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Local Continuity
Definition

Definition (Local Continuity)

Let X and Y be metric spaces. A function f : X → Y is locally
continuous if for all x ∈ X there exists an open Ux ⊂ X such
that x ∈ Ūx and f (xn) → f (x) whenever xn → x in Ux .

Remark (Local, Directional, and Proper Continuity)

Local continuity at x is continuity from the direction Ux . If x ∈ Ux

then local continuity is continuity.

Remark (Generalization to Topological Spaces)

One might want to generalize the concept of Local Continuity to
topological (measure) spaces.
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Local Continuity
Examples

Example (Simple One)

An indicator 1A : R → R

1 is locally continuous if A = Ḡ , G is open,

2 is not locally continuous if A has an isolated point.

Example (Interesting One)

A functional τ : C [0,T ] → [0,T ] defined by

τ(ω) = min {t;ω(t) = c}

is locally continuous. Indeed, for ω0 ∈ C [0,T ], take

Uω0 = {ω;ω(t) > ω0(t) for all t ∈ [0,T ]} .
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2 is not locally continuous if A has an isolated point.

Example (Interesting One)

A functional τ : C [0,T ] → [0,T ] defined by

τ(ω) = min {t;ω(t) = c}

is locally continuous.

Indeed, for ω0 ∈ C [0,T ], take

Uω0 = {ω;ω(t) > ω0(t) for all t ∈ [0,T ]} .

5 / 23



Local Continuity
Examples

Example (Simple One)

An indicator 1A : R → R

1 is locally continuous if A = Ḡ , G is open,
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Local Continuity
Local Continuity vs. Directional Continuity

Example

Consider functions f : R2 → R.

1

f (x , y) = 1{0}×[0,∞)(x , y)

is directionally continuous at (0, 0) along path {(0, y); y ≥ 0},
but not locally continuous at (0, 0).

2

f (x , y) =
∞∑

n=1

1(
−1,1

)
×
(
2−4(n+1),2−4n

)(x , y)

is locally continuous at (0, 0) but not directionally continuous
along any path ending at (0, 0).
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Stopping Times
Stopping Times

Definition (Stopping Time)

Let (Ft)t∈[0,T ] be a flow of information. A random variable
τ : Ω → [0,T ] is an (Ft)-stopping time if {τ ≤ t} ∈ Ft for all
t ∈ [0,T ].

Example

Let (Ft) be the information generated by observing a stochastic
process (St). Then

1 τ(ω) = inf{t;St(ω) ≥ c} is a stopping time,

2 τ(ω) = inf{t;St(ω) = maxu∈[0,T ] Su(ω)} is not a stopping
time.
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Stopping Times
Locally Continuous Stopping Times

The following stopping times τ : C [0,T ] → [0,T ] are locally
continuous.

Example

1 τ(ω) = inf{t;ω(t) ∈ F}, F is closed,

2 τ(ω) = inf{t;ψ(t, ω) ∈ Ḡ}, ψ is continuous and G is open,

3 τ(ω) = inf{t; (t, ω) ∈ Ū}, U is open.

The functionals in the example above are locally continuous even if
they were not stopping times.
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2 τ(ω) = inf{t;ψ(t, ω) ∈ Ḡ}, ψ is continuous and G is open,

3 τ(ω) = inf{t; (t, ω) ∈ Ū}, U is open.
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Options, Arbitrage, and Replication
Options

Let S = (St)t∈[0,T ] be an asset-price process. We consider the
canonical probability space, where Ω = C+[0,T ], F is its
Borel-σ-algebra, and P is the distribution of S . So we have
St(ω) = ω(t).

Definition (Option)

Option is simply a mapping G : C+[0,T ] → R. The asset S is the
underlying of the option G .

Example

G = (ST − K )+ is a call-option,

G = (K − ST )+ is a put-option,

G = ST − K is a future.
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Options, Arbitrage, and Replication
Arbitrage

A trading strategy Φ = (Φt)t∈[0,T ] is an S-adapted
stochastic process that tells the units of the underlying asset S the
investor has is her portfolio at any time t ∈ [0,T ].

The wealth of the trading strategy Φ is (in the discounted world)
satisfies

dVt(Φ) = Φt dSt ,

where the differentials are of “forward type”.

Definition (Arbitrage)

Arbitrage is a trading strategy Φ with the properties:
V0(Φ) = 0, Vt(Φ) ≥ 0 for all t ∈ [0,T ], and P[VT (Φ) > 0] > 0.

It is an economic axiom that there should be no arbitrage.
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Options, Arbitrage, and Replication
Replication

Replication principle is used to hedge and price options.

Definition (Replication principle)

Let G be an option. Suppose that there is a trading strategy Φ
with initial wealth V0(Φ) such that G = VT (Φ). Then the price of
the option G is V0(Φ).

The replication requirement G = VT (Φ) can be written as

G = V0(Φ) +

∫ T

0
Φt dSt ,

where the integral is of “forward type”.
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Market Models with Quadratic Variation and
Small-Balls
Canonical Space

Assume that S is continuous, strictly positive, starts from s0, and
the information used in trading is generated by it.

Assume that S has the quadratic variation

(dSt)
2 = σ2S2

t dt.

Assume the conditional small-ball property

P

[
sup

t∈[τ,T ]
|St − ω(t)| < ε

∣∣∣∣Fτ

]
> 0

P-a.s. for all paths ω, positive ε, and stopping times τ .

So, we have a collection of models P on the canonical filtered
space Cs0,σ[0,T ], where P is restricted only by the assumptions of
quadratic variation and conditional small-ball property.
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Market Models with Quadratic Variation and
Small-Balls
No-Arbitrage by Continuity

[BSV]1 showed that with allowed strategies that depend
smoothly on time, spot, running maximum, running minimum and
such one cannot do arbitrage.

The result followed from the fact that

Vt(Φ)(ω) = V0(Φ)(ω) + v(t, ω;ϕ) for P-a.a. ω,

where v(t, ω;ϕ) is continuous in ω uniformly in t. Here ϕ is the
strategy functional associated to Φ:

Φt(ω) = ϕ
(
t, ω(t), g1(t, ω), . . . , gm(t, ω)

)
,

where ϕ is smooth and g1, . . . , gm are hindsight factors.

1Bender, S., Valkeila: No-arbitrage pricing beyond semimartingales. WIAS
Preprint No. 1110, 2006.
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Market Models with Quadratic Variation and
Small-Balls
No-Arbitrage by Continuity

The allowed strategies are natural from the hedging point of view:
Hedging strategies of typical options are of this type. However,
from the no-arbitrage point of view the allowed strategies are not
so natural: They do not include stopping times.

We can extend the no-arbitrage result of [BSV] to strategies that
include certain kind of stopping times. The key concept is local
continuity.

While stopping times are rarely continuous, the author is not aware
of any (reasonable) stopping time that is not locally continuous.
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Market Models with Quadratic Variation and
Small-Balls
No-Arbitrage by Local Continuity

Definition (Stopping-Allowed Strategies)

A trading strategy Φ is Stopping-Allowed if it is of the form

Φt =
n∑

k=1

Φ
(k)
t 1(τk ,τk+1](t),

where the Φ(k)’s are allowed and τk ’s are locally continuous.

The definition above is understood in the conditional sense, i.e.
Φ(k) may depend on on Fτk

and τk+1 ≥ τk is locally continuous in
the conditioned, or quotient, space CSτk

,σ[τk ,T ].
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Market Models with Quadratic Variation and
Small-Balls
No-Arbitrage by Local Continuity

Theorem (No-Arbitrage with Stopping-Allowed
Strategies)

Let Φ be a stopping-allowed strategy. Then Φ is not an arbitrage
opportunity.

Theorem (No-Arbitrage with Stopping-Allowed Strategies) follows
by applying the conditional small-ball property n times with the
following lemma:

Lemma (No-Arbitrage with Take-the-Money-and-Run
Strategies)

Let Φ be allowed strategy and let τ be a locally continuous
stopping time. Then Φ1[0,τ ] is not an arbitrage opportunity.
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Market Models with Quadratic Variation and
Small-Balls
No-Arbitrage by Local Continuity

Proof of Lemma (No-Arbitrage with
Take-the-Money-and-Run Strategies).

Let Φ1[0,τ ] be a candidate for an arbitrage opportunity:
V0(Φ1[0,τ ]) = 0 and VT (Φ1[0,τ ]) ≥ 0 P-a.s., or

v(τ(ω), ω;ϕ) ≥ 0 for P-a.a. ω.

We show that v(τ(ω), ω;ϕ) ≥ 0 for all ω: Suppose that
v(τ(ω0), ω0;ϕ) < 0 for some ω0. Let Uω0 be the local continuity
set of τ at ω0. Since v(t, ·;ϕ) is continuous uniformly in t we see
that v(τ(·), ·;ϕ) is continuous on Uω0 . So, there must be a ball
B ⊂ Uω0 such that v(τ(ω), ω;ϕ) < 0 for all ω ∈ B. But due to the
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Proof of Lemma (No-Arbitrage with
Take-the-Money-and-Run Strategies), contd.

Since v(τ(ω), ω;ϕ) ≥ 0 for all ω we have in particular that
VT (Φ1[0,τ ]) ≥ 0 P̃-a.s. (P̃ stands for the Black-Scholes reference
model).

The classical theory then tells us that VT (Φ1[0,τ ]) = 0

P̃-a.s. Then, by using the local continuity as before, we see that
v(τ(ω), ω;ϕ) = 0 for all ω. But this means that V (Φ1[0,τ ]) = 0
P-a.s. So, Φ1[0,τ ] is not an arbitrage opportunity. �
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Proof of Theorem (No-Arbitrage with
Stopping-Allowed Strategies).

By using the conditional small-ball property instead of an
unconditional one we see that Lemma (No-Arbitrage with
Take-the-Money-and-Run Strategies) can be strengthened to:

Φ(k)1(τk ,τk+1]

is not an arbitrage opportunity. Here the allowed strategy Φ(k)

may depend additionally on Fτk
, and τk+1 is locally continuous on

the quotient, or conditioned, space CSτk
,σ[τk ,T ].

But this means that the stopping-allowed strategy Φ does not
generate arbitrage on any of the stochastic intervals (τk , τk+1].
Hence, it cannot generate arbitrage on the interval [0,T ]. �
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- The End -
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