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1. Aim

We consider Skorohod-type equations for fractional Brownian motion:

X (t) = X0 +

∫ t

0
f (r ,X (r))dr +

∫ t

0
g(r ,X (r)) δB(r).

Here δ denotes the Skorohod integral and B is a fractional Brownian
motion.

In general not much is known about such equations. Not even about
the existence of the solution.

We shall use the S-transform and Wick calculus to provide explicit
solutions in some special cases. Although the results are somewhat
modest we believe that our approach will turn out to be useful.
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2. Fractional Brownian motion

Fractional Brownian motion B = (B(t); t ∈ [0,T ]) is a centred
stationary-increment Gaussian process with self-similarity property

B(ct)
d
= cHB(t).

The parameter H ∈ (0, 1) is called the Hurst index.

It follows that

R(t, s) := E[B(t)B(s)] =
1

2

(
|t|2H + |s|2H − |t − s|2H

)
.
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3. Wiener integrals

Let H1 be the linear space of B, i.e. it is the closed span of random
variables B(t), t ∈ [0,T ], in L2(Ω).

Let H be the closure of the linear span of indicators 1[0,t], t ∈ [0,T ],
in the inner product 〈

1[0,t], 1[0,s]

〉
= R(t, s).

For f ∈ H the Wiener integral is the linear continuous extension of

I (1[0,t]) = B(t).

We also denote ∫ T

0
f (r) dB(r) := I (f ).
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4. Fractional Hilbert spaces (1/2)

For α ∈ (0, 1) introduce the fractional integro-differential operators:

Iα
−[f ](t) :=

1

Γ(α)

∫ T

t
f (r)(r − t)α−1 dr ,

I−α
− [f ](t) :=

1

1 − α

(
f (t)

(T − t)α
+ α

∫ T

t

f (t) − f (r)

(r − t)α+1
dr

)
.

Define twisted integro-differential operators:

K[f ](t) := cHt
1
2
−H I

H− 1
2

−

[
(·)H−

1
2 f (·)

]
(t),

K−1[f ](t) := c−1
H t

1
2
−H I

1
2
−H

−

[
(·)H−

1
2 f (·)

]
(t),

where c2
H = 2HΓ(3

2 − H)/(Γ(H + 1
2)Γ(2 − 2H)).
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4. Fractional Hilbert spaces (2/2)

Now, in ω-by-ω and L2(Ω) sense we have

B(t) =

∫ t

0
K

[
1[0,t]

]
(r) dW (r),

W (t) =

∫ t

0
K−1

[
1[0,t]

]
(r) dB(r),

where W is a standard Brownian motion.

It follows that H = K−1L2([0,T ]) and

〈f , g〉 =

∫ T

0
K[f ](r)K[g ](r) dr .

For H > 1
2 we can also write

〈f , g〉 =

∫ T

0

∫ T

0
f (r)g(r ′)φ(r , r ′) drdr ′,

where φ = ∂2R/∂r∂r ′.
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5. Malliavin calculus

The Malliavin derivative D is defined by inverting the Wiener integral
and by imposing a chain rule: If X = F (I (f1), . . . , I (fn)) then

DX =
n∑

i=1

∂F

∂xi
F (I (f1), . . . , I (fn)) · fi .

The Skorohod integral δ is the dual operator of D given by

E [δ(u)X ] = E [〈DX , u〉]

for all X . We shall also denote∫ T

0
u(r) δB(r) := δ(u).
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6. S-transform and Wick calculus (1/2)

S-transform is a kind of infinite-dimensional Fourier transform:

S [X ](η) := E
[
Xe I (η)− 1

2
‖h‖2

]
, η ∈ H and X ∈ L2(Ω).

S-transform is injective and S [B(t)](η) =
∫ t
0 η(r) dr .

Wick product is defined by S [X � Y ](η) = S [X ](η) · S [Y ](η).

S-transform depends on B but the Wick product does not.

Wick power is X �0 := 1 and X �(n+1) := X �n � X .

Wick exponent is e�X :=
∑∞

n=0
1
n!X

�n.

Hermite polynomial is Hn(x) := (−1)n

n! e
x2

2
dn

dxn e−
x2

2 .
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6. S-transform and Wick calculus (2/2)

Some rules:

1 e�I (f ) = e I (f )− 1
2‖f ‖

2

,
2 e�I (f ) � e�I (g) = e�I (f +g),
3 I (f )�n = ‖f ‖nHn(I (f )).

Connection between Wick product and Skorohod integral:∫ t

0
u(r) δB(r) = lim

n→∞

∑
ri∈πn

u(ri−1) � (B(ri ) − B(ri−1)) .

Connection between S-transform and Skorohod integral:

S

[∫ t

0
u(r) δB(r)

]
(η) =

∫ t

0
S [u(r)](η)η(r) dr .
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3 I (f )�n = ‖f ‖nHn(I (f )).

Connection between Wick product and Skorohod integral:∫ t

0
u(r) δB(r) = lim

n→∞

∑
ri∈πn

u(ri−1) � (B(ri ) − B(ri−1)) .

Connection between S-transform and Skorohod integral:

S

[∫ t

0
u(r) δB(r)

]
(η) =

∫ t

0
S [u(r)](η)η(r) dr .
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7. Dead-end approaches (1/2)

Picard iteration: We have only bounds with Malliavin derivative for
the Skorohod integral. The problem is that we get a vicious loop:

Ds [X (t)] = Ds [X0] +

∫ t

0

∂f

∂x
(r ,X (r))Ds [X (r)]dr

+g(s,X (s)) +

∫ t

0

∂g

∂x
(r ,X (r))Ds [X (r)] δB(r).

Forward integrals: For H > 1
2 we can write

X (t) = X0 +

∫ t

0
f (r ,X (r))dr +

∫ t

0
g(r ,X (r))dB(r)

+

∫ t

0

∫ t

0

∂g

∂x
(r ,X (r))Dr ′ [X (r)]φ(r , r ′) drdr ′.

Here the forward integral dB(r) in nice, but the correction term leads
to a vicious loop, as before.
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7. Dead-end approaches (2/2)

Transfer principle: We can write the equation with respect to a
standard Brownian motion

X (t) = X0 +

∫ t

0
f (r ,X (r))dr +

∫ t

0
K[g(·,X (·))](r) δW (r).

But K “looks into the future”. So, this approach does not seem to be
very useful.
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8. Affine equations (1/2)

Consider the affine equation

X (t) = X0 +

∫ t

0
f0(r) + f1(r)X (r) dr +

∫ t

0
g0(r) + g1(r)X (r) δB(r),

with f0, f1, g0, g1 ∈ H.

The solution to the affine equation is

X (t) = e�
R t
0 f1(r)dr+

R t
0 g1(r)δB(r)

�
(

X0 +

∫ t

0
e�−

R r
0 f1(r ′)dr ′−

R r
0 g1(r ′)δB(r ′)f0(r) dr

+

∫ t

0
e�−

R r
0 f1(r ′)dr ′−

R r
0 g1(r ′)δB(r ′)g0(r) δB(r)

)
,

where ‖g‖2(r , t) := ‖g1[r ,t]‖2 =
∫ t
r K[g ](r ′)2 dr .
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8. Affine equations (2/2)

If X0 is deterministic we can eliminate the Wick products:

X (t) = e
R t
0 f1(r)dr+

R t
0 g1(r)δB(r)− 1

2
‖g1‖2(0,t)X0

+

∫ t

0
e

R t
r f1(r ′)dr ′+

R t
r g1(r ′)δB(r ′)− 1

2
‖g1‖2(r ,t)f0(r) dr

+

∫ t

0
e

R t
r f1(r ′)dr ′+

R t
r g1(r ′)δB(r ′)− 1

2(‖g1‖2(0,t)+‖g1‖2(0,r))g0(r) δB(r).

Moreover, if H > 1
2 the Skorohod integral can be transfered to a forward

integral.

Idea of proof: Use the S-transform to get an ordinary non-homogeneous
linear equation for y(t) = S [X (t)](η) and solve it.
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9. Wick equations (1/2)

Suppose f = f (t, x) is entire in x , i.e. f (t, x) =
∑∞

n=0 fn(t)x
n. The Wick

function associated to f and a random variable X is

f �(t,X ) :=
∞∑

n=0

fn(t)X
�n.

Consider the Wick equation

X (t) = X0 +

∫ t

0
f �(r ,X (r))dr +

∫ t

0
g�(r ,X (r)) δB(r).

Suppose that there exists h = h(t, z) such that

∂h

∂t
(t, z) = f (t, h(t, z)) and

∂h

∂z
(t, z) = g(t, h(t, z)).

Assume further that h is entire in z.
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9. Wick equations (2/2)

The solution to the Wick equation is

X (t) = h�(t,B(t)) =
∞∑

n=0

hn(t)t
2HHn(B(t)).

The hn(t) can be solved iteratively from the coefficients fn(t) and gn(t).

Idea of proof: With the S-transform we have

S [f �(r , (X (r))](η) = f (r ,S [X (r)](η)).

So, we just need to find an entire solution to the ODE

y(t) = f (t, y(t)) + g(t, y(t))η(t)

of the type y(t) = h(t,
∫ t
0 η(r)dr). Then h�(t,B(t)) solves the Wick

equation.
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