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The setting

Consider a queue fed by a zero mean Gaus-
sian process with stationary increments and
regularly varying variance function with index
2H, i.e.

VarZzZ; = L(t)|t|2H.
Here H € (0,1) and L is an even function
satisfying

. L(at)
ozlr:rt]oo L(a) o

for all ¢t > 0.
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The normalised Gaussian storage is
Vi i= sup (Zy—Zs—(t—3s)).
—o00<s<t
Thus V is a stationary process indicating the
storage occupancy when the service rate is
one.

The busy periods of the storage are the pos-
itive excursions of V.



The setting, cont.

Let C(R) be the space of continuous func-
tions over R. As the underlying probability
space take

Q=

{wEC(R):w(O)zO, im W —o}

t—tool 4+ [t|
equipped with the norm

t
[wlig = sup <t
teR 1+ |¢|

and the corresponding Borel o-algebra. The
Probability measure P on €2 is such that
w(t) = Zy(w).

(we give later assumptions on L so that
Z(w) € 2.)



T he case of fractional Brownian

motion

If L =1 then Z is a fractional Brownian mo-
tion (fBm), i.e. a centred Gaussian process
with covariance function

1
R(t,s) = 2 (1tPH + [P — 1o — s?).

Let 'H be the Reproducing Kernel Hilbert
Space (RKHS) of Z, i.e. the space of func-
tions f : R — R defined by letting

Zt = R(t7 )

span an isometry from the linear space of Z
onto H.

Remark H C €2 as a set and the topology in
‘H is finer that that of 2.



The case of fBm, cont.
The generalised Shilder’'s theorem states:

Theorem 1 The function

1 .
I(w) = §||w||72_(, if we H,
oo, Otherwise,

IS @ good rate function for Z and

1
imsupa ' InP(a"2Z € F) < — inf I(w),

a—00 o weF

1
iminfa "l InP(a 2Z € G) > — inf I(w),
o—00 weF

for ?II F C Q closed and G C 2 open, i.e.
(" 2Z,a)>1 satisfies the Large Deviations
Principle (LDP) on €2 with rate function I.



Conditions on L

Let 0 be a majorising variance
L
52(75) ‘= sSup sup (as)szH
O<s<ta>1 L(Oé)
and let J be the metric entropy integral

L K T %
J(k,T) ._/O (m (25(_1)(u)+1>> du.

Assume

C J(o(T),T) < oo for all T > 0.

B there exists a sequence (z)rcn iNCreasing
to infinity such that for all T'e N

dp = i c(xp)o(xy) < oo,
k=T

> clag)J(a(Amy), Axy) < oo,

k=1

where Axy = xp41 — and c(x) = 1_}_33.

Remark C and B imply Z(w) € Q.



Convergence and LDP of Z

Define a family (Z(O‘))azl by
1

Za.
ol L(a)2

Zt(o‘) =

Assumptions C and B vyield

Theorem 2 The processes (Z(O‘))azl con-
verge weakly in €2 to a fBm.

On the proof The finite dimensional conver-
gence is obvious. Assumptions C and B are
needed to prove that the family (Z(O‘))azl is
tight in €2. []



Application to busy periods, cont.

Theorem 3 The scaled family

satisfies LDP on €2 with the rate function I
of a fBm.

On the proof Fix a vector t = (t1,...,ty)
and denote

7.() - — (Zt(la), L Zt(;‘)) .

Let A(®) be the logarithm of the moment
generating function of L(a)2afi—17(a) .

A () = .nEexp< L(O‘)_z(a>>



Application to busy periods, cont,
cont.

It is easy to see that

ol2—2H 1

= A®w) - Z(ru,u
oy AP — S (ruw,

where I is the covariance of
_ (o) (a)
B = (Btl ,...,Btd )

and B is a fBm with index H. Then, for the
Fenchel—-Legendre tranform we have

AN (x) = sup (ux — A(u))
ucRd
_ L/
o
1.2
— §||X||H-

The LDP in €2 equipped with projective limit
topology follows now from the Gartner—Ellis
theorem.

For the full LDP on 2 we need the so-called
exponential tightness which follows from as-
sumption C and B. []



Application to busy periods

Recall the storage process

Vilw) := sup (w(t) —w(s)—(t—3s)).

—o0<s<t

The busy period containing O is the stochas-
tic interval

[A, B] :=
[sup{t <0 :V; =0}, inf{t >0:V, =0}],

if A < 0 < B. Otherwise the system is not
busy at time O.

Denote by
Kr ={A<0<B,B-A>T}

the set of paths for which the ongoing busy
period at O is strictly longer than 7.
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Application to busy periods, cont.

Lemma Forany T >1

1
_ L(T)2 (T
P(ZeKyp) =P (TlHZ( )€K1>.

proof
P(Z € Kr)

— P(aa <0,b>(a+T)TVt € (a,b) :
Ly — Lg >1T— a,)

— P(Ela <0,b> (a+ 1)Vt e (a,b):
Zry — Zrq > Tt — Ta)

— P(Ela <0,b> (a+ 1)Vt € (a,b):
T~ (Zr — Zrg) >t — a)

— P (L(T)%TH—12<T> c K1> |
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Application to busy periods, cont.,

cont.
T heorem 4
L(T) ,
Iim ——Z%=InP(Z € K = — inf [
T—oo T2—2H (Z € Kr) wEK1 (@),

2
where inf,cr, I(w) € [%,%H], and

1
H(2H — 1)(2 - 2H)B(H — 4,2 - 2H)

=

Remark One can numerically find arbitrar-
ily good approximations to inf ¢, I(w) using
RKHS techniques.

Example Suppose the traffic is composed
of independent fBm streams with different
Hurst indices, i.e.

n
Z =Y a,B".

k=1
Then assumptions C and B are satisfied and

L(r)y & o2T2H2

2—-2H
T k=1
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