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Abstract

Volatility plays a fundamental rôle in econometric modelling and in
option pricing. However, it seems that it is not clear what it is.

To illustrate the problem we construct a toy-model that
incorporates long-range dependence and heavy tails to the
standard Black–Scholes model while keeping the replication prices
of options unchanged.

So, the volatility as the pricing parameter is the same as in the
classical Black–Scholes model, but the historical volatility
(standard deviation) is not the same as in the Black–Scholes
model. Indeed, the historical volatility may not even exist.
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Abstract

The moral of the story is

The historical volatility and the implied volatility need not
have anything in common.

The probabilistic properties of the pricing model are mostly
irrelevant in option-pricing.

The talk is based on C. Bender, T. Sottinen, and E.
Valkeila (2008): Pricing by hedging and no-arbitrage beyond
semimartingales. Finance and Stochastics, forthcoming.
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Toy Model
Ingredients

We consider discounted markets with one risky asset given by
the mixed model

St = s0 exp
{
µt + σWt −

σ

2
t + δBH

t − Iα1
t + Iα2

t

}
,

where

BH is a fractional Brownian motion with Hurst index
H > 0.5.

Iαi ’s are integrated compound Poisson processes
with positive heavy-tailed jumps:

Iαi
t =

∫ t

0

∑
k:τ i

k≤s

U i
k ds,

τ i
k ’s are Poisson arrivals and P[U i

k > x ] ∼ x−αi .

W , BH , Iα1 , and Iα2 are independent.
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Toy Model
Stylized Facts

Stylized facts for the returns Rt in the mixed model:

1 Long-range dependence: If Iαi ’s are in L2 then

Cor[R1,Rt ] ∼ δ2H(2H − 1)t2H−2.

2 Heavy tails: P[−Rt > x ] & x−α1 and P[Rt > x ] & x−α2 .

3 Gain/Loss asymmetry: Obvious if α1 < α2.

4 Jumps: No, but can you tell the difference between jumps
and heavy tails from a discrete data?

5 Volatility clustering: What is volatility? If volatility is
standard deviation, we can get any kind of volatility
structure: Change the Poisson arrivals to clustered arrivals. If
volatility (squared) is the so-called quadratic variation
then it is fixed to constant σ2.
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Hedging with Quadratic Variation
Forward Integrals

The forward integral is economically meaningful in the context of
self-financing strategies:

Let (πn) is a fixed sequence of, say, dyadic partitions of [0,T ].
Then the Forward Integral∫ t

0
Φu dSu

(along the sequence of partitions (πn)) is the P-a.s. forward-sum
limit

lim
n→∞

∑
tk∈πn
tk≤t

Φtk−1

(
Stk − Stk−1

)
(when it exists).
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Hedging with Quadratic Variation
Quadratic Variation

Let (πn) is a fixed sequence of, say, dyadic partitions of [0,T ].
Then the Quadratic Variation

〈S〉t
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Hedging with Quadratic Variation
Quadratic Variation

Some formulas for Quadratic Variation:

1 If 〈Y 〉 = 0, then 〈X + Y 〉t = 〈X 〉t ;

2 If X is differentiable, then 〈X 〉t = 0;

3 〈∫ ·
0

f (Xu)dXu

〉
t

=

∫ t

0
f (Xu)2d 〈X 〉u ;

4

〈g ◦ X 〉t =

∫ t

0
g ′(Xu)d 〈X 〉u .
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Hedging with Quadratic Variation
Itô’s Lemma

Theorem

Let f ∈ C1,2([0,T ],R+). If S has quadratic variation then we have
the Itô formula

df (t, St) = ft(t,S)dt + fx(t,S)dSt +
1

2
fxx(t, St)d 〈S〉t

Proof.

Taylor is all you need.

Remark

Itô’s formula implies that the forward integral on the right hand
side exists and has a continuous modification.
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Hedging with Quadratic Variation
Black–Scholes BPDE

Theorem

Let F (ST ) be a European option with maturity T . Let f (t,St)
satisfy the Black-Scholes BPDE

ft(t, x) +
σ2x2

2
fxx(t, x) = 0, f (T , x) = F (x).

Then fx(t, St) is the Delta-hedge for F (ST ) and f (0, s0) is the
price of the option.

Proof.

Note that d 〈S〉t = σ2S2
t dt, and then Itô is all you need.
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Hedging with Quadratic Variation
On Girsanov and Feynman-Kac

1 We did not deal with any Equivalent Martingale Measures
here. So, there are no Girsanov restrictions to the drift
of S .

2 The Feynman-Kac connection to BPDEs tells us that

f (t, x) = E
[
F (S̃T )

∣∣ S̃t = x
]
,

where S̃ is the Geometric Brownian Motion. This is true
despite of the facts that our toy model is not log-normal, and
the returns are not independent.
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Toy Model’s Volatility
Historical Volatility

Let Rk ’s be the log-returns

Rk = log
Sk

Sk−1
, k = 1, 2, . . . .

Then
Var[Rk ] = σ2 + δ2 + v2

k1 + v2
k2,

where v2
k1, v

2
k2 →∞ (possibly already +∞ for finite k) are

the variances of the increments of Iα1 and Iα2 .

We have that

1

n

n∑
k=1

(
Rk −

1

n

n∑
k=1

Rk

)2

→ σ2 + δ2 > σ2

if the non-Gaussian parts vanish, and otherwise we do not
have convergence at all.
So, historical volatility 6= quadratic variation.
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Toy Model’s Volatility
Implied Volatility

The options’ prices with toy-model are given by replication
prices.

So, the implied volatility is the quadratic
variation σ2.

The implied volatility is independent of the
“smooth” parts BH , Iα1, and Iα2 .

The quadratic variation is independent of probabilistic
properties.

Probability is irrelevant in option pricing and replication.
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Toy Model’s Volatility
Estimating Volatility

So, implied volatility is quadratic variation.

A näıve approach to estimate the implied volatility historically
would then be to use

σ̂2
n =

1

2n

2n∑
k=1

(
RkT/2n− 1

2n

2n∑
k=1

RkT/2n

)2

.

So, in estimating variance one lets time go to infinity, while in
estimating quadratic variation one lets time-increments go to
zero.

With financial time series the näıve historical volatility
estimation does not work: There is no price process in the
microscopic level!
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