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The setting

Consider a fluid queue serving at unit rate.
The input process Z = (Zt : t ∈ IR) is

• centred Gaussian with stationary incre-
ments

• Z0 = 0 and the variance function σ2 is
regularly varying at infinities with index
H ∈ (0,1), i.e. for all t ∈ IR

lim
α→∞

σ2(αt)

σ2(α)
= t2H .

The storage process V = (Vt : t ∈ IR) is

Vt = sup
s≤t

(Zt − Zs − (t− s)) .

We are interested in the excursions of V

(busy periods) and V0 (queue length).

The large deviations of these are known in
the case of fractional Brownian motion.
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Fractional Brownian motion (fBm)

The fractional Brownian motion B = BH can

be characterised by the following properties:

it is continuous, Gaussian, centred, of sta-

tionary increments and self-similar with a pa-

rameter (Hurst index) H ∈ (0,1), i.e.

(Bat : t ∈ IR)
d
= (aHBt : t ∈ IR).

Alternatively, one can give the covariance

function

Cov(Bt, Bs) =
1

2

(
t2H + s2H + |t− s|2H

)
.

If H > 1/2 the increments of B are positively

correlated, if H < 1/2 they are negatively

correlated. The case H = 1/2 corresponds

the standard Brownian motion.
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Convergence to fBm

Set

Z
(α)
t =

1

σ(α)
Zαt.

Lemma Z(α) converges to fBm in finite di-
mensional distributions.

Proof Obviously VarZ(α)
t → t2H . Hence

Cov(Z(α)
s , Z

(α)
t )

=
1

2

(
VarZ(α)

s + VarZ(α)
t + VarZ(α)

t−s

)
→

1

2

(
t2H + s2H + |t− s|2H

)
.

Since we are in the centred Gaussian case the
claim follows. QED

Define (Ω, ‖ · ‖) by

Ω =

{
ω ∈ C(IR) : ω0 = 0 = lim

|t|→∞

ωt

1 + |t|

}

‖ω‖ = sup
t∈IR

|ωt|
1 + |t|

.
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Convergence to fBm, cont.

Define a majorising variance and the associ-
ated metric entropy integral

σ̄(t) = sup
α≥1

sup
s≤t

σ2(αt)

σ2(α)

J(k, T ) =

k∫
0

(
ln

(
T

σ̄−1(ε)
+ 1

))1
2

dε.

Assumptions C: J(σ̄(T ), T ) < ∞ for all T and
B: there exists a sequence xk ↑ ∞ such that

∞∑
k=T

1

1 + xk
< ∞

∞∑
k=1

J(σ̄(∆xk,∆xk)

1 + xk
< ∞

imply (more or less)

IP

 sup
|t−s|<ε

|Z(α)
t − Z

(α)
s | > δ

 ≤ exp

(
−δ2

σ̄2(ε)

)

IP

sup
t≥T

|Z(α)
t |

1 + t
> ε

 ≤ exp
(
−ε2T

)
.
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Convergence to fBm, cont., cont.

Lemma Z(α) is tight in (Ω, ‖ · ‖) iff

lim
δ↓0

sup
α≥1

IP

 sup
|t−s|<δ

|Z(α)
t − Z

(α)
s | > ε

 = 0

lim
T→∞

sup
α≥1

IP

 sup
|t|≥T

|Z(α)
t |

1 + |t|
> ε

 = 0.

Theorem Z(α) converges to fBm weakly in

(Ω, ‖ · ‖).

Example The input traffic is composed of

n independent streams, each of which is a

fBm, with different Hurst indexes, i.e.

Z =
n∑

k=1

akBHk.

Counterexample ?
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Large deviations

Definition A scaled family
(
X(α), v(α)

)
sat-

isfies the large deviations principle (LDP) in

(Ω, ‖ · ‖) with rate function I : Ω → [0,∞] if

for each closed F ⊂ Ω and open G ⊂ Ω

limsup
α→∞

1

v(α)
ln IP

(
X(α) ∈ F

)
≤ − inf

ω∈F
I(ω)

lim inf
α→∞

1

v(α)
ln IP

(
X(α) ∈ G

)
≥ − inf

ω∈G
I(ω)

Set v(α) = α2

σ2(α)
and consider the family(

1√
v(α)

Z(α), v(α)
)

. (1)

Lemma The family (1) satisfies the LDP

on Ω equipped with the topology of pointwise

convergece with the rate function

I(x) = sup
p

1

2

〈
Γ−1

p p(x), p(x)
〉

(2)

where p is a finite dimensional projection on

Ω and Γp is the covariance matrix of p(fBm).
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Large deviations, cont.

Definition A scaled family
(
X(α), v(α)

)
is

exponentially tight in (Ω, ‖·‖) if for each ` > 0

there exists a compact set K` such that

lim sup
α→∞

1

v(α)
ln IP

(
X(α) 6∈ K`

)
≤ −`.

Theorem The family (1) satisfies the LDP

on (Ω, ‖ · ‖) with the rate function (2).

“Proof” Assumptions C and B imply the ex-

ponential tightness. The LPD can hence be

lifted to the norm topology by means of the

inverse contraction principle. QED
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Large buffer and busy period

asymptotics

Set Qx = {V0 ≥ x} and

A = sup{t ≤ 0 : Vt = 0},
B = inf{T ≥ 0 : Vt = 0},

KT = {A < 0 < B} ∩ {B −A > T}.

Theorem

lim
x→∞

σ2(x)

x2
ln IP(Z ∈ Qx) = − inf

ω∈Q1
I(ω).

Proof Since

IP(Z ∈ Qx) = IP(sup
t≤0

(Zxt − xt) ≥ x)

= IP(sup
x≤0

( 1√
v(α)

Z
(α)
t − t) ≥ 1)

= IP( 1√
v(α)

Z(α) ∈ Q1)

the claim follows from the LDP and the fact

that infω∈Q̄1
I(ω) = infω∈Q◦

1
I(ω). QED
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Large buffer and busy period

asymptotics, cont.

Theorem

lim
T→∞

σ2(T )

T2
ln IP(Z ∈ KT ) = − inf

ω∈K1
I(ω).

Proof Since

IP(Z ∈ KT ) = IP( 1√
v(α)

Z(α) ∈ K1)

the claim follows from the LDP and the fact

that infω∈K̄1
I(ω) = infω∈K◦

1
I(ω). QED
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