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Disclaimer

In this talk I try to follow the Einstein’s Maxim:

Things should be made as simple as possible, but not
simpler.

This means that, as far as technical details are concerned, I will
cheat!
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Overture

Consider a Toy Model: Today’s stock price S0 is 100 ISK.
Tomorrow’s stock price S1 is 200 ISK with probability 90%
and 90 ISK with probability 10%:

S1 = 200 w.p. 90%
↗

S0 = 100
↘

S1 = 90 w.p. 10%

Mr. K. offers a European Call-Option: We get a right to buy
tomorrow the stock S with today’s price 100 ISK: Formula for
our profit is

f (S1) = (S1 − 100)+,

where x+ := max(x , 0).
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Overture

How much should we be willing to pay for the option
f (S1) = (S1 − 100)?

According to the Expectation Principle we should pay
the expected pay-off:

(200− 100)+ × 90% + (90− 100)+ × 10% = 90.

But if we pay 90 ISK, Mr. K. can do a follows: He takes a
bank loan of 10 ISK and buys one stock (he already got 90
ISK by selling the call-option). Now, if the stock price will go
up, Mr. K. gives us the stock in return of 100 ISK. After
paying his bank loan Mr. K. has made a profit of 90 ISK. If,
on the other hand, the stock will go down we will not exercise
our option. Now Mr. K. sells his stock in the market and after
paying his bank loan he has made a profit of 80 ISK.
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Overture

Mr. K. received riskless profit with zero capital. This is called
Arbitrage.

By the law of Supply and Demand there should not be
arbitrage in the market, for there is infinite demand for it.
Thus the expectation price for f (S1) = (S1 − 100)+ must be
too high.

By the way: The correct price in this case is 100/11 ISK. If
the price is higher then Mr. K. can generate arbitrage; if the
price is lower then we, the buyer, can generate arbitrage.

Actually, the arbitrage-free price is independent of the
probabilities of stock going up or down. This should be clear
from the fact that Mr. K.’s arbitrage strategy was
independent of probabilities.
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Acts

1 Trading Strategies

2 Pricing Principles: Replication and
No-Arbitrage

3 Fundamental Theorems of Asset Pricing

4 Replication in the Black-Scholes Model

5 Why Quadratic Variation, or Brownian
Motion

6 / 35



Acts

1 Trading Strategies

2 Pricing Principles: Replication and
No-Arbitrage

3 Fundamental Theorems of Asset Pricing

4 Replication in the Black-Scholes Model

5 Why Quadratic Variation, or Brownian
Motion

7 / 35



Trading Strategies

We take a giant leap from the one-step model considered in the
Overture to continuous-time models (omitting discrete-time
models completely).

There are two tradeable assets:

Definition (Bond and Stock)

The Bond, or bank account, B = (Bt)t∈[0,T ] is the riskless
asset. We assume that we live in the discounted world:
Bt = 1 for all t.

The Stock S = (St)t∈[0,T ] is the risky asset. It is random:
The prices St are not known before time t.
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Trading Strategies

Definition (Trading Strategy)

Trading Strategy is (πt)t∈[0,T ] = (βt , γt)t∈[0,T ]. Here βt tells
the amount of bonds and γt the amount of stocks the investor has
in her portfolio at time t. The amounts βt and γt can depend on
the price process S up to time t, but not on the future prices of S .

Definition (Value of a Self-Financing Strategy)

The Value of a trading strategy π at time t is Vt(π) = βt + γtSt .
Trading strategy is Self-Financing if

dVt(π) = γtdSt . (1)
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Trading Strategies

Remark (Self-financing and Budget Constraints)

In (1) the differentials are understood limits in the forward
sense: dSt ≈ St+∆ − St when ∆ > 0 is small.

Equation (1) is actually a budget constraint. Indeed, consider
it in discrete time points t < t + 1. Then says

Vt+1(π)− Vt(π) = γt (St+1 − St) ,

which is actually equivalent to

βt + γtSt = βt+1 + γt+1St .

This means that the value of the portfolio remain unchanged
when the portfolio if rebalanced and all the changes in the
value come from the changes of S .
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2 Pricing Principles: Replication and
No-Arbitrage

3 Fundamental Theorems of Asset Pricing
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Pricing Principles: Replication and
No-Arbitrage

Definition (Option)

An Option is simply a function of the underlying stock. We
consider here only European Vanilla Options, i.e. options
that are of the form f (ST ), where f : R → R is some function.

Definition (Replication Principle)

The Replication Price of f (ST ) is the initial capital V0(π)
needed to construct a self-financing trading strategy π for which

VT (π) = f (ST ).

Here π is the Replicating Portfolio.
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Pricing Principles: Replication and
No-Arbitrage

Remark (Replication)

Suppose we can write

f (ST ) = c +

∫ T

0
ξt dSt . (2)

Then c is the price of the option and the replicating portfolio π is
determined by: γt = ξt , β0 + γ0S0 = c , and βt is determined from
these and the fact that the portfolio is self-financing.

The key question is: Can one construct replicating portfolios, i.e.
representation of type (2) (in theory, in practise)?
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Pricing Principles: Replication and
No-Arbitrage

The idea of No-Arbitrage Principle is to consider the option as a
new asset and impose that there should be no arbitrage in the
market.

Definition (Arbitrage)

An Arbitrage is a trading strategy π with V0(π) = 0, Vt(π) ≥ 0
for all t and P[VT (π) > 0] > 0.

Let P = (Pt)t∈[0,T ] be a price process for the option f (ST ), i.e. Pt

is the price of the option f (ST ) at time t. (Obviously PT = f (ST ),
but it is P0 that we are interested in.)
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Pricing Principles: Replication and
No-Arbitrage

Definition (No-Arbitrage Principle)

P0 is an arbitrage-free price for f (ST ) if there is no such trading
strategy π = (β, γ, δ) satisfying the self-financing condition

dVt(π) = γtdSt + δtdPt

that π is an arbitrage.

Remark (Arbitrage Spread)

The problem with the no-arbitrage principle is that the price P0 is
not unique and the spreads turn out to be unrealistically wide.

15 / 35



Pricing Principles: Replication and
No-Arbitrage

Definition (No-Arbitrage Principle)

P0 is an arbitrage-free price for f (ST ) if there is no such trading
strategy π = (β, γ, δ) satisfying the self-financing condition

dVt(π) = γtdSt + δtdPt

that π is an arbitrage.

Remark (Arbitrage Spread)

The problem with the no-arbitrage principle is that the price P0 is
not unique and the spreads turn out to be unrealistically wide.

15 / 35



Acts

1 Trading Strategies

2 Pricing Principles: Replication and
No-Arbitrage

3 Fundamental Theorems of Asset Pricing

4 Replication in the Black-Scholes Model

5 Why Quadratic Variation, or Brownian
Motion

16 / 35



Fundamental Theorems of Asset Pricing

The fundamental theorems of asset pricing connect the economic
concepts of completeness (all options can be replicated) and
freedom of arbitrage to the probabilistic concept of equivalent
martingale measure.

Let F = (Ft)t∈[0,T ] be an Information Flow. (In our setting
Ft is the information generated by the prices Ss , s ≤ t.)

Definition (Martingale)

A process X = (Xt)t∈[0,T ] is a Martingale if E[Xt |Fs ] = Xs for
all s ≤ t.
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Fundamental Theorems of Asset Pricing

Remark (Efficient Market Hypothesis)

Martingale property means that the best guess for the future
(price) is the present (price).

The Efficient Market Hypothesis says that the future
changes in prices are totally unpredictable. This means that
the price process must be, more or less, a martingale.

The argument for Efficient Market Hypothesis goes like this:
So many speculators try to “beat the market” that all the
(old) information is already incorporated in the prices. So, the
new information must be independent of the past information.

This means the Efficient Market Hypothesis is a paradox: It is
true if and only if the speculators do not believe in it!
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Fundamental Theorems of Asset Pricing

In the overture we saw how to make arbitrage (if the price was not
right) without probabilities. Actually, the existence of arbitrage
possibilities is independent of probability up-to possibility: The
definition of arbitrage speaks about the probability P only at the
“zero-one level”.

Talking probabilities only through possibilities is formalized in the
following definition.

Definition (Equivalence of Probability Measures)

A probability measure P̃ is equivalent to the probability measure
P if they have same zero-sets: P̃[A] = 0 if and only if P[A] = 0.

Having P[A] = 0 does not make the event A impossible. So, the
concept “possibility” has to be understood here in a vague sense.

19 / 35
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Fundamental Theorems of Asset Pricing

Theorem (I Fundamental Theorem of Asset Pricing)

A market model (S ,P) is free of arbitrage if and only if there exists
P̃ equivalent to P such that S is martingale with respect to P̃.

Theorem (II Fundamental Theorem of Asset Pricing)

An arbitrage-free market model (S ,P) is complete (all options can
be replicated) if and only if the equivalent martingale measure P̃ is
unique.

Remark (Replication in Arbitrage Models)

It is possible that an arbitrage model (no equivalent martingale
measure P̃) is complete.

20 / 35
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Fundamental Theorems of Asset Pricing

Remark (On the Fundamental Theorems)

Some implications in the fundamental theorems are easy to
prove, others are notoriously difficult.

Arbitrage-free price of an option f (ST ) is its expected value
under an equivalent martingale measure:

P0 = Ẽ[f (ST )],

and more generally

Pt = Ẽ[f (ST )|Ft ].

This is why P̃ is also called the Pricing Measure,

V (π) of a self-financing π is always a martingale under P̃.
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Pt = Ẽ[f (ST )|Ft ].

This is why P̃ is also called the Pricing Measure,

V (π) of a self-financing π is always a martingale under P̃.

21 / 35



Fundamental Theorems of Asset Pricing

Remark (On the Fundamental Theorems)

Some implications in the fundamental theorems are easy to
prove, others are notoriously difficult.

Arbitrage-free price of an option f (ST ) is its expected value
under an equivalent martingale measure:
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Replication in the Black-Scholes Model

In the celebrated Black-Scholes model the “driving force” behind
the stock-price process is the Brownian motion.

Definition (Brownian Motion)

The Brownian Motion, or Wiener process, W = (Wt)t∈[0,T ] is
a stochastic process characterized by the following three properties:

1 the paths t 7→Wt are continuous,

2 the increments Wt+∆ −Wt , t ≥ 0, are stationary, i.e.
their probability laws are independent of t,

3 the increments Wt4 −Wt3 , Wt2 −Wt1 , t1 < t2 < t3 < t4, are
independent.
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Replication in the Black-Scholes Model

Remark (Properties of Brownian Motion)

Gaussianity:

P[Wt ∈ B] =
1√
2πt

∫
B

e−
x2

2t dx .

Martingale property:

E[Wt |Wu, u ≤ s] = Ws , s ≤ t.

Quadratic variation:

(dWt)
2 = dt.
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Replication in the Black-Scholes Model

Because of the Quadratic variation property (dWt)
2 = dt the

paths for the Brownian motion are nowhere differentiable, and the
calculus with respect to it follows different rules than the classical
calculus.

Theorem (Itô Formula)

Let f (t, x) ∈ C 1,2([0,T ]× R). Then

df (t,Wt) = ft(t,Wt)dt + fx(t,Wt)dWt +
1

2
fxx(t,Wt)dt.

The Itô formula follows from the second order Taylor formula
(actually it is the second order Taylor formula with (dWt)

2 = dt).
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Replication in the Black-Scholes Model

Definition (Black-Scholes Model)

In the Black-Scholes Model the dynamics of the stock price
are given by the stochastic differential equation (SDE)

dSt

St
= µdt + σdWt . (3)

The SDE (3) can be solved by using the Itô formula:

St = S0 exp

{
µt + σWt−

σ2

2
t

}
.

From (3) we read that (dSt)
2 = σ2S2

t dt. Thus,

df (t,St) = ft(t,St)dt + fx(t,St)dSt+
σ2

2
S2

t fxx(t,St)dt.
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Replication in the Black-Scholes Model

Let us calculate the price (and replicating portfolio) of an
European vanilla option f (ST ) in the Black-Scholes model.

PDE Approach

Ansatz: Pt = P(t,St) and γt = Px(t,St). Then

f (ST ) = PT = P(T ,ST )

Itô
= P(0,S0) +

∫ T

0
Pt(t,St) dt +

∫ T

0
Px(t,St) dSt

+

∫ T

0

σ2

2
S2

t Pxx(t,St) dt

= P(0,S0) +

∫ T

0
Px(t,St) dSt

+

∫ T

0

{
Pt(t,St) +

σ2

2
S2

t Pxx(t,St)

}
dt.
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Replication in the Black-Scholes Model

So, if P(t, x) solves the Black-Scholes Backward PDE

Pt(t, x) +
σ2

2
x2Pxx(t, x) = 0,

P(T , x) = f (x),

then Pt = P(t,St) and γt = Px(t,St). In particular, the price of
the option f (ST ) is P(0,S0).

Since γt is the “spot derivative” Px of the value function P,
this replication, or hedge, is called the ∆-hedge.

The Black-Scholes Backward PDE can be solved numerically,
but rarely analytically.
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Replication in the Black-Scholes Model

Martingale Approach

Under P we have

St = S0e
µt+σWt−σ2

2
t ,

where W is P-Brownian motion.

By Girsanov Theorem the equivalent martingale measure P̃ is
unique and under P̃ we have

St = S0e
σW̃t−σ2

2
t ,

where W̃ is P̃-Brownian motion (W̃t = Wt + µ
σ t).

All value processes are martingales under P̃. Thus,

Pt = Ẽ[f (ST ) | Ft ].

Next we “calculate” this conditional expectation.
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Replication in the Black-Scholes Model

Pt = Ẽ[f (ST ) | Ft ]

= Ẽ

[
f

(
St

ST

St

) ∣∣∣∣Ft

]
St ∈Ft= Ẽ

[
f

(
x
ST

St

) ∣∣∣∣Ft

]
x=St

= Ẽ

[
f

(
xeσ(W̃T−W̃t)−σ2

2
(T−t)

) ∣∣∣∣Ft

]
x=St

Ss ,s≤t=eW̃s−σ2

2 s ,s≤t
= Ẽ

[
f

(
xeσ(W̃T−W̃t)−σ2

2
(T−t)

) ∣∣∣∣ Ws , s ≤ t

]
x=St

WT−Wt
w

Ws ,s≤t
= Ẽ

[
f

(
xeσ(W̃T−W̃t)−σ2

2
(T−t)

)]
x=St
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[
f

(
x
ST

St

) ∣∣∣∣Ft

]
x=St

= Ẽ
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[
f

(
xeσ(W̃T−W̃t)−σ2

2
(T−t)

) ∣∣∣∣ Ws , s ≤ t

]
x=St

WT−Wt
w

Ws ,s≤t
= Ẽ
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[
f

(
xeσ(W̃T−W̃t)−σ2

2
(T−t)

) ∣∣∣∣ Ws , s ≤ t

]
x=St

WT−Wt
w

Ws ,s≤t
= Ẽ
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Replication in the Black-Scholes Model

Finally we note that this unconditional expectation is easy to
“calculate” by using the Gaussianity of the Brownian motion:

Pt =
1√
2π

∫ ∞

−∞
f

(
Ste

σ
√

T−ty−σ2

2
(T−t)

)
e−

1
2
y2

dy . (4)

(4) can be calculated numerically, but rarely analytically.
The connection between (4) and the Black-Scholes PDE is (a
version) of the celebrated Feynman-Kac Formula.

Remark (Quadratic Variation Determines the Prices)

The PDE Approach is valid whenever (dSt)
2 = σ2S2

t dt. The
Martingale Approach fails if the stock price is not driven by a
Brownian motion (but because of the Feynman-Kac connection the
result is true, nevertheless).
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Why Quadratic Variation, or Brownian
Motion

In the Black-Scholes model it was assumed that the stock
prices follow a Geometric Brownian Motion.

This means the log-returns

log
St

St−1
=

(
µ− σ2

2

)
+ σ (Wt −Wt−1)

are independent and Gaussian.

Actual stock data does not support this assumption: There is
overwhelming evidence the log-prices are neither independent
nor Gaussian (never mind the Central Limit Theorem).

Luckily the Brownian assumption was not needed in the PDE
approach. What was essential was the existence of a
non-trivial quadratic variation.
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Why Quadratic Variation, or Brownian
Motion

Suppose the stock price process is continuous with (dSt)
2 = 0

(this happens if S is differentiable). Then we have classical
change-of-variables formula

df (t,St) = ft(t,St)dt + fx(t,St)dSt .

Consider the option (ST − S0)
2.

By the classical
change-of-variables formula we have that

(ST − S0)
2 =

∫ T

0
2(St − S0) dSt .

So, by the replication principle price the option (ST − S0)
2 is

zero. This certainly cannot be the case in practise!

The conclusion is that stock prices must have
non-trivial quadratic variation.
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Finale

The story we have explained here is very modern (even when
it comes to its mathematical foundations), and in many ways
an unwritten opera.

One problem is that the stock-price is fixed: The investors’
trading do not affect the prices. This is in conflict with the
most fundamental axiom of economics: supply and demand.
So, financial engineering needs feedback models.

In “classical engineering” physics gives foundations to models.
What do financial engineers have? E.g. psychology is hardly
mathematically developed enough.

- The curtain falls -
Any questions, my beloved audience?
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