Representations of Gaussian bridges

Tommi Sottinen, University of Helsinki

Joint work with

Dario Gasbarra, University of Helsinki

Esko Valkeila, Helsinki University of Technology

DYNSTOCH Workshop 2004, June 3 — 5, 2004 in Copenhagen,

Denmark



Contents

Brownian bridge

General anticipative representation

Abstract non-anticipative representation

Bridges of Gaussian martingales

Bridges of Wiener predictable processes

Bridges of Volterra processes



Brownian bridge

Let o = (0,&) — (T,0)
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Here
Law(W°; P) = Law(W;P°),
P° = P(|WT — (9)
Setting 8 = W we see that (sde) is the semimartingale de-

composition of W in the the filtration .7-"tWO V o{W2} and

W is a Brownian motion in this filtration.



General anticipative representation
Let X be Gaussian with mean p and covariance R. Then
X° = X|Xp = 60 is Gaussian with with
E(X¢Xr=0) =

R(T, t)
R(T, t)

(O0—p(T)) + u(t),

COV(Xt,XS|XT = 9) =

R(T,t)R(T, s)
- R(T,T)

R(t, s)

From the orthogonal decomposition of X given X1 we obtain

an anticipative representation for any Gaussian bridge:

. R(T,t) R(T. 1)
t _eR(T,T) T < YTR(T, T T> |




Abstract non-anticipative representation

|dea is to use the prediction martingale m of X and the Gir-

sanov's theorem.
Assumptions:
(AO) Filtration of X is continuous

(Al) P? ~ Py forall t < T.

(A2) The non-anticipative linear functional
Fr: X¢— my = B(X7|FY)

IS Injective



Abstract non-anticipative representation, cont.
Denote (m)7; = (m)1 — (m)+.

By using the Bayes' rule and It6's formula we see that

dP? = LodP;,

where
log Ly =
t 9 — Mg 1 t 0 — Mg 2
/ dms — — d(m)s.
0 <m>T,s 2J0 <m>T,s

Let So(m) be the solution of
0 —my?

<m>T,t

dm? = dmy + d(m);, mg =2,
my = So(m)s =

(m)¢
(m)T

t dms

CAH (0-O) L+ () |

0 <m>T,S .



Abstract non-anticipative representation, cont.,

cont.

By using the Girsanov's theorem we see that if X satisfies (A0),
(A1) and (A2) then

X°=F;1 08,0 Fp(X).

This representation is non-anticipative.



Bridges of Gaussian martingales

Let M be a continuous Gaussian martingale with strictly in-
creasing bracket (M) and Mgy = €.

dMP = th+9<A_4>]\£d<M>t, Mg =&,
MP = €+ (0=t + ) ) &]\fT
M = 0 (Mt_ <<AA44>>;MT>'
Moreover, we have
EM = ¢+~ 0"
Cov(M7, ME) = (M)yns— =02

To see this just note that R(t,s) = (M )¢as and Frp is, of

course, the identity.



Bridges of Wiener predictable processes

Assume:

t
(A3)  my = /O pr(t, s)dXs,

t
(A4) Xt:/op*T(t, s)dmg.

Given (AO0) [cts. filtration], (A1) [P{ ~ Py], (A3) and (A4):

pr(t,s)
<m>T,s

XP = X+ /O t {9 - /O SpT(s,u>dX{z} d(m)s.

o _ o B(T\1)
ETUR(T, T

t
+ X /O 7 (t, s)dXs,

¢T(t7 8) —

/St {/Su pT(UQ’S)d(m>v ~ pr(u,s) } pi(t, u)d{m)a.

<m>T,U <m>T,u
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Bridges of Volterra processes

(A5) There exists a Volterra kernel k and a continuous Gaussian
martingale M with strictly increasing bracket (M) such that

t
Xt=/0 k(t, $)dMs.

Let K extend 11q 4) — k(t,-) linearly and assume:

(A6) The equation Kf = 1q ;) has a solution.
(A7) The equation Kg = 1[07t)k(T, -) has a solution.

By (A6) we may set k*(¢t,s) = K_ll[ojﬂ(s) we have

t
Mtz/ol-c*(t,s)dXS.

Since
dmy = k(T,t)d My,
we have
L)
= m
' 0 k(T,s) i

10



Bridges of Volterra processes, cont.
By (A7) we have
t
me = X; +/O Wo(t, $)dXs,

Wop(t,s) =K1 [1[0775)1«(:& -)] (s).

So, we have found that

d(m)y = k(T,t)*d(M)y,

pr(t,s) = Lligp(s) +Wr(t,s),
\ _ k()
pT(tas) - ]{‘(T, S).

These functions are known explicitly if X is, for example, the

fractional Brownian motion or the Riemann-Liouville process
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