Power series series expansions of fractional Brownian motion

Tommi Sottinen, University of Helsinki

This is ongoing joint work with Hagen Gilsing, Humboldt University of Berlin.

Aim and way

The fractional Brownian motion (fBm) is a centred Gaussian process $Z = (Z_t)_{t \in [0,1]}$ with covariance

$$R_H(t,s) = \frac{1}{2} \left(t^{2H} + s^{2H} - |t-s|^{2H} \right).$$

Here $H \in (0, 1)$ is the so-called *Hurst index*.

Aim: We want to represent the fBm as

$$Z_t = \sum_{n=0}^{\infty} \varphi_n(t) \xi_n,$$

where ξ_n 's are i.i.d. standard Gaussian.

The convergence will be in $L^2(\Omega)$ and almost sure uniformly in $t \in [0, 1]$.

Way: To construct the functions φ_n we take the following route:

```
Linear space

\uparrow

Reproducing kernel Hilbert space

\uparrow \leftarrow Power series expansion

L^2([0,1])
```

2

Linear space

Let $X = (X_t)_{t \in [0,1]}$ be a centred Gaussian process. Its *linear space* $\mathcal{H} = \mathcal{H}(X)$ is

 $\mathcal{H} := \operatorname{cl}_{L^2(\Omega)} \operatorname{span} \{ X_t : t \in [0, 1] \}.$

 ${\mathcal H}$ is a Gaussian Hilbert space. If ${\mathcal H}$ separable, then

$$X_t = \sum_{n=1}^{\infty} \mathbb{E}(X_t \xi_n) \xi_n \quad \text{in } L^2(\Omega),$$

where $(\xi_n)_{n=1}^{\infty}$ is a CONS in \mathcal{H} , i.e ξ_n 's are i.i.d standard Gaussian.

The convergence is almost sure for all $t \in [0, 1]$ (the martingale convergence theorem).

Problem: Find the coefficient functions $t \mapsto \mathbb{E}(X_t \xi_n)$ (and the corresponding CONS).

Reproducing kernel Hilbert space (RKHS)

Let $R(t,s) = \mathbb{E}(X_tX_s)$. We construct a Hilbert space by expanding the relation

$$\Theta: X_t \mapsto R(t, \cdot).$$

More precisely, set

$$S := \text{span} \{ R(t, \cdot) : t \in [0, 1] \}.$$

Define an inner product on \mathcal{S} by expanding

$$\langle R(t,\cdot), R(s,\cdot) \rangle_{\mathcal{R}} := R(t,s).$$

The Reproducing kernel Hilbert space $\mathcal{R} = \mathcal{R}(X) = \mathcal{R}(R)$ is

$$\mathcal{R} := \mathsf{cl}_{\langle \cdot, \cdot \rangle_{\mathcal{R}}} \mathcal{S}.$$

 Θ is an isometry from \mathcal{R} to \mathcal{H} . If R is continuous then \mathcal{R} (and hence \mathcal{H}) is separable.

Reproducing property and series expansion

Let R be continuous. The space $(S, \langle \cdot, \cdot \rangle_R)$ has a *reproducing property*. Let

$$f = \sum_{k=1}^{n} a_k R(s_k, \cdot) \in \mathcal{S}.$$

Then

$$f(t) = \sum_{k=1}^{n} a_k \langle R(s_k, \cdot), R(t, \cdot) \rangle_{\mathcal{R}}$$
$$= \left\langle \sum_{k=1}^{n} a_k R(s_k, \cdot), R(t, \cdot) \right\rangle_{\mathcal{R}}$$
$$= \langle f, R(t, \cdot) \rangle_{\mathcal{R}}.$$

This extends to ${\mathcal R}$ by separability.

Let $(\varphi_n)_{n=0}^\infty$ be a CONS in $\mathcal R$ then

$$R(t, \cdot) = \sum_{n=0}^{\infty} \langle R(t, \cdot), \varphi_n \rangle_{\mathcal{R}} \varphi_n$$
$$= \sum_{n=0}^{\infty} \varphi_n(t) \varphi_n.$$

5

Reproducing property and series expansion, cont.

If $(\varphi_n)_{n=0}^{\infty}$ is a CONS in \mathcal{R} then $(\Theta(\varphi_n))_{n=0}^{\infty}$ is a CONS in \mathcal{H} , i.e. they are i.i.d. standard Gaussian random variables. So,

$$X_t = \Theta(R(t, \cdot))$$

= $\Theta\left(\sum_{n=1}^{\infty} \varphi_n(t)\varphi_n\right)$
= $\sum_{n=0}^{\infty} \varphi_n(t)\Theta(\varphi_n)$
= $\sum_{n=0}^{\infty} \varphi_n(t)\xi_n,$

where $\xi_n = \Theta(\varphi_n)$ and

$$\varphi_n(t) = \langle R(t, \cdot), \varphi_n \rangle_{\mathcal{R}} = \mathbb{E}(X_t \xi_n).$$

By Itô–Nisio theorem the representation is a.s. uniform in $t \in [0, 1]$ iff X is continuous.

Problem: Find a CONS $(\varphi_n)_{n=0}^{\infty}$ of \mathcal{R} .

RKHS and $L^2[0,1]$

Suppose that R may be written as

$$R(t,s) = \int_{0}^{1} k(t,x)k(s,x) \,\mathrm{d}x$$

for some Volterra kernel $k \in L^2[0, 1]^2$.

So we have an isometry

$$\Psi: L^2[0,1]/\mathsf{Ker}\Psi \to \mathcal{R}$$

by extending the relation

$$\Psi: k(t, \cdot) \mapsto R(t, \cdot),$$

i.e

$$(\Psi f)(t) = \int_{0}^{1} k(t, x) f(x) \,\mathrm{d}x.$$

If Ψ one-to-one then \mathcal{R} is isometric to $L^2[0,1]$.

In any case \mathcal{R} (and thus \mathcal{H}) is separable.

$L^2[0,1]$ and series expansion

Let Ψ be one-to-one. We have the picture:

For any CONS $(\varphi_n)_{n=0}^{\infty}$ of \mathcal{R} we had

$$X_t = \sum_{n=1}^{\infty} \varphi_n(t) \xi_n$$

Let $(\tilde{\varphi}_n)_{n=1}^{\infty}$ be any CONS in $L^2[0,1]$ (many examples known). The isometry Ψ yields

$$X_t = \sum_{n=0}^{\infty} \left[\int_{0}^{1} k(t, x) \tilde{\varphi}_n(x) \, \mathrm{d}x \right] \cdot \xi_n$$

where $\xi_n = (\Theta \circ \Psi)(\tilde{\varphi}_n)$.

So we have a concrete series expansion *if we can calculate the integral* for some CONS.

,

The case of fBm

For fBm Z with Hurst index H we have

$$R_H(t,s) = \int_0^1 z_H(t,x) z(s,x) \,\mathrm{d}x,$$

where z is the Volterra kernel

$$z_H(t,s) = -c_H s^{\frac{1}{2}-H} \frac{d}{ds} \int_s^t x^{H-\frac{1}{2}} (x-s)^{H-\frac{1}{2}} dx$$

and c_H is a normalising constant.

Here Ψ_H is one-to-one. Indeed, there is a "resolvent" kernel z_H^* such that

$$(\Psi_H^{-1}f)(t) = \int_0^1 z_H^*(t,x)f(x) \,\mathrm{d}x.$$

Unfortunately, the kernel z_H is a nasty one: it is not easy to calculate, or even approximate

$$\int\limits_{0}^{1} z_{H}(t,x) ilde{arphi}_{n}(x) \, \mathsf{d}x$$

for a given function $\tilde{\varphi}_n \in L^2[0, 1]$.

$$(\Psi_H x^\beta)(t) = c_{H,\beta} t^{H + \frac{1}{2} + \beta}$$

$$(\Psi_H x^\beta)(t) = \int_0^t z_H(t,s) s^\beta \,\mathrm{d}s$$

$$= -c_H \int_0^t s^{\frac{1}{2} - H} \frac{\mathrm{d}}{\mathrm{d}s} \int_s^t x^{H - \frac{1}{2}} (x - s)^{H - \frac{1}{2}} \mathrm{d}x \, s^\beta \, \mathrm{d}s$$

$$= c''_H \int_0^t \int_s^t x^{H-\frac{1}{2}} (x-s)^{H-\frac{1}{2}} dx \, ds^{\frac{1}{2}-H+\beta}$$

$$= c_{H,\beta}'' \int_{0}^{t} \int_{0}^{x} (x-s)^{H-\frac{1}{2}s^{\beta-\frac{1}{2}-H}} \,\mathrm{d}s \, x^{H-\frac{1}{2}} \,\mathrm{d}x$$

$$= c_{H,\beta}'' \int_{0}^{t} \int_{0}^{1} (x - xu)^{H - \frac{1}{2}} (xu)^{\beta - \frac{1}{2} - H} x \mathrm{d}u \, x^{H - \frac{1}{2}} \, \mathrm{d}x$$

$$= c'_{H,\beta} \int_{0}^{t} x^{\beta} x^{H-\frac{1}{2}} dx = c_{H,\beta} t^{H+\frac{1}{2}+\beta}$$

Polynomial representation

The shifted Legendre polynomials

$$\tilde{\varphi}_n^{\text{poly}}(t) = \sum_{\ell=0}^n \sum_{k=0}^{\lfloor \frac{n-\ell}{2} \rfloor} d_{n,\ell,k} t^{\ell}$$

where

$$d_{n,\ell,k} = \frac{(-1)^{n-k-\ell}}{2^{n-\ell}} \binom{n}{k} \binom{2n-2k}{n} \binom{n-2k}{\ell}$$

form a CONS on $L^2[0, 1]$. So, we get a series representation of fBm with

$$\varphi_n^{\text{poly}}(t) = t^{H+\frac{1}{2}} \sum_{\ell=0}^n \sum_{k=0}^{\lfloor \frac{n-\ell}{2} \rfloor} e_{n,\ell,k,H} t^{\ell}$$

where

$$e_{n,\ell,k,H} = d_{n,\ell,k} c_{H,n}.$$

This approach does not seem to be computationally stable.

Trigonometric representation

Since

$$\tilde{\varphi}_{n}^{\text{trig}}(t) = \sqrt{2} \cos(n\pi t) \\ = \sqrt{2} \sum_{k=0}^{\infty} (-1)^{k} \frac{(n\pi t)^{2k}}{(2k)!}$$

we have a series representation of fBm with $\varphi_n^{\rm trig}(t)$

$$= \frac{c_H \Gamma(\frac{1}{2} - H)}{H + \frac{1}{2}} t^{H + \frac{1}{2}} F_H \left(-\frac{1}{4} (n\pi t)^2 \right)$$

where F_H is the hypergeometric function

$$F_{H} = {}_{3}F_{4} \left(\begin{array}{c} \frac{5-2H}{4}, \frac{1+2H}{4}, \frac{3-2H}{2} \\ & ; \cdot \\ 1, \frac{5+2H}{4}, \frac{1}{2}, \frac{1}{2} \end{array} \right).$$

Literature

- Adler, R.J. An introduction to continuity, extrema, and related topics for general Gaussian processes. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 12. Institute of Mathematical Statistics, Hayward, CA, 1990.
- Janson, S. *Gaussian Hilbert spaces*. Cambridge Tracts in Mathematics, 129. Cambridge University Press, Cambridge, 1997
- Norros, I., Valkeila, E. and Virtamo, J. An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5, no. 4, 571–587, 1999.
- Pipiras, V. and Taqqu, M.S. Fractional calculus and its connections to fractional Brownian motion. *Theory and applications of long-range dependence*, 165–201, Birkhuser Boston, Boston, MA, 2003.
- Samko, S.G., Kilbas, A.A. and Marichev, O.I. Fractional integrals and derivatives. Theory and applications. Gordon and Breach Science Publishers, Yverdon, 1993.