NON-SEMIMARTINGALES IN FINANCE Pricing and Hedging Options with Quadratic Variation

Tommi Sottinen

University of Vaasa

1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology REASONS AGAINST NON-SEMIMARTINGALES:

- In stochastic finance one needs integration theory to define self-financing trading strategies.
- The semimartingale theory for integration is well-suited for stochastic finance.
- Also, since semimartingales are the largest class of integrators that have continuous integrals, one expects arbitrage with non-semimartingales.
- It is an economic axiom that there should be no arbitrage.

REASONS FOR NON-SEMIMARTINGALES:

- Some stylized facts (e.g. long range dependence) are difficult to incorporate into the semimartingale world.
- Even with semimartingales one does not use actual probabilities (but the so-called equivalent martingale measure). So, the role of probability in stochastic finance is small, if it even exists. And semimartingale is a probabilistic concept.

- **1** Options, Their Pricing, and Hedging
- 2 Forward Integrals with Quadratic Variation
- **3** Classical Black–Scholes Model
- 4 Replication with Non-Semimartingales
- **5** NO-ARBITRAGE WITH NON-SEMIMARTINGALES

1 Options, Their Pricing, and Hedging

- 2 Forward Integrals with Quadratic Variation
- 3 Classical Black–Scholes Model
- **4** Replication with Non-Semimartingales
- 5 NO-ARBITRAGE WITH NON-SEMIMARTINGALES

Options, Their Pricing, and Hedging Assets

Let $(B_t)_{t \in [0,T]}$ be the bond, or BANK ACCOUNT. We work in the discounted world:

$$B_t = 1$$
 for all $t \in [0, T]$.

The bank account is **RISKLESS**, i.e. non-random.

Let $S = (S_t)_{t \in [0,T]}$ be the STOCK. The stock is RISKY, i.e. random.

- CLASSICAL ASSUMPTION: S is a (continuous) semimartingale, typically the GEOMETRIC BROWNIAN MOTION.
- **2** OUR ASSUMPTION: *S* is continuous and has QUADRATIC VARIATION (We elaborate what we mean by quadratic variation later.)

Options, Their Pricing, and Hedging Options

DEFINITION (OPTION)

OPTION is simply a real-valued mapping $S \mapsto G(S)$. The asset S is the UNDERLYING of the option G.

EXAMPLE

•
$$G = (S_T - K)^+$$
 is a CALL-OPTION,

•
$$G = (K - S_T)^+$$
 is a PUT-OPTION,

•
$$G = S_T - K$$
 is a FUTURE.

T is the time of maturity and K is the strike-price.

OPTIONS, THEIR PRICING, AND HEDGING TRADING STRATEGIES

Definition (Self-financing Trading Strategy)

TRADING STRATEGY $\Phi = (\Phi_t)_{t \in [0,T]}$ is an *S*-adapted stochastic process that tells the units of the underlying asset *S* the investor has is her portfolio at any time $t \in [0, T]$. The WEALTH of a SELF-FINANCING trading strategy Φ satisfies the FORWARD DIFFERENTIAL

$$\mathrm{d}V_t(\Phi) = \Phi_t \,\mathrm{d}S_t. \tag{1}$$

Remark

(1) corresponds to the BUDGET CONSTRAINT

$$V_{t+\Delta t} = \Phi_t S_{t+\Delta t} + (V_t - \Phi_t S_t).$$

OPTIONS, THEIR PRICING, AND HEDGING REPLICATION OR HEDGING

Replication principle is used to hedge and price options.

DEFINITION (REPLICATION PRINCIPLE)

Let G be an option. Suppose that there is a trading strategy Φ with wealth $V_t(\Phi)$ at time t such that $G = V_T(\Phi)$ at time T. Then the price of the option G at time t is $V_t(\Phi)$.

The replication requirement $G = V_T(\Phi)$ can be written as

$$G = V_t(\Phi) + \int_t^T \Phi_s \,\mathrm{d}S_s,$$

where the integral is a FORWARD INTEGRAL (to be defined properly in the next section).

Options, Their Pricing, and Hedging Arbitrage

No-arbitrage principle can be used to price options.

DEFINITION (ARBITRAGE)

Arbitrage is a self-financing trading strategy Φ such that $V_0(\Phi) = 0$, $\mathbf{P}[V_T(\Phi) \ge 0] = 1$, and $\mathbf{P}[V_T(\Phi) > 0] > 0$.

DEFINITION (NO-ARBITRAGE PRINCIPLE)

NO-ARBITRAGE PRICE of an option is any price that does not induce arbitrage into the market when the option is considered as a new asset.

Options, Their Pricing, and Hedging Arbitrage

Remark

- If an option has a replication price then its no-arbitrage price must be the same. Otherwise one could make arbitrage by buying or selling the option with the no-arbitrage price and then replicating the option (or the "minus option"). The price difference would be arbitrage.
- It is possible in theory that an option has a replication price but no no-arbitrage prices. It this case the market already has arbitrage.
- It is also possible to have no-arbitrage prices, but no replication prices. In this case there are many no-arbitrage prices.

1 Options, Their Pricing, and Hedging

- 2 Forward Integrals with Quadratic Variation
- 3 Classical Black-Scholes Model
- **4** Replication with Non-Semimartingales
- 5 NO-ARBITRAGE WITH NON-SEMIMARTINGALES

FORWARD INTEGRALS WITH QUADRATIC VARIATION FORWARD INTEGRAL

DEFINITION (FORWARD INTEGRAL)

Let (Π_n) be a sequence of partitions of [0, T] such that

$$\operatorname{mesh}(\Pi_n) = \sup_{t_k \in \Pi_n} |t_k - t_{k-1}| \rightarrow 0, \quad n \rightarrow \infty.$$

FORWARD INTEGRAL of f w.r.t. g on [0, T] is

$$\int_0^T f(t) dg(t) = \lim_{n \to \infty} \sum_{t_k \in \Pi_n} f(t_{k-1}) (g(t_k) - g(t_{k-1})).$$

FORWARD INTEGRAL of f w.r.t. g on $[a, b] \subset [0, T]$ is

$$\int_a^b f(t) \,\mathrm{d}g(t) = \int_0^T f(t) \mathbf{1}_{[a,b]}(t) \,\mathrm{d}g(t).$$

FORWARD INTEGRALS WITH QUADRATIC VARIATION EXISTENCE OF FORWARD INTEGRALS

Remark

- The existence (and maybe even the value) of forward integral depends on the particular choice of the sequence of partitions.
- In what follows the sequence of partitions is assumed to be refining.
- The forward integral is a pathwise (almost sure) Ito integral if the sequence of partitions is chosen properly and the integrator is a semimartingale.
- In general case there is nothing the will a priori ensure the existence of the forward integral.
- We will see soon that if the integrator has quadratic variation then certain kind of forward integrals will exist.

FORWARD INTEGRALS WITH QUADRATIC VARIATION QUADRATIC VARIATION

DEFINITION (QUADRATIC VARIATION)

Let (Π_n) be a sequence of (refining) partitions of [0, T] such that $\operatorname{mesh}(\Pi_n) \to 0$. QUADRATIC VARIATION of f on [0, t] is

$$\left\langle f \right\rangle(t) \;=\; \lim_{n o \infty} \sum_{t_k \in \Pi_n, t_k \leq t} \left(f(t_k) - f(t_{k-1})\right)^2.$$

Remark

QUADRATIC COVARIATION can be defined in the same way or by using the POLARIZATION FORMULA

$$\langle f,g\rangle = \frac{1}{4}(\langle f+g\rangle - \langle f-g\rangle).$$

FORWARD INTEGRALS WITH QUADRATIC VARIATION Rules for Quadratic Variation

Lemma

Let f and g be continuous quadratic variation functions.

- **I** For standard Brownian motion $\langle W \rangle_t = t$ a.s., if the sequence of partitions is refining.
- **2** If f is smooth then $\langle f \rangle = 0$.
- **B** If $\langle g \rangle = 0$ then $\langle f + g \rangle = \langle f \rangle$.

If f is smooth then

$$\langle f \circ g \rangle (t) = \int_0^t f'(g(s))^2 d\langle g \rangle(s).$$

5 If $\langle g \rangle = 0$ then $\langle f, g \rangle = 0$.

FORWARD INTEGRALS WITH QUADRATIC VARIATION RULES FOR QUADRATIC VARIATION

Proof.

Item 1 This is a well-know fact from stochastic analysis (and too tedious to prove here).

Item 2 follows from the mean value theorem:

$$\begin{split} \sum \left(f(t_k) - f(t_{k-1})\right)^2 \\ &=: \sum \left(\Delta f(t_k)\right)^2 \\ &= \sum \left(f'(\xi_k)\right)^2 (t_k - t_{k-1})^2 \\ &\leq 4 \|f'\|_\infty^2 \mathrm{mesh}(\Pi_n) t. \end{split}$$

FORWARD INTEGRALS WITH QUADRATIC VARIATION Rules for Quadratic Variation

Proof.

Item 3 follows from Cauchy-Schwarz inequality:

$$egin{aligned} &\sum \left(\Delta(f+g)
ight)^2 \ &= &\sum \left(\Delta f+\Delta g
ight)^2 \ &= &\sum \left(\Delta f
ight)^2 + \sum \left(\Delta g
ight)^2 + 2\sum \Delta f\Delta g \ &\leq &\sum \left(\Delta f
ight)^2 + \sum \left(\Delta g
ight)^2 + 2\sqrt{\sum \left(\Delta f
ight)^2 \sum \left(\Delta g
ight)^2}. \end{aligned}$$

Item 4 follows from the mean value theorem:

$$(\Delta f(g(t_k)))^2 = f'(g(\xi_k))^2 (\Delta g(t_k))^2.$$

Item 5 follows directly from the Cauchy-Schwarz inequality.

FORWARD INTEGRALS WITH QUADRATIC VARIATION ITO FORMULA FOR QUADRATIC VARIATION

THEOREM (ITO'S FORMULA)

Let $X = (X^1, ..., X^n)$ be a.s. continuous quadratic covariation process, and let $f : \mathbb{R}^n \to \mathbb{R}$ be smooth. Then, a.s.,

$$\mathrm{d}f(X_t) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(X_t) \mathrm{d}X_t + \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x^i \partial x^j}(X_t) \mathrm{d}\langle X^i, X^j \rangle_t.$$

Proof.

Taylor is all you need!

FORWARD INTEGRALS WITH QUADRATIC VARIATION ITO FORMULA FOR QUADRATIC VARIATION

Remark

- The Ito formula implies that the forward integral exists and has a continuous modification.
- The Ito formula for quadratic variation processes is formally the same as the Ito formula for the continuous semimartingales.
- The differences between the forward world and the semimartingale worlds are:
 - The existence of the quadratic variation (limit in probability) is guaranteed for semimartingales.
 - In the forward world the integrals are always defined a.s.

- **1** Options, Their Pricing, and Hedging
- 2 Forward Integrals with Quadratic Variation
- **3** Classical Black–Scholes Model
- **4** Replication with Non-Semimartingales
- 5 NO-ARBITRAGE WITH NON-SEMIMARTINGALES

Let W be the standard Brownian motion.

DEFINITION (BLACK-Scholes Model)

In the Classical $\ensuremath{\underline{\mathsf{BLACK}}}-\ensuremath{\underline{\mathsf{SCHOLES}}}$ model the stock price process is a geometric Brownian motion

$$S_t = S_0 e^{\mu t - \sigma^2/2t + \sigma W_t},$$

or as an Ito differential

$$\mathrm{d}S_t = S_t \left(\mu \,\mathrm{d}t + \sigma \,\mathrm{d}W_t \right).$$

CLASSICAL BLACK-SCHOLES MODEL

DEFINITION (COMPLETENESS)

A market model is **COMPLETE** if all options can be replicated with a self-financing trading strategy.

Theorem

The Black–Scholes market model is complete (at least for L^2 -options).

Proof.

This follows from the martingale representation theorem.

CLASSICAL BLACK-SCHOLES MODEL NO-ARBITRAGE

Theorem

The Black–Scholes market model is free of arbitrage (for tame strategies).

Proof.

This follows from the fact that Ito integrals are (proper) martingales for tame integrators.

Remark

There is arbitrage in the Black–Scholes model with e.g. doubling strategies. (The proponents of semimartingale approach do not like to talk too much about it.)

- **1** Options, Their Pricing, and Hedging
- 2 Forward Integrals with Quadratic Variation
- 3 Classical Black–Scholes Model
- 4 Replication with Non-Semimartingales
- 5 NO-ARBITRAGE WITH NON-SEMIMARTINGALES

REPLICATION WITH NON-SEMIMARTINGALES Black-Scholes BPDE

Let $G = g(S_T)$ be a path-independent option. (We can consider more complicated options. We talk about them later in the final section.)

Assume that

$$\mathrm{d} \langle S \rangle_t = \sigma^2 S_t^2 \mathrm{d} t \tag{2}$$

Remark

The classical Black–Scholes model satisfies (2).

Let

$$\mathrm{d}S_t = S_t \left(\mu \mathrm{d}t + \sigma W_t + \nu Z_t \right),$$

where Z is a fractional Brownian motion with H > 1/2. This model also satisfies (2), but now S is no longer a semimartingale.

REPLICATION WITH NON-SEMIMARTINGALES BLACK-SCHOLES BPDE

By Ito formula, if v(t, x) is the solution to BLACK-SCHOLES BPDE

$$\frac{\partial v}{\partial t}(t,x) - \frac{\sigma^2}{2}x^2\frac{\partial^2 v}{\partial x^2}(t,x) = 0$$

with boundary condition v(T, x) = g(x), then

$$V_t(\Phi) = v(t, S_t)$$

and

$$\Phi_t = \frac{\partial v}{\partial x}(t, S_t).$$

REPLICATION WITH NON-SEMIMARTINGALES The Feynman-Kac Connection

Remark

Note that the prices and replications of (path-independent) options were derived from the quadratic variation property. **PROBABILITY** DOES NOT COME INTO IT!

Remark

It is true, by the FEYNMAN-KAC FORMULA, that

$$v(t,x) = \mathbf{E}\left[g\left(xe^{\sigma W_{T-t}-\frac{\sigma^2}{2}(T-t)}\right)\right],$$

where W is the standard Brownian motion. This does not IMPLY THAT S is geometric Brownian motion of even LOG-NORMAL!

- **1** Options, Their Pricing, and Hedging
- 2 Forward Integrals with Quadratic Variation
- **3** Classical Black–Scholes Model
- **4** Replication with Non-Semimartingales
- **5** NO-ARBITRAGE WITH NON-SEMIMARTINGALES

NO-ARBITRAGE WITH NON-SEMIMARTINGALES THE BIG PICTURE

- No-arbitrage and completeness are opposite requirements: the more you want to hedge the more sophisticated trading strategies you must allow. The more sophisticated trading strategies you allow the more candidates for arbitrage you have.
- In classical semimartingale theory completeness and arbitrage is attained in the class of either integrable enough or bounded from below strategies.
- In the quadratic variation world we would then like to identify a class of strategies that is
 - **1** Big enough to contain hedges for relevant options.
 - **2** Small enough to exclude arbitrage opportunities.
 - **3** Economically meaningful.

At this moment we propose the following class of **SMOOTH STRATEGIES**:

$$\Phi_t = \varphi(t, S_t, g^1(t, S), \dots g^n(t, S)),$$

where φ is smooth and g^{i} 's are HINDSIGHT FACTORS:

1
$$g^{i}(\cdot, S)$$
 is S-adapted.
2 $g^{i}(\cdot, S)$ is continuous bounded variation process.
3 $\left|\int_{0}^{t} f(u) dg^{i}(u, S) - \int_{0}^{t} f(u) dg^{i}(u, \tilde{S})\right| \leq K \|f\|_{\infty} \|S - \tilde{S}\|_{\infty}.$

NO-ARBITRAGE WITH NON-SEMIMARTINGALES THE STATUS QUO

DEFINITION (STOPPING-SMOOTH)

Trading strategy is **STOPPING-SMOOTH** if it is of the form

$$\Phi_t = \sum_{k=1}^n \Phi_t^k \mathbf{1}_{(\tau_k, \tau_{k+1}]}(t),$$

where Φ^k 's are smooth and the stopping times τ_k are locally continuous.

A function f is LOCALLY CONTINUOUS at point x if there exist an open set U such that $x \in \overline{U}$ and $f(x_n) \to f(x)$ whenever $x_n \in U$.

NO-ARBITRAGE WITH NON-SEMIMARTINGALES THE STATUS QUO

Theorem

There are no arbitrage opportunities in the class of stopping-smooth strategies if *S* has conditional full support:

$$\mathbf{P}\left[\sup_{s\in[t,T]}|S_t-\eta|\leq\varepsilon\Big|\mathcal{F}_t^S\right]>0$$

for all positive paths η s.t. $\eta(t) = S_t$.

- Bender, C., Sottinen, T. and Valkeila, E. (2008) Pricing by hedging and no-arbitrage beyond semimartingales. *Finance* and Stochastics **12**, 441–468
- Föllmer, H. (1980) Calcul d'Itô sans probabilités. Seminar on Probability XV.
- Sondermann, D. (2006) Introduction to stochastic calculus for finance. A new didactic approach. Lecture Notes in Economics and Mathematical Systems 579. Springer-Verlag, Berlin.