for which $P[\tau \in T_0] \in (0, 1)$. Assume that the stock price follows the Black-Scholes model until τ . Then, if $\tau \in T_0$ the stock price will follow a fixed path η_0 such that $\eta_0(T) > \eta_0(\tau)$. (Of course we assume that η_0 has the correct quadratic variation). If $\tau \notin T_0$, then the stock price will continue to follow the Black-Scholes model.

4. Arbitrage with wait-and-play

 The no-arbitrage result for take-the-money-and-run strategies is unfortunately not enough to ensure no-arbitrage for simple strategies:

Example

Consider the Black-Scholes model with the following twist: Let $\alpha > s_0$ be some level, $\tau = \inf\{t; S_t \ge \alpha\} \land T$, and let $T_0 \subset [0, T)$ be some measurable set for which $P[\tau \in T_0] \in (0, 1)$. Assume that the stock price follows the Black-Scholes model until τ . Then, if $\tau \in T_0$ the stock price will follow a fixed path η_0 such that $\eta_0(T) > \eta_0(\tau)$. (Of course we assume that η_0 has the correct quadratic variation). If $\tau \notin T_0$, then the stock price will continue to follow the Black-Scholes model.

Now $1_{\{\tau \in T_0\}} 1_{(\tau,T]}(t)$ is an arbitrage opportunity.

Definition

A market model $(\Omega, \mathcal{F}, \mathcal{F}_t, P, S)$ satisfies conditional small ball property if for all \mathcal{F}_t -stopping times τ , all $\varepsilon > 0$ and all positive continuous functions η with $\eta(\tau) = S_{\tau}$

$$(\text{CSBP}) \qquad P\big[\sup_{t\in[\tau,T]}|S_t-\eta(t)|\leq \epsilon\,\big|\,\mathcal{F}_\tau\big]>0 \qquad P-\text{a.s.}$$

Definition

A market model $(\Omega, \mathcal{F}, \mathcal{F}_t, P, S)$ satisfies conditional small ball property if for all \mathcal{F}_t -stopping times τ , all $\varepsilon > 0$ and all positive continuous functions η with $\eta(\tau) = S_{\tau}$

$$(\text{CSBP}) \qquad P\big[\sup_{t\in[\tau,T]}|S_t-\eta(t)| \leq \epsilon \,\big|\,\mathcal{F}_\tau\big] > 0 \qquad P-\text{a.s.}$$

Theorem

Suppose $(\Omega, \mathcal{F}, \mathcal{F}_t, P, S)$ satisfies (CSBP). Then

 $P[S_{\tau_2} > S_{\tau_1} | \mathcal{F}_{\tau_1}] > 0$ and $P[S_{\tau_2} < S_{\tau_1} | \mathcal{F}_{\tau_1}] > 0$

P-almost surely for all \mathcal{F}_t -stopping times $\tau_1 < \tau_2$. Consequently simple strategies are free of arbitrage.

Proof.

The proof of the claim

$$P[S_{\tau_2} > S_{\tau_1} | \mathcal{F}_{\tau_1}] > 0$$
 and $P[S_{\tau_2} < S_{\tau_1} | \mathcal{F}_{\tau_1}] > 0$

is similar to the take-the-money-and-run case. One merely replaces the unconditional probabilities with conditional ones.

Proof.

The proof of the claim

$$P[S_{\tau_2} > S_{\tau_1} | \mathcal{F}_{\tau_1}] > 0 \quad \text{ and } \quad P[S_{\tau_2} < S_{\tau_1} | \mathcal{F}_{\tau_1}] > 0$$

is similar to the take-the-money-and-run case. One merely replaces the unconditional probabilities with conditional ones. The freedom of arbitrage for simple strategies

$$\Phi_t = \sum_{i=1}^n \Phi^i \mathbb{1}_{(t_{i-1}, t_i]}(t)$$

follows now from the simple fact that in finite-step model a strategy is an arbitrage opportunity if and only if it is an arbitrage opportunity in some single step.

• The following proposition can be used to verify (CSBP).

• The following proposition can be used to verify (CSBP).

Proposition

Let X and Y be independent continuous stochastic processes. Suppose X satisfies (CSBP0): For all $\varepsilon > 0$ and $\eta : [0, T] \to \mathbb{R}$ such that $\eta(\tau) = X_{\tau}$

(CSBP0)
$$P\left[\sup_{t\in[\tau,T]}|X_t-\eta(t)|\leq \epsilon \left|\mathcal{F}_{\tau}^{X}\right]>0 \quad P-a.s.$$

Then X + Y satisfies (CSBP0) (with \mathcal{F}_t^{X+Y} -stopping times, and $\eta(\tau) = X_{\tau} + Y_{\tau}$).

Proof.

The proof is based on two ideas:

Proof.

The proof is based on two ideas:

 Conditional expectation is a strictly positive operator. Hence, it is enough to show that

$$P\left[\sup_{t\in[\tau,T]}|X_t+Y_t-\eta(t)|\leq \epsilon \left|\mathcal{F}^{X,Y}_{\tau}\vee\mathcal{F}^{Y}_{T}\right]>0\right]$$

P-almost-surely, where τ is $\mathcal{F}_t^{X,Y}$ -stopping time.

Proof.

The proof is based on two ideas:

 Conditional expectation is a strictly positive operator. Hence, it is enough to show that

$$P\left[\sup_{t\in[\tau,T]}|X_t+Y_t-\eta(t)|\leq \epsilon \left|\mathcal{F}_{\tau}^{X,Y}\vee\mathcal{F}_{T}^{Y}\right]>0\right]$$

P-almost-surely, where τ is $\mathcal{F}_t^{X,Y}$ -stopping time.

Since X and Y are independent we can take the path Y to be a "known parameter" in the conditional probability above. Then the claim follows from the conditional small ball property of X in the ball centered around the path η – Y. (τ(·, Y) is F^X_t-stopping time.)

Thank you for listening!

Any questions?