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The setting

Consider a queue fed by a zero mean Gaus-

sian process with stationary increments and

regularly varying variance function with index

2H, i.e.

VarZt = L(t)|t|2H .

Here H ∈ (0,1) and L is an even function

satisfying

lim
α→±∞

L(αt)

L(α)
= 1

for all t > 0.

The normalised Gaussian storage is

Vt := sup
−∞<s≤t

(Zt − Zs − (t− s)) .

Thus V is a stationary process indicating the

storage occupancy when the service rate is

one.

The busy periods of the storage are the pos-

itive excursions of V.
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The setting, cont.

Let C(R) be the space of continuous func-

tions over R. As the underlying probability

space take

Ω :={
ω ∈ C(R) : ω(0) = 0, lim

t→±∞
ω(t)

1 + |t|
= 0

}
equipped with the norm

‖ω‖Ω := sup
t∈R

|ω(t)|
1 + |t|

and the corresponding Borel σ-algebra. The

Probability measure P on Ω is such that

ω(t) = Zt(ω).

(we give later assumptions on L so that

Z(ω) ∈ Ω.)
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The case of fractional Brownian

motion

If L ≡ 1 then Z is a fractional Brownian mo-

tion (fBm), i.e. a centred Gaussian process

with covariance function

R(t, s) =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
.

Let H be the Reproducing Kernel Hilbert

Space (RKHS) of Z, i.e. the space of func-

tions f : R → R defined by letting

Zt 7→ R(t, ·)

span an isometry from the linear space of Z

onto H.

Remark H ⊂ Ω as a set and the topology in

H is finer that that of Ω.
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The case of fBm, cont.

The generalised Shilder’s theorem states:

Theorem 1 The function

I(ω) =

{
1
2‖ω‖

2
H, if ω ∈ H,
∞, otherwise,

is a good rate function for Z and

lim sup
α→∞

α−1 lnP(α−
1
2Z ∈ F ) ≤ − inf

ω∈F
I(ω),

lim inf
α→∞ α−1 lnP(α−

1
2Z ∈ G) ≥ − inf

ω∈F
I(ω),

for all F ⊂ Ω closed and G ⊂ Ω open, i.e.

(α−
1
2Z, α)α≥1 satisfies the Large Deviations

Principle (LDP) on Ω with rate function I.
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Conditions on L

Let σ̄ be a majorising variance

σ̄2(t) := sup
0<s<t

sup
α≥1

L(αs)

L(α)
s2H

and let J be the metric entropy integral

J(κ, T ) :=
∫ κ

0

(
ln

(
T

2σ̄(−1)(u)
+ 1

))1
2
du.

Assume

C J(σ̄(T ), T ) < ∞ for all T > 0.

B there exists a sequence (xk)k∈N increasing
to infinity such that for all T ∈ N

dT :=
∞∑

k=T

c(xk)σ̄(xk) < ∞,

∞∑
k=1

c(xk)J(σ̄(∆xk),∆xk) < ∞,

where ∆xk := xk+1 − xk and c(x) = 1
1+x.

Remark C and B imply Z(ω) ∈ Ω.
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Convergence and LDP of Z

Define a family (Z(α))α≥1 by

Z
(α)
t :=

1

αHL(α)
1
2

Zαt.

Assumptions C and B yield

Theorem 2 The processes (Z(α))α≥1 con-

verge weakly in Ω to a fBm.

On the proof The finite dimensional conver-

gence is obvious. Assumptions C and B are

needed to prove that the family (Z(α))α≥1 is

tight in Ω. �
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Application to busy periods, cont.

Theorem 3 The scaled familyL(α)
1
2

α1−H
Z(α) ,

α2−2H

L(α)


α≥1

satisfies LDP on Ω with the rate function I

of a fBm.

On the proof Fix a vector t = (t1, . . . , td)

and denote

Z(α) :=
(
Z

(α)
t1

, . . . , Z
(α)
td

)
.

Let Λ(α) be the logarithm of the moment

generating function of L(α)
1
2αH−1Z(α) :

Λ(α)(u) := lnE exp

〈
u,

L(α)
1
2

α1−H
Z(α)

〉
.
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Application to busy periods, cont,

cont.

It is easy to see that

α2−2H

L(α)
Λ(α)(u) →

1

2
〈Γu,u〉 ,

where Γ is the covariance of

B =
(
B

(α)
t1

, . . . , B
(α)
td

)
and B is a fBm with index H. Then, for the
Fenchel–Legendre tranform we have

Λ∗(x) = sup
u∈Rd

(ux− Λ(u))

=
1

2

〈
Γ−1x,x

〉
=

1

2
‖x‖2H.

The LDP in Ω equipped with projective limit
topology follows now from the Gärtner–Ellis
theorem.

For the full LDP on Ω we need the so-called
exponential tightness which follows from as-
sumption C and B. �
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Application to busy periods

Recall the storage process

Vt(ω) := sup
−∞<s≤t

(ω(t)− ω(s)− (t− s)) .

The busy period containing 0 is the stochas-

tic interval

[A, B] :=

[sup{t ≤ 0 : Vt = 0} , inf{t ≥ 0 : Vt = 0}] ,

if A < 0 < B. Otherwise the system is not

busy at time 0.

Denote by

KT := {A < 0 < B, B −A > T}

the set of paths for which the ongoing busy

period at 0 is strictly longer than T.
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Application to busy periods, cont.

Lemma For any T ≥ 1

P (Z ∈ KT ) = P

L(T )
1
2

T1−H
Z(T ) ∈ K1

 .

proof

P
(
Z ∈ KT

)
= P

(
∃a < 0, b > (a + T )+∀t ∈ (a, b) :

Zt − Za > t− a
)

= P
(
∃a < 0, b > (a + 1)+∀t ∈ (a, b) :

ZTt − ZTa > Tt− Ta
)

= P
(
∃a < 0, b > (a + 1)+∀t ∈ (a, b) :

T−1(ZTt − ZTa) > t− a
)

= P
(
L(T )

1
2TH−1Z(T ) ∈ K1

)
.

�
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Application to busy periods, cont.,

cont.

Theorem 4

lim
T→∞

L(T )

T2−2H
lnP(Z ∈ KT ) = − inf

ω∈K1
I(ω),

where infω∈K1
I(ω) ∈ [12,

c2H
2 ], and

c2H =
1

H(2H − 1)(2− 2H)B(H − 1
2,2− 2H)

.

Remark One can numerically find arbitrar-
ily good approximations to infω∈K1

I(ω) using
RKHS techniques.

Example Suppose the traffic is composed
of independent fBm streams with different
Hurst indices, i.e.

Z =
n∑

k=1

akBHk.

Then assumptions C and B are satisfied and

L(T )

T2−2H
=

n∑
k=1

a2
kT2Hk−2.
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