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Motivation
Why Use Non-Semimartingales in Finance?

Reasons against non-semimartingales:

In stochastic finance one needs integration theory to define
self-financing trading strategies.

The semimartingale theory for integration is well-suited for
stochastic finance.

Also, since semimartingales are the largest class of integrators
that have continuous integrals, one expects arbitrage with
non-semimartingales.

It is an economic axiom that there should be no arbitrage.

2 / 34



Motivation
Why Use Non-Semimartingales in Finance?

Reasons for non-semimartingales:

Some stylized facts (e.g. long range dependence) are difficult
to incorporate into the semimartingale world.

Even with semimartingales one does not use actual
probabilities (but the so-called equivalent martingale
measure). So, the role of probability in stochastic finance is
small, if it even exists. And semimartingale is a probabilistic
concept.
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Options, Their Pricing, and Hedging
Assets

Let (Bt)t∈[0,T ] be the bond, or bank account. We work in the
discounted world:

Bt = 1 for all t ∈ [0,T ].

The bank account is riskless, i.e. non-random.

Let S = (St)t∈[0,T ] be the stock. The stock is risky, i.e.
random.

1 Classical assumption: S is a (continuous)
semimartingale, typically the geometric Brownian
motion.

2 Our assumption: S is continuous and has quadratic
variation (We elaborate what we mean by quadratic
variation later.)
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Options, Their Pricing, and Hedging
Options

Definition (Option)

Option is simply a real-valued mapping S 7→ G (S). The asset S
is the underlying of the option G .

Example

G = (ST − K )+ is a call-option,

G = (K − ST )+ is a put-option,

G = ST − K is a future.

T is the time of maturity and K is the strike-price.
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Options, Their Pricing, and Hedging
Trading strategies

Definition (Self-financing Trading Strategy)

Trading strategy Φ = (Φt)t∈[0,T ] is an S-adapted stochastic
process that tells the units of the underlying asset S the investor
has is her portfolio at any time t ∈ [0,T ]. The wealth of a
self-financing trading strategy Φ satisfies the forward
differential

dVt(Φ) = Φt dSt . (1)

Remark

(1) corresponds to the budget constraint

Vt+∆t = ΦtSt+∆t + (Vt − ΦtSt) .
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Options, Their Pricing, and Hedging
Replication or Hedging

Replication principle is used to hedge and price options.

Definition (Replication principle)

Let G be an option. Suppose that there is a trading strategy Φ
with wealth Vt(Φ) at time t such that G = VT (Φ) at time T .
Then the price of the option G at time t is Vt(Φ).

The replication requirement G = VT (Φ) can be written as

G = Vt(Φ) +

∫ T

t
Φs dSs ,

where the integral is a forward integral (to be defined
properly in the next section).
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Options, Their Pricing, and Hedging
Arbitrage

No-arbitrage principle can be used to price options.

Definition (Arbitrage)

Arbitrage is a self-financing trading strategy Φ such that
V0(Φ) = 0, P[VT (Φ) ≥ 0] = 1, and P[VT (Φ) > 0] > 0.

Definition (No-Arbitrage Principle)

No-Arbitrage Price of an option is any price that does not
induce arbitrage into the market when the option is considered as a
new asset.
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Options, Their Pricing, and Hedging
Arbitrage

Remark

If an option has a replication price then its no-arbitrage price
must be the same. Otherwise one could make arbitrage by
buying or selling the option with the no-arbitrage price and
then replicating the option (or the “minus option”). The price
difference would be arbitrage.

It is possible in theory that an option has a replication price
but no no-arbitrage prices. It this case the market already has
arbitrage.

It is also possible to have no-arbitrage prices, but no
replication prices. In this case there are many no-arbitrage
prices.
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Forward Integrals with Quadratic Variation
Forward Integral

Definition (Forward Integral)

Let (Πn) be a sequence of partitions of [0,T ] such that

mesh(Πn) = sup
tk∈Πn

|tk − tk−1| → 0, n→∞.

Forward integral of f w.r.t. g on [0,T ] is∫ T

0
f (t) dg(t) = lim

n→∞

∑
tk∈Πn

f (tk−1) (g(tk)− g(tk−1)) .

Forward integral of f w.r.t. g on [a, b] ⊂ [0,T ] is∫ b

a
f (t) dg(t) =

∫ T

0
f (t)1[a,b](t) dg(t).
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Forward Integrals with Quadratic Variation
Existence of Forward Integrals

Remark

The existence (and maybe even the value) of forward integral
depends on the particular choice of the sequence of partitions.

In what follows the sequence of partitions is assumed to be
refining.

The forward integral is a pathwise (almost sure) Ito integral if
the sequence of partitions is chosen properly and the
integrator is a semimartingale.

In general case there is nothing the will a priori ensure the
existence of the forward integral.

We will see soon that if the integrator has quadratic variation
then certain kind of forward integrals will exist.
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Forward Integrals with Quadratic Variation
Quadratic Variation

Definition (Quadratic Variation)

Let (Πn) be a sequence of (refining) partitions of [0,T ] such that
mesh(Πn)→ 0. Quadratic variation of f on [0, t] is

〈f 〉 (t) = lim
n→∞

∑
tk∈Πn,tk≤t

(f (tk)− f (tk−1))2 .

Remark

Quadratic covariation can be defined in the same way or by
using the polarization formula

〈f , g〉 =
1

4
(〈f + g〉 − 〈f − g〉) .
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Forward Integrals with Quadratic Variation
Rules for Quadratic Variation

Lemma

Let f and g be continuous quadratic variation functions.

1 For standard Brownian motion 〈W 〉t = t a.s., if the sequence
of partitions is refining.

2 If f is smooth then 〈f 〉 = 0.

3 If 〈g〉 = 0 then 〈f + g〉 = 〈f 〉.
4 If f is smooth then

〈f ◦ g〉 (t) =

∫ t

0
f ′
(
g(s)

)2 d〈g〉(s).

5 If 〈g〉 = 0 then 〈f , g〉 = 0.
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Forward Integrals with Quadratic Variation
Rules for Quadratic Variation

Proof.

Item 1 This is a well-know fact from stochastic analysis (and too
tedious to prove here).

Item 2 follows from the mean value theorem:∑
(f (tk)− f (tk−1))2

=:
∑

(∆f (tk))2

=
∑(

f ′(ξk)
)2

(tk − tk−1)2

≤ 4‖f ′‖2
∞mesh(Πn)t.
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Forward Integrals with Quadratic Variation
Rules for Quadratic Variation

Proof.

Item 3 follows from Cauchy–Schwarz inequality:∑
(∆(f + g))2

=
∑

(∆f + ∆g)2

=
∑

(∆f )2 +
∑

(∆g)2 + 2
∑

∆f ∆g

≤
∑

(∆f )2 +
∑

(∆g)2 + 2
√∑

(∆f )2
∑

(∆g)2.

Item 4 follows from the mean value theorem:

(∆f (g(tk)))2 = f ′(g(ξk))2 (∆g(tk))2 .

Item 5 follows directly from the Cauchy–Schwarz inequality. 18 / 34



Forward Integrals with Quadratic Variation
Ito Formula for Quadratic Variation

Theorem (Ito’s Formula)

Let X = (X 1, . . . ,X n) be a.s. continuous quadratic covariation
process, and let f : Rn → R be smooth. Then, a.s.,

df (Xt) =
n∑

i=1

∂f

∂xi
(Xt)dXt +

1

2

n∑
i ,j=1

∂2f

∂x i∂x j
(Xt) d

〈
X i ,X j

〉
t
.

Proof.

Taylor is all you need!
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Forward Integrals with Quadratic Variation
Ito Formula for Quadratic Variation

Remark

The Ito formula implies that the forward integral exists and
has a continuous modification.

The Ito formula for quadratic variation processes is formally
the same as the Ito formula for the continuous
semimartingales.

The differences between the forward world and the
semimartingale worlds are:

The existence of the quadratic variation (limit in probability) is
guaranteed for semimartingales.
In the forward world the integrals are always defined a.s.
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Classical Black–Scholes Model
The Model

Let W be the standard Brownian motion.

Definition (Black–Scholes Model)

In the Classical Black–Scholes model the stock price process
is a geometric Brownian motion

St = S0eµt−σ2/2t+σWt ,

or as an Ito differential

dSt = St (µdt + σ dWt) .
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Classical Black–Scholes Model
Completeness

Definition (Completeness)

A market model is complete if all options can be replicated with
a self-financing trading strategy.

Theorem

The Black–Scholes market model is complete (at least for
L2-options).

Proof.

This follows from the martingale representation theorem.
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Classical Black–Scholes Model
No-Arbitrage

Theorem

The Black–Scholes market model is free of arbitrage (for tame
strategies).

Proof.

This follows from the fact that Ito integrals are (proper)
martingales for tame integrators.

Remark

There is arbitrage in the Black–Scholes model with e.g. doubling
strategies. (The proponents of semimartingale approach do not
like to talk too much about it.)
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Replication with Non-Semimartingales
Black–Scholes BPDE

Let G = g(ST ) be a path-independent option. (We can consider
more complicated options. We talk about them later in the final
section.)

Assume that
d 〈S〉t = σ2S2

t dt (2)

Remark

The classical Black–Scholes model satisfies (2).

Let
dSt = St (µdt + σWt + νZt) ,

where Z is a fractional Brownian motion with H > 1/2. This
model also satisfies (2), but now S is no longer a
semimartingale.
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Replication with Non-Semimartingales
Black–Scholes BPDE

By Ito formula, if v(t, x) is the solution to Black-Scholes
BPDE

∂v

∂t
(t, x)− σ2

2
x2∂

2v

∂x2
(t, x) = 0

with boundary condition v(T , x) = g(x), then

Vt(Φ) = v(t,St)

and

Φt =
∂v

∂x
(t, St).
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Replication with Non-Semimartingales
The Feynman–Kac Connection

Remark

Note that the prices and replications of (path-independent) options
were derived from the quadratic variation property. Probability
does not come into it!

Remark

It is true, by the Feynman–Kac formula, that

v(t, x) = E

[
g

(
xeσWT−t−σ2

2
(T−t)

)]
,

where W is the standard Brownian motion. This does not
imply that S is geometric Brownian motion of even
log-normal!
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No-Arbitrage with Non-Semimartingales
The big picture

No-arbitrage and completeness are opposite requirements: the
more you want to hedge the more sophisticated trading
strategies you must allow. The more sophisticated trading
strategies you allow the more candidates for arbitrage you
have.

In classical semimartingale theory completeness and arbitrage
is attained in the class of either integrable enough or bounded
from below strategies.

In the quadratic variation world we would then like to identify
a class of strategies that is

1 Big enough to contain hedges for relevant options.
2 Small enough to exclude arbitrage opportunities.
3 Economically meaningful.
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No-Arbitrage with Non-Semimartingales
The Status Quo

At this moment we propose the following class of smooth
strategies:

Φt = ϕ(t,St , g
1(t,S), . . . gn(t,S)),

where ϕ is smooth and g i ’s are hindsight factors:

1 g i (·,S) is S-adapted.

2 g i (·,S) is continuous bounded variation process.

3

∣∣∣∫ t
0 f (u)dg i (u,S)−

∫ t
0 f (u)dg i (u, S̃)

∣∣∣ ≤ K‖f ‖∞‖S − S̃‖∞.
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No-Arbitrage with Non-Semimartingales
The Status Quo

Definition (Stopping-Smooth)

Trading strategy is stopping-smooth if it is of the form

Φt =
n∑

k=1

Φk
t 1(τk ,τk+1](t),

where Φk ’s are smooth and the stopping times τk are locally
continuous.

A function f is locally continuous at point x if there exist an
open set U such that x ∈ Ū and f (xn)→ f (x) whenever xn ∈ U.
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No-Arbitrage with Non-Semimartingales
The Status Quo

Theorem

There are no arbitrage opportunities in the class of
stopping-smooth strategies if S has conditional full support:

P

[
sup

s∈[t,T ]
|St − η| ≤ ε

∣∣∣FS
t

]
> 0

for all positive paths η s.t. η(t) = St .
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