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The basic pricing model: Black & Scholes model

I The riskless bond has dynamics

dBt = rBtdt, B0 = 1;

and the risky stock has dynamics

dSt = St(µdt + σdWt), S0 = s > 0.

Here r is the short rate, σ is the volatility parameter, µ is the
growth rate, and W is a Brownian motion.

I The option f (ST ) has price v f

v f = e−rTEQ[f (ST )];

here Q is the equivalent martingale measure.
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The basic pricing model: Black & Scholes model

I The replication price is the same as the risk neutral price vf :

f (ST ) = VT (Φ, v f ;S)

= v f +

∫ T

0
ΨsdBs +

∫ T

0
ΦsdSs .

I The self-financing hedge Φ is obtained from

C (t, x) = e−r(T−t)EQ[f (ST )|F S
t ]St=x

by Φt(St) = Cx(t,St).

I Properties of the Black & Scholes model:
– log-returns are independent.
– log-returns are Gaussian.
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Geometric fractional Brownian motion

I To model dependence of the log-returns we could use
fractional Brownian motion BH . It is a continuous Gaussian
process with mean zero and covariance

E[BH
t BH

s ] =
1

2
(t2H + s2H − |t − s|2H).

I The paratemeter H is the self-similarity index: for a > 0

Law(BH
a· |P) = Law(aHBH

· |P).

I Brownian motion W is a special case of fractional Brownian
motion BH with the parameter value H = 1

2 .
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Geometric fractional Brownian motion

I Fractional Brownian motion is not a semimartingale, but one
can show for H > 1

2 the stochastic differential equation

dSt = St(µdt + σdBH
t ), S0 = s

has the solution

St = s exp{µt + σBH
t }.

I Empirical studies of several financial time series have shown
that H ∼ 0.6.

I For H > 1
2 the increments of BH are positively correlated.
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Why not geometric fractional Brownian motion?

I The main axiom in mathematical finance is the absense of
arbitrage opportunities (no free lunch, no profit without risk).

I The fundamental theorem of asset pricing states that
”no-arbitrage” means ”existence of an equivalent martingale
measure.” So, non-semimartingales are ruled out as models
for stock.

I Fractional Brownian motion is not a semimartingale.
Therefore, the geometric fractional Browanian motion is not a
semimartingale.

I Explicit arbitrage examples with geometric fractional Brownian
motion are given by Dasgupta & Kallianpur and Shiryaev with
continuous time trading. In the context of discrete time
trading arbitrage is discussed in the Ph.D. thesis of Cheridito.
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Why not geometric fractional Brownian motion?

I The arbitrage possibilities seem to rule out geometric
fractional Brownian motion as a pricing model in stochastic
finance.

I Mathematically the arbitrage depends on the special
stochastic integrals one is using to understand the
self-financing (discounted) wealth

Vt(Φ, v0;S) = v0 +

∫ t

0
ΦsdSs .

I Most arbitrage opportunities are based on Riemann-Stieltjes
type of understanding of the stochastic integrals. Several
authors suggested that one should use divergence [Skorohod]
integrals to avoid arbitrage possibilities. However, to give an
economical meaning to divergence integrals is difficult, or even
impossible.
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Mixed fractional Brownian motion

I Consider X = W + BH , where W and BH are independent.
Then X is not a semimartingale with respect to FW ∨ FBH

;
The quadratic variation of X is the same as the quadratic
variation of W ; X is a semimartingale with respect to FX , if
and only if H > 3

4 [Cheridito].

I The existence of quadratic variation implies that

F (t,Xt) = F (0, 0) +

∫ t

0
Ft(s,Xs)ds +

∫ t

0
Fx(s,Xs)dXs

+
1

2

∫ t

0
Fxx(s,Xs)ds.

The integral is defined as a limit of forward sums.
I Consider now the mixed process X as the source of the

randomness: dSt = St(µdt + σdXt) and hence

St = s exp{σXt + µt − 1

2
σ2t}.
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Mixed fractional Brownian motion

I We can now repeat the replication arguments in the classical
Black & Scholes model using the PDE approach and we
obtain the surprising fact that the replication price in this
mixed model is the same as the replication price in the
classical Black & Scholes model! This was first observed by
Kloeden and Schoenmakers.

I So there seems to be a paradox here: if H ≤ 3
4 for the

fractional component BH there are arbitrage possibilities, but
the replication price with continuous trading is the same as in
the classical Black & Scholes model.
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Replication, arbitrage and non-semimartingales
Market model

A discounted market model is a five-tuple (Ω,F ,S , F,P) such that
(Ω,F , F,P) is a filtered probability space satisfying the usual
conditions and S = (St)0≤t≤T is an Ft-progressively measurable
positive quadratic variation process with continuous paths starting
at s ∈ R. The constants T and s are fixed.

We assume that our model has the following property:

given any nonnegative continuous function η with η(0) = s and
any ε > 0

P({ω; ‖S(ω)− η‖∞ < ε}) > 0 (1)



Replication, arbitrage and non-semimartingales
Model class

Given a continuous positive function σ(t, x) we define a model
class by

Mσ =
{
(Ω,F ,S , F,P); (Ω,F ,S , F,P) is a discounted market model

satisfying (1) and d〈S〉t = σ(t,St)dt P − a.s.
}

We will also restrict the possible strategies. In the classical Black
& Scholes pricing model the only restriction to strategies is the
fact that we do not allow doubling strategies. Here we will restrict
more. But we shall still have enough strategies to hedge all
practically relevant options.



Replication, arbitrage and non-semimartingales
Allowed strategies

g : [0,T ]× Cs,+([0,T ]) → R is a hindsight factor if

1. for every 0 ≤ t ≤ T g(t, η) = g(t, η̃) whenever η(u) = η̃(u)
for all 0 ≤ u ≤ t;

2. g(t; η) is of bounded variation and continuous as a function in
t for every η ∈ Cs,+([0,T ]) ;

3. ∣∣∣∣∫ t

0
f (u)dg(u, η)−

∫ t

0
f (u)dg(u, η̃)

∣∣∣∣ ≤ K max
0≤r≤t

|f (r)|·‖η−η̃‖∞
(2)

E.g. the running maximum, minimum, and average of the stock
prices are hindsight factors.
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Replication, arbitrage and non-semimartingales
Allowed strategies

Suppose hindsight factors g1, . . . , gm and a function
ϕ : [0,T ]× R+ × Rm → R are given.

We shall consider strategies of the form

Φt = ϕ(t,St , g1(t,S), . . . , gm(t,S)). (3)

Here Φt denotes the number of stocks held by an investor.

Hence, the wealth process corresponding to the strategy Φ is

Vt(Φ, v0;S) = v0 +

∫ t

0
ΦsdSs (4)

where v0 ∈ R denotes the investor’s initial capital.

Recall that the stochastic integral is defined as a limit of forward
sums.



Replication, arbitrage and non-semimartingales
Allowed strategies

Next we have to specify conditions on ϕ. We first state a result on
absence of arbitrage under the smoothness condition
ϕ ∈ C1([0,T ]× R+ × Rm).

Φ is supposed to be nds-admissible in the classical sense, i.e. there
is a constant a > 0 such that for all 0 ≤ t ≤ T∫ t

0
ΦudSu ≥ −a; P− a.s.

A strategy fulfilling these conditions is called a smooth allowed
strategy.



Replication, arbitrage and non-semimartingales
Smooth no-arbitrage theorem

I Let (Ω,F ,S , F,P) ∈Mσ and suppose Φ smooth allowed.

I Then Φ cannot be an arbitrage in the model (Ω,F ,S , F,P)
provided one model (Ω̃, F̃ , S̃ , F̃, P̃) ∈Mσ admits an
equivalent local martingale measure.

I For example, the model, where the mixed process
X = W + BH is the driving process, and H ∈ (1

2 , 1) does not
admit arbitrage with allowed smooth strategies.

I It is known, however, in the classical Black-Scholes model that
the smoothness condition ϕ ∈ C1([0,T ]× R+ × Rm) is too
restrictive to contain hedges even for vanilla options.
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Replication, arbitrage and non-semimartingales
Discussion

Our aim is to extend allowed strategies such that the new class

I contains the natural class of smooth strategies depending on
the spot and hindsight factors, i.e. Φ is of form (3) with
ϕ ∈ C1([0,T ]× R+ × Rm);

I is sufficiently large to contain hedges for relevant vanilla and
exotic options;

I is sufficiently small to guarantee the absence of arbitrage for
the extended class of strategies.

All this is possible to establish, but that would be somewhat
technical. We shall not give the details in this talk.
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Replication, arbitrage and non-semimartingales
Replication and no-arbitrage

Consider next replication and absence of arbitrage in a class Mσ.

I Every model in Mσ is free of arbitrage with allowed strategies
provided one admits an equivalent local martingale measure.

I Suppose G is a continuous functional on Cs,+([0,T ]) and in
some model (Ω̃, F̃ , S̃ , F̃, P̃) ∈Mσ there is an allowed strategy
Φ̃∗t = ϕ∗(t, S̃t , g1(t, S̃), . . . , gm(t, S̃)) and an initial wealth v0

such that
VT (Φ̃∗, v0; S̃) = G (S̃) P̃− a.s.

Then in every model (Ω,F ,S , F,P) ∈Mσ the allowed
strategy ϕ∗(t,St , g1(t,S), . . . , gm(t,S)) replicates the payoff
G (S) at terminal time T P-almost surely and with initial
capital v0.
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I Every model in Mσ is free of arbitrage with allowed strategies
provided one admits an equivalent local martingale measure.

I Suppose G is a continuous functional on Cs,+([0,T ]) and in
some model (Ω̃, F̃ , S̃ , F̃, P̃) ∈Mσ there is an allowed strategy
Φ̃∗t = ϕ∗(t, S̃t , g1(t, S̃), . . . , gm(t, S̃)) and an initial wealth v0

such that
VT (Φ̃∗, v0; S̃) = G (S̃) P̃− a.s.

Then in every model (Ω,F ,S , F,P) ∈Mσ the allowed
strategy ϕ∗(t,St , g1(t,S), . . . , gm(t,S)) replicates the payoff
G (S) at terminal time T P-almost surely and with initial
capital v0.



Concluding remarks

Replication, summary

It has been known that for some pricing models the replication of
certain options is the same as in the case of classical Black &
Scholes pricing model.

We have extended this to a rather big class of pricing models and
strategies.

The class of allowed strategies is big enough to replicate standard
options, and small enough to exclude arbitrage.

The replication procedure is the same for each model in a model
class!



Concluding remarks

Volatility

It is well known that the implied volatility and the historical
volatility do not agree. But if the driving process is mixed
fractional, this is clear:

The hedging price depends on the quadratic variation of the stock
price S , but the historical volatility is estimated as the variance of
the log-returns. These are different notions.

Deviations from Gaussianity

There is a lot of evidence that the log-returns are not Gaussian. By
adding a zero-energy process to Brownian motion we do not
change the replicating portfolio, but we have a full panorama to
change the distributional properties of the stock prices.



Concluding remarks

Irrelevance of probability

By setting (W ,BH) to be jointly Gaussian, say, with suitable
covariance structure can have any autocorrelelation we want in the
mixed model. However, the hedging prices are not affected. So, in
option pricing the probabilistic structure of the log-returns is
irrelevant!
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