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Aim and way

The fractional Brownian motion (fBm) is a
centred Gaussian process Z = (Zt)t∈[0,1] with
covariance

RH(t, s) =
1

2

(
t2H + s2H − |t− s|2H

)
.

Here H ∈ (0,1) is the so-called Hurst index.

Aim: We want to represent the fBm as

Zt =
∞∑

n=0

ϕn(t)ξn,

where ξn’s are i.i.d. standard Gaussian.

The convergence will be in L2(Ω) and almost
sure uniformly in t ∈ [0,1].

Way: To construct the functions ϕn we
take the following route:

Linear space
l

Reproducing kernel Hilbert space
l ← Power series expansion

L2([0,1])
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Linear space

Let X = (Xt)t∈[0,1] be a centred Gaussian

process. Its linear space H = H(X) is

H := clL2(Ω) span {Xt : t ∈ [0,1]} .

H is a Gaussian Hilbert space. If H separable,

then

Xt =
∞∑

n=1

IE(Xtξn)ξn in L2(Ω),

where (ξn)∞n=1 is a CONS in H, i.e ξn’s are

i.i.d standard Gaussian.

The convergence is almost sure for all t ∈
[0,1] (the martingale convergence theorem).

Problem: Find the coefficient functions

t 7→ IE(Xtξn) (and the corresponding CONS).
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Reproducing kernel Hilbert

space (RKHS)

Let R(t, s) = IE(XtXs). We construct a

Hilbert space by expanding the relation

Θ : Xt 7→ R(t, ·).

More precisely, set

S := span {R(t, ·) : t ∈ [0,1]} .

Define an inner product on S by expanding

〈R(t, ·), R(s, ·)〉R := R(t, s).

The Reproducing kernel Hilbert space R =

R(X) = R(R) is

R := cl〈·,·〉RS.

Θ is an isometry from R to H. If R is con-

tinuous then R (and hence H) is separable.
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Reproducing property and

series expansion

Let R be continuous. The space (S, 〈·, ·〉R)

has a reproducing property. Let

f =
n∑

k=1

akR(sk, ·) ∈ S.

Then

f(t) =
n∑

k=1

ak 〈R(sk, ·), R(t, ·)〉R

=

〈 n∑
k=1

akR(sk, ·), R(t, ·)
〉
R

= 〈f, R(t, ·)〉R .

This extends to R by separability.

Let (ϕn)∞n=0 be a CONS in R then

R(t, ·) =
∞∑

n=0

〈R(t, ·), ϕn〉Rϕn

=
∞∑

n=0

ϕn(t)ϕn.
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Reproducing property and series

expansion, cont.

If (ϕn)∞n=0 is a CONS in R then (Θ(ϕn))
∞
n=0

is a CONS in H, i.e. they are i.i.d. standard

Gaussian random variables. So,

Xt = Θ(R(t, ·))

= Θ

 ∞∑
n=1

ϕn(t)ϕn


=

∞∑
n=0

ϕn(t)Θ(ϕn)

=
∞∑

n=0

ϕn(t)ξn,

where ξn = Θ(ϕn) and

ϕn(t) = 〈R(t, ·), ϕn〉R = IE(Xtξn).

By Itô–Nisio theorem the representation is

a.s. uniform in t ∈ [0,1] iff X is continuous.

Problem: Find a CONS (ϕn)∞n=0 of R.
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RKHS and L2[0,1]

Suppose that R may be written as

R(t, s) =

1∫
0

k(t, x)k(s, x) dx

for some Volterra kernel k ∈ L2[0,1]2.

So we have an isometry

Ψ : L2[0,1]/KerΨ → R

by extending the relation

Ψ : k(t, ·) 7→ R(t, ·),

i.e

(Ψf)(t) =

1∫
0

k(t, x)f(x) dx.

If Ψ one-to-one then R is isometric to

L2[0,1].

In any case R (and thus H) is separable.
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L2[0,1] and series expansion

Let Ψ be one-to-one. We have the picture:

Ψ Θ
L2[0,1] −→ R −→ H
k(t, ·) 7→ R(t, ·) 7→ Xt

ϕ̃n 7→ ϕn 7→ ξn

For any CONS (ϕn)∞n=0 of R we had

Xt =
∞∑

n=1

ϕn(t)ξn

Let (ϕ̃n)∞n=1 be any CONS in L2[0,1] (many

examples known). The isometry Ψ yields

Xt =
∞∑

n=0

 1∫
0

k(t, x)ϕ̃n(x) dx

 · ξn,

where ξn = (Θ ◦Ψ)(ϕ̃n).

So we have a concrete series expansion if we

can calculate the integral for some CONS.
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The case of fBm

For fBm Z with Hurst index H we have

RH(t, s) =

1∫
0

zH(t, x)z(s, x) dx,

where z is the Volterra kernel

zH(t, s) = −cHs
1
2−H d

ds

t∫
s

xH−1
2(x− s)H−1

2 dx

and cH is a normalising constant.

Here ΨH is one-to-one. Indeed, there is a
“resolvent” kernel z∗H such that

(Ψ−1
H f)(t) =

1∫
0

z∗H(t, x)f(x) dx.

Unfortunately, the kernel zH is a nasty one: it
is not easy to calculate, or even approximate

1∫
0

zH(t, x)ϕ̃n(x) dx

for a given function ϕ̃n ∈ L2[0,1].
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(ΨHxβ)(t) = cH,βtH+1
2+β

(ΨHxβ)(t) =

t∫
0

zH(t, s)sβ ds

= −cH

t∫
0

s
1
2−H d

ds

t∫
s

xH−1
2(x− s)H−1

2 dx sβ ds

= c′′H

t∫
0

t∫
s

xH−1
2(x− s)H−1

2 dxds
1
2−H+β

= c′′H,β

t∫
0

x∫
0

(x− s)H−1
2sβ−1

2−H ds xH−1
2 dx

= c′′H,β

t∫
0

1∫
0

(x−xu)H−1
2(xu)β−1

2−H xdu xH−1
2 dx

= c′H,β

t∫
0

xβ xH−1
2 dx = cH,β tH+1

2+β
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Polynomial representation

The shifted Legendre polynomials

ϕ̃poly
n (t) =

n∑
`=0

bn−`
2 c∑

k=0

dn,`,k t`

where

dn,`,k =
(−1)n−k−`

2n−`

(n

k

)(2n−2k

n

)(n−2k

`

)
form a CONS on L2[0,1]. So, we get a series

representation of fBm with

ϕpoly
n (t) = tH+1

2

n∑
`=0

bn−`
2 c∑

k=0

en,`,k,H t`

where

en,`,k,H = dn,`,k cH,n.

This approach does not seem to be compu-

tationally stable.
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Trigonometric representation

Since

ϕ̃trig
n (t) =

√
2cos(nπt)

=
√

2
∞∑

k=0

(−1)k(nπt)2k

(2k)!

we have a series representation of fBm with

ϕtrig
n (t)

=
cHΓ(1

2−H)

H + 1
2

tH+1
2 FH

(
−1

4(nπt)2
)

where FH is the hypergeometric function

FH = 3F4


5−2H

4 , 1+2H
4 , 3−2H

2

1 , 5+2H
4 , 1

2 , 1
2

; ·

 .
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