An Indexed Bibliography of Genetic Algorithms in Japan

compiled by

Jarmo T. Alander
Department of Electrical and Energy Engineering: Automation

University of Vaasa P.O. Box 700, FIN-65101 Vaasa, Finland
phone: +358-6-324 8444, fax: +358-6-324 8467

Report Series No. 94-1-JAPAN (Updated 2013/05/14 16:25)

Trademarks
Product and company names listed are trademarks or trade names of their respective companies.

Warning
While this bibliography has been compiled with the utmost care, the editor takes no responsibility for any errors, missing information, the contents or quality of the references, nor for the usefulness and/or the consequences of their application. The fact that a reference is included in this publication does not imply a recommendation. The use of any of the methods in the references is entirely at the user’s own responsibility. Especially the above warning applies to those references that are marked by trailing ‘†’ (or ‘*’), which are the ones that the editor has unfortunately not had the opportunity to read. An abstract was available of the references marked with ‘*’.
Contents

1 Preface
 1.1 Your contributions erroneous or missing? .. 2
 1.1.1 How to cite this report? ... 2
 1.2 How to get this report via Internet? ... 2
 1.3 Acknowledgement ... 2

2 Introduction ... 4

3 Statistical summaries ... 5
 3.1 Publication type ... 5
 3.2 Annual distribution .. 5
 3.3 Classification .. 6
 3.4 Authors ... 7
 3.5 Topic distribution ... 9
 3.6 Conclusions and future ... 9

4 Indexes ... 11
 4.1 Books ... 11
 4.2 Journal articles .. 11
 4.3 Theses ... 16
 4.3.1 PhD theses .. 16
 4.3.2 Master’s theses .. 16
 4.4 Report series ... 16
 4.5 Patents .. 16
 4.6 Authors .. 23
 4.7 Subject index .. 52
 4.8 Annual index ... 71
 4.9 Geographical index .. 73

Bibliography .. 75

Appendixes .. 217

A Bibliography entry formats .. 217
Chapter 1

Preface

“Living organisms are consummate problem solvers. They exhibit a versatility that puts the best computer programs to shame.”

John H. Holland, [1]

The material of this bibliography has been extracted from the genetic algorithm bibliography [2], which when this report was compiled (May 14, 2013) contained 22012 items and which has been collected from several sources of genetic algorithm literature including Usenet newsgroup comp.ai.genetic and the bibliographies [3][4][5][6]. The following index periodicals and databases have been used systematically:

- Esp@cenet patents – Apr. 2002
- IEEE: IEEE and IEE Journals – Fall 2002
- SPIE Web The International Society for Optical Engineering – June 2002
1.1 Your contributions erroneous or missing?

The bibliography database is updated on a regular basis and certainly contains many errors and inconsistencies. The editor would be glad to hear from any reader who notices any errors, missing information, articles etc. In the future a more complete version of this bibliography will be prepared for the genetic algorithms in Japan research community and others who are interested in this rapidly growing area of genetic algorithms.

When submitting updates to the database, paper copies of already published contributions are preferred. Paper copies (or ftp ones) are needed mainly for indexing. We are also doing reviews of different aspects and applications of GAs where we need as complete as possible collection of GA papers. Please, do not forget to include complete bibliographical information: copy also proceedings volume title pages, journal table of contents pages, etc. Observe that there exists several versions of each subbibliography, therefore the reference numbers are not unique and should not be used alone in communication, use the key appearing as the last item of the reference entry instead.

Complete bibliographical information is really helpful for those who want to find your contribution in their libraries. If your paper was worth writing and publishing it is certainly worth to be referenced right in a bibliographical database read daily by GA researchers, both newcomers and established ones.

1.1.1 How to cite this report?

You can use the BiBTeX file GASUB.bib, which is available in our site lipas.uwasa.fi in directory reports/report94-1 and contains records for GA subbibliographies for citing with BiBTeX/BiTEx.

1.2 How to get this report via Internet?

Versions of this bibliography are available via www from the following site:

```
media country site directory file
web Finland lipas.uwasa.fi ~TAU/reports/report94-1 gaJAPANbib.pdf
```

The directory also contains some other indexed GA bibliographies shown in table A.1. In case you do not find a proper one please let us know: it may be easy to tailor a new one.

1.3 Acknowledgement

Roger L. Wainwright, D. Eric Walters, James F. Whidborne, Stefan Wiegand, Steward W. Wilson, Xin Yao, Xiaodong Yin, and Ljudmila A. Zinchenko.

The editor also wants to acknowledge Elizabeth Heap-Talvela for her kind proofreading of the manuscript of this bibliography and Tea Ollanketo and Sakari Kauvosaari for updating the database. Prof. Timo Salmi and the Computer Centre of University of Vaasa is acknowledged for providing and managing the online web site lipas.uwasa.fi, where these indexed bibliographies are located since Summer 2012.
Chapter 2

Introduction

“Many scientist, possibly most scientist, just do science without thinking too much about it. They run experiments, make observations, show how certain data conflict with more general views, set out theories, and so on. Periodically, however, some of us—scientists included—step back and look at what is going on in science.”

David L., Hull, 7

The table 2.1 gives the queries that have been used to extract this bibliography. The query system as well as the indexing tools used to compile this report from the BiBTeX database [8] have been implemented by the author mainly as sets of simple *awk* and *gawk* programs [9, 10].

<table>
<thead>
<tr>
<th>string</th>
<th>field</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPN</td>
<td>ANNOTE</td>
<td>GAs in Japan</td>
</tr>
<tr>
<td>Japanese</td>
<td>NOTE</td>
<td>GAs in Japanese</td>
</tr>
</tbody>
</table>

Table 2.1: Queries used to extract this subbibliography from the source database.

Hint
Chapter 3

Statistical summaries

This chapter gives some general statistical summaries of genetic algorithms in Japan literature. More detailed indexes can be found in the next chapter.

References to each class (c.f table 2.1) are listed below:

- **GAs in Japan** 2469 references ([11]-[2479])
- **GAs in Japanese** 3 references ([2480]-[2482])

Observe that each reference is included (by the computer) only to one of the above classes (see the queries for classification in table 2.1; the textual order in the query gives priority for classes).

3.1 Publication type

This bibliography contains published contributions including reports and patents. All unpublished manuscripts have been omitted unless accepted for publication. In addition theses, PhD, MSc etc., are also included whether or not published somewhere.

Table 3.1 gives the distribution of publication type of the whole bibliography. Observe that the number of journal articles may also include articles published or to be published in unknown forums.

<table>
<thead>
<tr>
<th>type</th>
<th>number of items</th>
</tr>
</thead>
<tbody>
<tr>
<td>book</td>
<td>9</td>
</tr>
<tr>
<td>section of a book</td>
<td>2</td>
</tr>
<tr>
<td>part of a collection</td>
<td>22</td>
</tr>
<tr>
<td>journal article</td>
<td>937</td>
</tr>
<tr>
<td>proceedings article</td>
<td>1167</td>
</tr>
<tr>
<td>proceedings</td>
<td>3</td>
</tr>
<tr>
<td>report</td>
<td>22</td>
</tr>
<tr>
<td>others</td>
<td>311</td>
</tr>
<tr>
<td>total</td>
<td>2473</td>
</tr>
</tbody>
</table>

Table 3.1: Distribution of publication type.

3.2 Annual distribution

Table 3.2 gives the number of genetic algorithms in Japan papers published annually. The annual distribution is also shown in fig. 3.1. The average annual growth of GA papers has been approximately 40% during late 70’s - early 90’s.

<table>
<thead>
<tr>
<th>year</th>
<th>items</th>
<th>year</th>
<th>items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>4</td>
<td>1991</td>
<td>12</td>
</tr>
<tr>
<td>1992</td>
<td>50</td>
<td>1993</td>
<td>151</td>
</tr>
<tr>
<td>1994</td>
<td>190</td>
<td>1995</td>
<td>327</td>
</tr>
<tr>
<td>1996</td>
<td>425</td>
<td>1997</td>
<td>364</td>
</tr>
<tr>
<td>1998</td>
<td>302</td>
<td>1999</td>
<td>236</td>
</tr>
<tr>
<td>2000</td>
<td>166</td>
<td>2001</td>
<td>106</td>
</tr>
<tr>
<td>2002</td>
<td>54</td>
<td>2003</td>
<td>17</td>
</tr>
<tr>
<td>2004</td>
<td>10</td>
<td>2005</td>
<td>14</td>
</tr>
<tr>
<td>2006</td>
<td>16</td>
<td>2007</td>
<td>10</td>
</tr>
<tr>
<td>2008</td>
<td>5</td>
<td>2009</td>
<td>4</td>
</tr>
<tr>
<td>2010</td>
<td>6</td>
<td>2011</td>
<td>4</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td></td>
<td>2473</td>
</tr>
</tbody>
</table>

Table 3.2: Annual distribution of contributions.
3.3 Classification

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>2475</td>
</tr>
<tr>
<td>patent</td>
<td>305</td>
</tr>
<tr>
<td>engineering</td>
<td>285</td>
</tr>
<tr>
<td>neural networks</td>
<td>184</td>
</tr>
<tr>
<td>control</td>
<td>163</td>
</tr>
<tr>
<td>scheduling</td>
<td>156</td>
</tr>
<tr>
<td>image processing</td>
<td>145</td>
</tr>
<tr>
<td>robotics</td>
<td>115</td>
</tr>
<tr>
<td>fuzzy systems</td>
<td>102</td>
</tr>
<tr>
<td>implementation</td>
<td>76</td>
</tr>
<tr>
<td>optimization</td>
<td>71</td>
</tr>
<tr>
<td>machine learning</td>
<td>69</td>
</tr>
<tr>
<td>pattern recognition</td>
<td>60</td>
</tr>
<tr>
<td>genetic programming</td>
<td>56</td>
</tr>
<tr>
<td>manufacturing</td>
<td>54</td>
</tr>
<tr>
<td>analysing GA</td>
<td>54</td>
</tr>
<tr>
<td>parallel GA</td>
<td>52</td>
</tr>
<tr>
<td>hybrid</td>
<td>51</td>
</tr>
<tr>
<td>image processing</td>
<td>44</td>
</tr>
<tr>
<td>signal processing</td>
<td>42</td>
</tr>
<tr>
<td>VLSI</td>
<td>30</td>
</tr>
<tr>
<td>medicine</td>
<td>29</td>
</tr>
<tr>
<td>hardware</td>
<td>29</td>
</tr>
<tr>
<td>controllers</td>
<td>29</td>
</tr>
<tr>
<td>electromagnetics</td>
<td>28</td>
</tr>
<tr>
<td>CAD</td>
<td>28</td>
</tr>
<tr>
<td>filters</td>
<td>27</td>
</tr>
<tr>
<td>crossover</td>
<td>24</td>
</tr>
<tr>
<td>routing</td>
<td>23</td>
</tr>
<tr>
<td>comparison</td>
<td>23</td>
</tr>
<tr>
<td>classification</td>
<td>23</td>
</tr>
<tr>
<td>shape design</td>
<td>22</td>
</tr>
<tr>
<td>optics</td>
<td>22</td>
</tr>
<tr>
<td>imaging</td>
<td>22</td>
</tr>
<tr>
<td>electronics</td>
<td>22</td>
</tr>
<tr>
<td>coding</td>
<td>22</td>
</tr>
<tr>
<td>rule based systems</td>
<td>21</td>
</tr>
<tr>
<td>TSP</td>
<td>20</td>
</tr>
<tr>
<td>layout design</td>
<td>20</td>
</tr>
<tr>
<td>artificial life</td>
<td>20</td>
</tr>
<tr>
<td>agents</td>
<td>20</td>
</tr>
<tr>
<td>system identification</td>
<td>19</td>
</tr>
<tr>
<td>physics</td>
<td>19</td>
</tr>
<tr>
<td>medical imaging</td>
<td>17</td>
</tr>
<tr>
<td>quantum computing</td>
<td>16</td>
</tr>
<tr>
<td>planning</td>
<td>16</td>
</tr>
<tr>
<td>fuzzy logic</td>
<td>16</td>
</tr>
<tr>
<td>evolution</td>
<td>16</td>
</tr>
<tr>
<td>chemistry</td>
<td>16</td>
</tr>
<tr>
<td>aerodynamics</td>
<td>16</td>
</tr>
<tr>
<td>robot</td>
<td>15</td>
</tr>
<tr>
<td>immune systems</td>
<td>15</td>
</tr>
<tr>
<td>fitness</td>
<td>15</td>
</tr>
<tr>
<td>design</td>
<td>15</td>
</tr>
<tr>
<td>telecommunications</td>
<td>14</td>
</tr>
<tr>
<td>review</td>
<td>14</td>
</tr>
<tr>
<td>diagnosis</td>
<td>14</td>
</tr>
<tr>
<td>coevolution</td>
<td>14</td>
</tr>
<tr>
<td>classifier systems</td>
<td>14</td>
</tr>
<tr>
<td>optimisation</td>
<td>13</td>
</tr>
<tr>
<td>clustering</td>
<td>13</td>
</tr>
<tr>
<td>VLSI design</td>
<td>12</td>
</tr>
<tr>
<td>reliability</td>
<td>12</td>
</tr>
<tr>
<td>production economics</td>
<td>12</td>
</tr>
<tr>
<td>path planning</td>
<td>12</td>
</tr>
<tr>
<td>agriculture</td>
<td>12</td>
</tr>
</tbody>
</table>

Every bibliography item has been given at least one describing keyword or classification by the editor of this bibliography. Keywords occurring most are shown in table 3.3.
Table 3.4 gives the most productive authors.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Total Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fukuada, Toshio</td>
<td>77</td>
</tr>
<tr>
<td>Gen, Mitsuo</td>
<td>76</td>
</tr>
<tr>
<td>Furuhashi, Takeshi</td>
<td>52</td>
</tr>
<tr>
<td>Iba, Hitoshi</td>
<td>50</td>
</tr>
<tr>
<td>Uchikawa, Yoshiki</td>
<td>49</td>
</tr>
<tr>
<td>Ishibuchi, Hisao</td>
<td>41</td>
</tr>
<tr>
<td>Chen, Yen-Wei</td>
<td>36</td>
</tr>
<tr>
<td>Nakao, Zensho</td>
<td>35</td>
</tr>
<tr>
<td>Higuchi, Tetsuya</td>
<td>34</td>
</tr>
<tr>
<td>Shibata, Takanori</td>
<td>34</td>
</tr>
<tr>
<td>Kakazu, Yukinori</td>
<td>31</td>
</tr>
<tr>
<td>Sakawa, Masatoshi</td>
<td>28</td>
</tr>
<tr>
<td>Murata, Tadahiko</td>
<td>27</td>
</tr>
<tr>
<td>Ueda, Kanji</td>
<td>27</td>
</tr>
<tr>
<td>Shimojima, Koji</td>
<td>23</td>
</tr>
<tr>
<td>Cheng, Runwei</td>
<td>22</td>
</tr>
<tr>
<td>Kobayashi, Shigenobu</td>
<td>22</td>
</tr>
<tr>
<td>Saito, Hideo</td>
<td>20</td>
</tr>
<tr>
<td>Obayashi, Shigeru</td>
<td>19</td>
</tr>
<tr>
<td>Ohkura, Kazuhiro</td>
<td>18</td>
</tr>
<tr>
<td>Tsutsui, Shigeyoshi</td>
<td>18</td>
</tr>
<tr>
<td>Garis, Hugo de</td>
<td>17</td>
</tr>
<tr>
<td>Ida, K.</td>
<td>17</td>
</tr>
<tr>
<td>Kubota, Naoyuki</td>
<td>17</td>
</tr>
<tr>
<td>Sannomiya, Nobuo</td>
<td>17</td>
</tr>
<tr>
<td>Gen, M.</td>
<td>15</td>
</tr>
<tr>
<td>Nagao, Tomoharu</td>
<td>15</td>
</tr>
<tr>
<td>Nakashima, Tomoharu</td>
<td>15</td>
</tr>
<tr>
<td>Uchikawa, Y.</td>
<td>15</td>
</tr>
<tr>
<td>Yamanura, Masayuki</td>
<td>15</td>
</tr>
<tr>
<td>Yokota, Takao</td>
<td>15</td>
</tr>
<tr>
<td>Iima, Hitoshi</td>
<td>14</td>
</tr>
<tr>
<td>Iwata, Masaya</td>
<td>14</td>
</tr>
<tr>
<td>Minami, Mamoru</td>
<td>14</td>
</tr>
<tr>
<td>Tanie, Kazuo</td>
<td>14</td>
</tr>
<tr>
<td>Agui, Takeshi</td>
<td>13</td>
</tr>
<tr>
<td>Higuchi, Tatsuo</td>
<td>13</td>
</tr>
<tr>
<td>Omatu, Sigeru</td>
<td>13</td>
</tr>
<tr>
<td>Ono, Isao</td>
<td>13</td>
</tr>
<tr>
<td>Sato, Taisuke</td>
<td>13</td>
</tr>
<tr>
<td>Arai, Fumihito</td>
<td>12</td>
</tr>
<tr>
<td>Fukuada, T.</td>
<td>12</td>
</tr>
<tr>
<td>Furuhashi, T.</td>
<td>12</td>
</tr>
<tr>
<td>Hasegawa, Yasuhisa</td>
<td>12</td>
</tr>
<tr>
<td>Higuchi, T.</td>
<td>12</td>
</tr>
<tr>
<td>Hachino, T.</td>
<td>11</td>
</tr>
<tr>
<td>Kawamata, Masayuki</td>
<td>11</td>
</tr>
<tr>
<td>Nagahashi, Hiroshi</td>
<td>11</td>
</tr>
<tr>
<td>Ogawa, Tosihiyuki</td>
<td>11</td>
</tr>
<tr>
<td>Sakawa, M.</td>
<td>11</td>
</tr>
<tr>
<td>Tamaki, H.</td>
<td>11</td>
</tr>
<tr>
<td>Tanaka, Masahiro</td>
<td>11</td>
</tr>
<tr>
<td>Zhao, Qiangfu</td>
<td>11</td>
</tr>
<tr>
<td>Ali, Fath El Alem Fadlallah</td>
<td>10</td>
</tr>
<tr>
<td>Arakawa, Takemasa</td>
<td>10</td>
</tr>
<tr>
<td>Chen, Peng</td>
<td>10</td>
</tr>
<tr>
<td>Furuya, Tatsumi</td>
<td>10</td>
</tr>
<tr>
<td>Hashimoto, Y.</td>
<td>10</td>
</tr>
<tr>
<td>Hemmi, Hitoshi</td>
<td>10</td>
</tr>
<tr>
<td>Kita, H.</td>
<td>10</td>
</tr>
</tbody>
</table>

Total number of authors: 3221
Figure 3.1: The number of papers applying genetic algorithms in Japan (●, \(N = 2475 \)) and total GA papers (○, \(N = 22012 \)). Observe that the last few years are most incomplete in the database.
3.5 Topic distribution

Table 3.5 gives the distribution of topics as compared to the total database.

<table>
<thead>
<tr>
<th>Topic</th>
<th>n</th>
<th>%</th>
<th>δ [%]</th>
<th>∆ [%]</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>2475</td>
<td>100.00</td>
<td></td>
<td></td>
<td>22012</td>
<td>100.00</td>
</tr>
<tr>
<td>patent</td>
<td>305</td>
<td>12.32</td>
<td>+10.28</td>
<td>+504</td>
<td>449</td>
<td>2.04</td>
</tr>
<tr>
<td>engineering</td>
<td>285</td>
<td>11.52</td>
<td>−1.41</td>
<td>−11</td>
<td>2847</td>
<td>12.93</td>
</tr>
<tr>
<td>neural networks</td>
<td>184</td>
<td>7.43</td>
<td>+0.38</td>
<td>+5</td>
<td>1552</td>
<td>7.05</td>
</tr>
<tr>
<td>control</td>
<td>163</td>
<td>6.59</td>
<td>+1.81</td>
<td>+38</td>
<td>1052</td>
<td>4.78</td>
</tr>
<tr>
<td>scheduling</td>
<td>156</td>
<td>6.30</td>
<td>+2.95</td>
<td>+88</td>
<td>737</td>
<td>3.35</td>
</tr>
<tr>
<td>image processing</td>
<td>145</td>
<td>5.86</td>
<td>+4.73</td>
<td>+419</td>
<td>249</td>
<td>1.13</td>
</tr>
<tr>
<td>robotics</td>
<td>115</td>
<td>4.65</td>
<td>+2.28</td>
<td>+96</td>
<td>521</td>
<td>2.37</td>
</tr>
<tr>
<td>fuzzy systems</td>
<td>102</td>
<td>4.12</td>
<td>+2.35</td>
<td>+133</td>
<td>390</td>
<td>1.77</td>
</tr>
<tr>
<td>implementation</td>
<td>76</td>
<td>3.07</td>
<td>+0.69</td>
<td>+29</td>
<td>524</td>
<td>2.38</td>
</tr>
<tr>
<td>optimization</td>
<td>71</td>
<td>2.87</td>
<td>−0.31</td>
<td>−10</td>
<td>701</td>
<td>3.18</td>
</tr>
<tr>
<td>machine learning</td>
<td>69</td>
<td>2.79</td>
<td>+0.33</td>
<td>+13</td>
<td>542</td>
<td>2.46</td>
</tr>
<tr>
<td>pattern recognition</td>
<td>60</td>
<td>2.42</td>
<td>+1.01</td>
<td>+72</td>
<td>311</td>
<td>1.41</td>
</tr>
<tr>
<td>genetic programming</td>
<td>56</td>
<td>2.26</td>
<td>−1.84</td>
<td>−45</td>
<td>903</td>
<td>4.10</td>
</tr>
<tr>
<td>manufacturing</td>
<td>54</td>
<td>2.18</td>
<td>+0.67</td>
<td>+44</td>
<td>332</td>
<td>1.51</td>
</tr>
<tr>
<td>analysing GA</td>
<td>54</td>
<td>2.18</td>
<td>−1.53</td>
<td>−41</td>
<td>816</td>
<td>3.71</td>
</tr>
<tr>
<td>parallel GA</td>
<td>52</td>
<td>2.10</td>
<td>−0.90</td>
<td>−30</td>
<td>661</td>
<td>3.00</td>
</tr>
<tr>
<td>hybrid</td>
<td>51</td>
<td>2.06</td>
<td>−0.51</td>
<td>−20</td>
<td>566</td>
<td>2.57</td>
</tr>
<tr>
<td>image processing</td>
<td>44</td>
<td>1.78</td>
<td>+0.65</td>
<td>+58</td>
<td>249</td>
<td>1.13</td>
</tr>
<tr>
<td>signal processing</td>
<td>42</td>
<td>1.70</td>
<td>−0.24</td>
<td>−12</td>
<td>428</td>
<td>1.94</td>
</tr>
<tr>
<td>VLSI</td>
<td>30</td>
<td>1.21</td>
<td>−0.13</td>
<td>−10</td>
<td>295</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Table 3.5: The distribution of topics \(n \) compared \(\delta \) and \(\Delta \) to the topic distribution of the total database \(N \). In the comparison column: \(\delta = \% \text{special} - \% \text{all} \) and \(\Delta = (1 - \frac{nN_{\text{Total}}}{Nn_{\text{Total}}}) \times 100\% \). \(\Delta \) is the relative (%) deviation from the expected number of special papers. Observe that a paper may contain several topics.

3.6 Conclusions and future

The editor believes that this bibliography contains references to most genetic algorithms in Japan contributions up to and including the year 1998 and the editor hopes that this bibliography could give some help to those who are working or planning to work in this rapidly growing area of genetic algorithms.
Genetic algorithms in Japan
Chapter 4

Indexes

4.1 Books

The following list contains all items classified as books.

Evolvable Hardware, [599]
Genetic algorithm, [116]
Genetic Algorithm, [152]
Genetic Algorithms, [1047]
Genetic Algorithms & Engineering Design, [1879]
Handbook of Genetic Algorithms, [2480]
Near-Infrared Spectroscopy, [506]
Quantum Computing in Solid State Systems, [688]

total 9 books

4.2 Journal articles

The following list contains the references to every journal article included in this bibliography. The list is arranged in alphabetical order by the name of the journal.

ACM SIGSOFT Software Engineering Notes, [619]
Adv. Eng. Softw. (UK), [1448]
Adv. Robot. (Netherlands), [2342, 2350]
Advanced Composites Letters, [1306]
AI Communications, [736]
AIAA Journal, [1669, 1670, 1015, 1123, 1124, 2247]
AIAA Journal on Disc, [1670, 1088, 1266, 1118, 1350]
Animal Science and Technology, [1246]
Annals of CIPR, [1673, 2010, 2452]
Annual Nuclear Energy, [2425]
Applied Mathematics and Computation, [2003]
Applied Optics, [192, 1591, 1548]
Applied Physics A, Materials Science & Processing, [327]
Archive of Applied Mechanics, [1554]
Artif. Life Robot. (Japan), [1540, 1814, 2000, 2150, 2309]
Artificial Intelligence Review, [507]
Artificial Life, [657]
ASAIO Journal, [557, 577, 596]
Asia Pacific Management Review, [919]
Automatic control in Aerospace 1998, [2172]
Automatica, [1910]
Auton. Robots (Netherlands), [1991]
Bioinformatics, [555]
Biomedical Soft Computing and Human Sciences, [233]
BioSystems, [1209, 2182]
BMC Biotechnology, [656]
Bull. Electrotech. Lab. (Japan), [2005]
Bull. Fac. Eng. Univ. Ryukyus (Japan), [1936]
Bull. Fac. Eng. Univ. Ryukyus (Japan), [1861, 2151, 2412, 2445, 2468]
Bull. Fac. Eng. Univ. Tokushima (Japan), [1184, 2524]
Bull. Nagoya Inst. Technol. (Japan), [1831]
Bulletin of Faculty of Engineering, Ryukyu (Japan), [1580]
Bulletin of Faculty of Engineering, Tokushima University (Japan), [173]
Chemical Physics Letters, [552]
Chemometrics and Intelligent Laboratory Systems, [2133]
Chin. J. Adv. Softw. Res. (USA), [1492]
CIRP Ann., [630]
Communications of the ACM, [2394, 2509]
Communications Research Laboratory, Journal, [284]
Complex Systems, [598]
Complex Systems (USA), [1185]
Composite Structures, [1067]
Comput. Electron. Agric. (Netherlands), [1748, 1850]
Comput. Ind. Eng. (UK), [1149]
Genetic algorithms in Japan

Journal of Intelligent & Fuzzy Systems,

Journal of Intelligent and Fuzzy Systems,

Journal of Intelligent Material Systems and Structures,

Journal of Japan Society for Fuzzy Theory and Systems,

Journal of Japanese Society for Artificial Intelligence,

Journal of Marine Science and Technology,

Journal of Materials Processing Technology,

Journal of Materials Science,

Journal of Molecular Liquids,

Journal of Molecular Structure: THEOCHEM,

Journal of Pressure Vessel Technology,

Journal of Robotics and Mechatronics,

Journal of Robotics Society of Japan,

Journal of Sound and Vibration,

Journal of Spacecraft and Rockets,

Journal of the Audio Engineering Society,

Journal of the Chemical Society – Perkin Transactions 1,

Journal of the Institute of Systems, Control, and Information Engineers (Japan),

Journal of the Japan Society for Aeronautical and Space Sciences,

Journal of the Japan Welding Society,

Journal of the Japanese Society of Artificial Intelligence,

Journal of the Operations Research Society of Japan,

Journal of the Society of Instrument and Control Engineers,

Journal of the Society of Naval Architects of Japan,

Journal of Theoretical Biology,

Jpn. J. Fuzzy Theory Syst. (USA),

JSME Int. J. C, Dyn. Control Robot, Des. Manuf. (Japan),

JSME Int. J. Ser. A,

JSME International, Journal C,

JSPP,

Kikai Gijutsu Kenkyusho Shoho,

Mater Sci Res. Int.,

Mater. Sci. Forum,

Mater. Sci. Res. Int. (Japan),

Materials Science and Engineering C,

Mathematical and Computer Modeling,

Med. Imaging Technol. (Japan),

Medical Imaging Technology,

Mem. Fac. Eng. Fukui Univ. (Japan),

Memos of the Faculty of Engineering, Fukui University,

Memos of the Faculty of Engineering, Fukui University (Japan),

Memos of the Faculty of Engineering, Okayama University,

Microcomput. Civ. Eng.,

Microcomput. Civ. Eng. (USA),

Microcomputers in Civil Engineering,

Microprocess. Microsyst. (UK),

Microwave and Optical Technology Letters,

Ministry of Posts & Telecommunications,

Mitsui Zosen Tech. Rev. (Japan),

Nature,

Nature Structural Biology,

Networks (USA),

Neural Networks,

Neural Process.,

Neurocomputing (Netherlands),

New Generation Computing,

New Generation Computing Journal,

Nihon Zosen Gakkai Ronbunshu,

Nippon Gakkai Gakkai Ronbunshu A Hen,

Nippon Gakkai Gakkai Ronbunshu C Hen,

Nippon Kikai Gakkai Ronbunshu A Hen,

Nippon Kikai Gakkai Ronbunshu B Hen,

Nippon Kikai Gakkai Ronbunshu C Hen,

Nippon Kikai Gakkai Ronbunshu B Hen,

Nippon Yoko Gakkaishi,

Nippon Robotto Gakkai Gakujutsu Koenkai Yokoshu,

NK Technical Report (Japan),

Nonlinear Analysis-Theory Methods & Applications,

NUCB Journal of Economics and Information Science,

Nucl. Med. Commun.,

Nucl. Technol.,

Nuclear Physics B Proceedings Supplements,

Nuclear Physics B, Proceedings Supplement,

Nuclear Technology,

Nucleic Acids Research,

Opt. Rev.,

Opt. Rev. (Japan),

Optics Express,

Optics Letters,

Pattern Recognition,

Pattern Recognition Letters,
Journal articles

Philosophical Transactions of the Royal Society of London B Biological Sciences, 2007
Physica B, 223 [456] 404
Physica C: Superconductivity, 218 [418] 517
Physica D, 220 [705]
Physica E, 241
Physical Review A, 230
Physical Review Letters, 22 [411] 525
Physics Letters A, 405

Physics of the Earth and Planetary Interiors, 265 [1765]
Physics of The Earth and Planetary Interiors, 2065
Physics of the Earth and Planetary Interiors, 2290
Proceedings of the IEEE, 2466
Proceedings of the National Academy of Sciences of the United States of America, 208
Proceedings of the Royal Society of London B, 571
Quant. Struct.-Act. Relat, 2275
Railw. Gaz. Int., 695
Res. Rep. Kagakuin Univ. (Japan), 1082 [1355]

Researches on Population Ecology, 1626
Review of Scientific Instruments, 552
Robotics and Autonomous Systems, 975 [1349] 1553
SAR QSAR Environ. Res., 267
Science, 265 [531]

Sebutsu-Kogaku Kaishi - Journal of the Society for Fermentation and Bioengineering, 177
Seimitsu Kogaku Kaishi, 791 [1277] 1385
Seisan Gijutsu, 1977
Sens. Actuators, B, 333
Signal Processing, 1735

Smart Engineering System Design, 2316
Soft Computing, 190 [1884]
Struct. Optim. (Germany), 675 [833] 2261
Structural and Multidisciplinary Optimization, 503
Syst. Control Inf. (Japan), 1216 [1394] 1506 [1506] 1550 [1564]

Systems and Computers in Japan, 610 [1256] 2335
Systems, Control and Information, 95
Tech. Rep. Seikei Univ. (Japan), 1066 [1303]
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 614
The International Journal in Computer Simulation, 820
Theoretical Computer Science, 125 [579] 2042 [2203]
Trans. Inst. Electr. Eng. Jpn. C (Japan), 994 [927] 1011 [1533] [1590] [1617] [1660] [1665] [1780] [1782] [1799] [1869]
2454 [2459] 2470 [2475]
1118 [1312] [1531] [1822] [1922] [2042] [2071] [2082] [2123]
Trans. Jpn. Assoc. Refrig. (Japan), 1633
1944 [2131] 2213 [2295] [2341] [2354] [2368] [2383]
Transaction of Systems, Control and Information, 90
Transaction of the Institute of Electrical Engineers of Japan B, 1519
Transaction of the Institute of Electrical Engineers of Japan C, 1039
Transaction of the Institute of Electronics, Inform, 1427
Transaction of the Institute of Electronics, Information and Communication Engineers A (Japan), 85 [179]
184 [652] [816] [835] [877]
Transaction of the Institute of Electronics, Information and Communication Engineers D-I (Japan), 189 [760]
Transactions of SICE, 2338
Transactions of the ASAE, 557
1347 [1372] [1374] [1429] [1466] [1522] [1587] [1722] [2438]
Transactions of the Institute of Electrical Engineers of Japan C, 1222
Transactions of the Institute of Electrical Engineers of Japan B, 853
Transactions of the Institute of Electrical Engineers of Japan C, 112 [648] [810] [839] [927] [975] [1023] [1358]
Transactions of the Institute of Electrical Engineers of Japan C, 112 [648] [810] [839] [927] [975] [1023] [1358]
174 [53] [72] [83] [120] [121] [204] [650]
765 [805] [808] [1018] [1124] [1187] [1193] [1199] [1245] [1251]
1254 [1507] [1520] [1608] [1820] [1874] [1904] [2192]
Transactions of the Institute of Electrical Engineers of Japan C), 1656
Transactions of the Institute of Electrical Engineers of Japan D, 1465 [1609] 1618
Transactions of the Institute of Electronics, Information and Communication Engineers (Japan), 82
Transactions of the Institute of Electronics, Information and Communication Engineers A (Japan), 995 [1031]
1416
Transactions of the Institute of Electronics, Information, and Communication Engineers D-II (Japan), 1462
4.3 Theses

The following two lists contain theses, first PhD theses and then Master’s etc. theses, arranged in alphabetical order by the name of the school.

4.3.1 PhD theses
- none

4.3.2 Master’s theses
This list includes also “Diplomarbeit”, “Tech. Lic. Theses”, etc.
- none

4.4 Report series

The following list contains references to all papers published as technical reports. The list is arranged in alphabetical order by the name of the institute.

Advanced Telecommunications Research Institute International, 206
AIAA, 887
Electrotechnical Laboratory, 31, 38, 77, 681, 814, 1143, 1524, 1551
IEICE, 216
Institute for New Generation Computer Technology, 126
International Institute for Advanced Study of Social Informatics, 125, 158
Kyoto University, 492
Mitsubishi Electric Corp., 20
Ochanomizu University, 1951
total 21 reports in 9 institutes

4.5 Patents

The following list contains the names of the patents of genetic algorithms in Japan. The list is arranged in alphabetical order by the name of the patent.

KANA/KANJI conversion optimizing device and KANA/KANJI conversion optimizing method, 1377
LSI element arranging method and device therefor, 271
OD table integer estimating device, 61
A method for producing multilayered optical filters, comprising a method for operating a genetic algorithm, 491
Active noise controller using genetic algorithm, 2014
Actuator Controller, 1728
Adaptation evaluation device, 1953
Adaptive evaluating device, 2253
Adaptive evolution type image compressing and encoding device, 2399
Air conditioning control device and recording medium which can be read by computer in which air conditioning control program is recorded, 2325
Analysis display processor related to genetic algorithm, 1907
Analysis method of reflection characteristic of reflecting plate, and computer-readable recording medium with the analysis program recorded thereon, 528
Analytical value estimating method and computer readable recording medium recording program for executing the same, 474
Apparatus and method for analyzing target motion by genetic algorithm, 1723
Apparatus for preparing supply and demand planning in power system, 2410
Apparatus for solving optimization problems and delivery planning system, 2248
Arrangement data similarity degree arithmetic unit, 1974
Arrangement optimization problem processing method and computer readable recording medium recording arrangement optimization problem processing program, 364
Assembly line designing method, 337
Assigning device, 741
Attitude detector, 1593
Automatic arranging method and automatic arrangement system, 2410
Automatic generating method for time-series pattern, 2102
Automatic lottery method, 407
Automatic package adjusting method and device therefor, 572
Automatic programming device, automatic programming method, and recording medium, 2441
Automatic time series pattern creating method, 2356
Autonomic asynchronous genetic algorithm parallel processor, 460
Blank layout method, 889
Blender optimization control system, 1308
Boring arrangement system using genetic algorithm, 2199
Circuit designing device and method using a genetic algorithm, 1617
Circuit designing method and circuit designing device, 2281
Circuit optimization simulator, 447
Cogeneration optimization algorithm using genetic algorithm, 2453
Coin identifying method and its device, 1646
Color generating method using genetic algorithm, 2245
Combination optimizing device, 271
Complier device, 742
Control device for air-conditioner, 2305
Control parameter controller for step motor type actuator, 1841
Control parameter setting method while applying genetic algorithm and storage medium stored with the method, 2423
Controller and air conditioner, 651
Controller for thermal storage plant, 2436
Controller for wide area wastewater sending system, 340
Controlling equipment of refrigerating cycle, 1316
Conveying order deciding method and its device, 2387
Data processor utilizing refrigerating cycle and storage medium, 2361
Data structure for system kitchen editing and designing, 439
Design method for optical thin film and design device for optical film, 387
Determination system for combination optimizing problem, 607
Device and method for circuit design, 1872
Device and method for detecting posture, 835
Device and method for element arrangement, 1582
Device and method for executing genetic algorithm, 1259
Device and method for external character register for character recognition, 726
Device and method for generating schedule, and recording medium with schedule generating program recorded thereon, 185
Device and method for preparing train diagram by genetic algorithm/neuro, 855
Device and method for scheduling and recording medium stored with its scheduling program, 282
Device and method for searching for relevant function, 434
Device and method for searching optimum solution and program recording medium, 321
Device and method for sentence phoneme recognition, 1454
Device for analyzing material characteristic of film, 428
Device for constructing segment generation type predicted model and method therefor, 2117
Device for generating route of robot arm, 634
Device for laying out automatically component on printed board, 786
Die spray robot teaching method, 2170
Digital circuit and clock signal control method therefor, 339
Digital system, clock signal control method for the same and recording medium storing processing program to be run by the method, 401
Directionally compositing method for conformal array antenna and medium storing the method, 2177
Distribution line control system, 2277
District heat supply plant controller, [479]
Electronic controller using evolution techniques suitable for controlling a motor, [999]
Element arrangement method of LSI, [879]
Element thinning method of array antenna and storage medium recording element thinning program of array antenna, [690]
Elevator control system, [1679]
Equalizer device, [459]
Equipment and method for adjusting control gain of servo system, [1747]
Evaluation method for a hereditary algorithm, [322]
Evolutionary control of machine based on user’s preference inferred from user’s operation, [440]
Evolutionary controlling system, [488]
Evolutionary controlling system with behavioral simulation, [371]
Face area detector, [2282]
Face image displacement detection device, [950]
Fast processing method for genetic algorithm, [739]
Fitness function circuit, [477]
Forming equipment and forming method of power system constitution, and storage medium and power system thereof, [2411]
Fuzzy inference device, [633]
Generating method for sound using genetic algorithm and medium where program is recorded, [2337]
Genetic algorithm analysis display processor, [1851]
Genetic algorithm analytic display processor, [2149]
Genetic algorithm execution device, [1606]
Genetic algorithm machine and its production method, and method for executing a genetic algorithm, [2304]
Genetic algorithm mounting method and network optimizing using the same, [883]
Genetic algorithm optimizing process and storage medium, [2354]
Genetic algorithm processing method, [462]
Genetic algorithm processor, [393]
Global control method, [2297]
Global search device for parallel genetic algorithm utilizing local solution and storage medium stored global search program of parallel genetic algorithm using search device and local solution, [2204]
House design system using genetic algorithm, [487]
House design system using genetic algorithm, [950] [320]
Identification device for mechanical system, [150]
Image converter, image conversion method, learning device, learning method and transmission medium, [2443]
Image processor, [690]
Image processing apparatus and method, [299]
Image processing method and device, [220]
Image processing method and device for the method, [1963]
Information processing device and method applying genetic algorithm, [520]
Information processing system with combination limitation, [724]
Information processor, [683] [885]
Information processor, its method and its distribution medium, [950]
Information providing method utilizing inference and genetic algorithm, [2357]
Intermediate object linking method and unit, [493]
Learning method for sorting element system, [2339]
Learning system of recurrent neural network of coupling type, [934]
Load schedule planning method, [466]
Logic circuit test pattern generating device, [448]
Magnetizing state evaluating method for magnetic recording medium, [351]
Manufacture of multilayer film filter utilizing genetic algorithm, [372]
Map display method and recording medium, and map display device, [274]
Mask for exposing and its production, [737]
Material design support system, [479]
Material designing method and material designing device for performing the same method, [1818]
Mathematical plan calculation device, distribution plan system, medium stored with mathematical plan program, and medium stored with distribution plan program, [1947]
Method and device for selecting route, [1505]
Method for minimizing loss in distribution system, [1836]
Metal mold design method and production of metal mold, [2333]
Method and apparatus for analyzing substance structure, [471]
Method and apparatus for designing materials for alloy compositions, [1906]
Method and device for assigning chromosome, [899]
Method and device for calculating optimization solution of multiple mutant protein amino acid sequence, and storage medium where program for executing the method is stored, [622]
Method and device for controlling communication service quality, [275]
Method and device for evaluating character recognition device, [1183]
Method and device for generating musical sound waveform, [2147]
Method and device for learning neural network, [637]
Method and device for operating genetic algorithm, [2443]
Method and device for operating genetic algorithm and environment adaptation type system using operating device, 1392
Method and device for optimization processing using genetic algorithm, 1809, 2474
Method and device for optimizing process using genetic algorithm, 1898, 1924
Method and device for process control, 857
Method and device for processing image, 2431
Method and device for scheduling job shop, 1403
Method and device for scheduling personnel arrangement, and recording medium recorded with personnel arrangement scheduling program, 774
Method and device for searching optimum solution, 1638
Method and device for stroke extraction, 1602
Method and device for supporting personnel placement, and storage medium recorded with personnel placement support program, 2332
Method and system for packing using genetic algorithm for arrangement problem, 224
Method and system for parking lot guidance, 1775
Method and system for product design solution search using genetic algorithm, 352
Method and system for searching optimum solution, 1638
Method for adjusting electronic circuit package and automatic adjusting device, 1234
Method for analyzing compound and system therefor, 1268
Method for calculating approximate solution of optimization problem, 609
Method for clustering mass information, 262
Method for controlling cut-off of cast slab in continuous casting, 1592
Method for deciding base station arrangement pattern, 273
Method for deciding moving sequence, 2030
Method for deciding optimum layout of indoor base station and optimum layout decision system, 352
Method for deciding path of plural working heads and its device, 210
Method for designing refractive index modulation type phase element, 2454
Method for detecting highly functional polypeptides or nucleic acids, 2298
Method for determining introducing order of power source, 1581
Method for determining optimum installing place of phase modifying equipment in power distributing system, 150
Method for estimating furnace bottom condition of blast furnace, 888
Method for extracting outline and device therefor, 1982
Method for generating inference rule of fuzzy control, 231, 463
Method for generating rearrange order plan for container, 1195
Method for identifying non-linear system by genetic algorithm, 514
Method for judging authenticity of paper sheet, 2440
Method for matching template, 970
Method for optimally searching route, 1833
Method for optimizing genetic algorithm and system for analyzing genetic algorithm, 1804
Method for optimizing mask using genetic algorithm for pattern recognition, 845
Method for optimizing mounting of electronic part, 2051
Method for optimizing nn synapse combined load, 270
Method for organizing lots of continuous casting, 2398
Method for processing image, and method for extracting facial area and device thereof, 291
Method for programming distribution system, 111
Method for scheduling instruction string, 876
Method for scheduling physical distribution in rolling mill, 862
Method for searching optimum solution, 1714
Method for searching for peptides and process for producing compounds, 2346
Method for searching peptides and process for producing compounds, 1276
Method for solving optimization problem by means of genetic algorithm, 279
Method for voice analysis utilizing genetic algorithm, 893
Method for water use planning process using genetic algorithm, 339
Method of arranging magnet, 635
Method of designing multipurpose formulation of feed, 469
Method of determining movement sequence, alignment apparatus, method and apparatus of designing optical system, and medium in which program realizing the designing method, 453
Methods, based on a genetic algorithm, for configuring parameters of an array of multiple components for cooperative operation to achieve a desired performance result, 444
Microrobot control device and method, 114
Multi-mode optimization technology in test formation, 388
Multi-valued dither matrix optimizing device, 227
Multipurpose optimization method, 1423
Network composing method, 1432
Network topology designing device, network topology designing method and recording medium stored with network topology design program, 2358
Neural network, 1935
Neuro computer, 761
Nonlinear time-series data predicting device, 1381
Office arrangement system using genetic algorithm and recording medium, 2011
Offline teaching method, 2345
On-line evaluating method for solid body by genetic algorithm, 2413
Operation controlling method for heat supplying plant, 1168
Operation method for genetic algorithm and method for manufacturing multi-layer film light filter using the same, 468
Operation method of thermal energy supply plant, 269
Operation support apparatus of water treatment plant, 445
Optimally designing system of fastening structure using genetic algorithm, 2420
Optimization control method and device therefor, 1786
Optimization design system using genetic algorithm, 431
Optimization method and device using object-oriented genetic algorithm, 2362
Optimization problem processing method for island model of hybrid type genetic algorithm and processing program recording medium therefor, 403
Optimization problem solving method and optimization device, 1208
Optimization processing method and device using genetic algorithm, 2467
Optimization system using genetic algorithm, 2231
Optimizing device, 1735
Optimizing device and method thereof by genetic algorithm based on unbalanced evolution theory, 1737
Optimizing device having immunity combined with genetic algorithm and storage medium stored with optimizing program having immunity combined with genetic algorithm, 2043
Optimizing method and optimizing device, 935
Optimizing method by genetic algorithm, 2329
Optimizing method using genetic algorithm and is device, 2148
Optimizing method with usage of genetic algorithm, 520
Optimizing problem resolution processor, 632
Optimizing process method using genetic algorithm, 2408
Optimizing processing method for genetic algorithm, 970
Optimizing processing method using genetic algorithm and device therefor, 1939
Optimum design system of reinforcement structure using genetic algorithm, 349
Optimum exchange timing determining method for boiler component, 260
Optimum gain searching method for small-diameter tunnel robot using genetic algorithm, 1293
Optimum route and optimum circulation route searching method, 1760
Optimum route searching method, 2307
Optimum solution method, hearing aid fitting apparatus utilizing the optimum solution method, and system optimization adjusting method and apparatus, 441
Optimum solution search method and optimum solution search apparatus as well as storage medium in which optimum solution search program is stored, 1971
Optimum solution search method/device, 315
Optimum solution searching device, 1166
Optimum solution survey device and optimum solution surveying method using same, 449
Packing information decision equipment and packing information deciding method, 2320
Parallel genetic algorithm executing device, 1473
Parameter optimizing device, 1291
Parameter tuning method, 1292
Parameter updating device for neural network, 1382
Pattern recognition, 687
Pattern recognition method and pattern recognition dictionary preparation method and device therefor, 2445
Pattern recognition apparatus and method of optimizing mask for pattern recognition according to genetic algorithm, 2099
Plan improving method, genetic information improving method, plan improving device and recording medium for improving plan, 438
Planning method and equipment for track vehicle, 456
Planning method for replacement of temporary scaffolding, 2173
Plant design system, 1061
Position measuring method and device, 317
Power distribution system loss minimizing method, 2417
Power generation planning method for hydroelectric power plant, 458
Prediction device for optimum parameter combination, 1978
Problem solving arithmetic device and method introduction concept of state transition, 860
Problem solving device, 226
Problem solving operation apparatus using a state transition, 334
Processor for genetic algorithm, 329
Processor loading genetic algorithm accelerator, 2363
Product design system and method using genetic algorithm, 253
Production line constitution evaluating device and method of constructing production line by using this production line constitution evaluating device, 1384
Programmable controller, 552
Proportion predicting system and method of making mixture, 252
Quantum dot-tunnel device and information processing apparatus and method using same, 1678
Raw material yard operation plan forming method, 2355
Raw material yard operation plan preparing method, 1290
Reactive power planning method for power system, 1297
Real time expression detector, 337
Rear wheel steering device, 1535
Rearrangement method of system basic element and support tool, 454
Relational function searching device and method therefor, 1813
Robust optimization method for cogeneration system constitution, 277
Route constitution design device for mobile object, 307
Routing method using a genetic algorithm, 2397
Schedule generating device and recording medium recorded with schedule generating program, 470
Scheduling method, 509
Scheduling Method, 1589
Scheduling method and device, 2119
Seabed sedimentary layer parameter estimation device using genetic algorithm, 421
Seabed sedimentary layer parameter-estimating device using genetic algorithm, 134
Selection of primer base sequence and apparatus therefor, 231
Semi-optimal path finding in a wholly unknown environment, 482
Semiconductor device and control method therefor, 2293
Sewage treatment process simulator, 268
Shock absorber control device, 1796
Shock absorber controller of vehicle, 1586
Signal processor, 739
Signature recognition system, 2122
Specimen throwing-in direction judging method, 1634
Stacking scheduling device and method using genetic algorithm, 480
Stream of people analyzing method, 341
Suspension control device of vehicle according to genetic algorithm, 2336, 2353
System and device for automatic generation of fuzzy inference rule, 955
System for resolving job shop scheduling problem, 539
System for supporting process design for assembly line, 979
System optimal adjustment method and device thereof, 465
System optimization method and device, 414
Taboo searching device, 436
Temporary scaffold arranging device, 1854
Time-series prediction device, 2012
Two-dimensional plane cutting method optimizing device, 2016
Vehicle height control device, 2045
Vibration/noise control system, 1896
Waveform data compressing method, 1234
Wiring route design support method, 2351, 2457
Work stop schedule adjusting/assisting system for power system, 2132
Total 303 patents
Genetic algorithms in Japan
4.6 Authors

The following list contains all genetic algorithms in Japan authors and references to their known contributions.

Aamu, Andoo, 494
Abboud, N., 2210
Abboud, Nicolas, 233 263
Abe, Fujio, 386
Abe, H., 2310 2433
Abe, K., 1710 2056
Abe, Masahide, 580
Abe, M., 694 2295
Abe, S., 2451 2472
Abe, Seiya, 2277
Abe, Shin, 830 1367
Abe, Tamotsu, 627 800 922 1077 1134 1146 1149 1499 1779
Abe, Yuichi, 1849
Absalom, H., 1157
Adachi, Katsumi, 447
Adachi, Munemori, 1250 1851
Adachi, N., 830 1367
Adachi, Nobue, 334
Adachi, S., 2291
Adachi, Susumu, 236
Adachi, Toue, 2149
Adriaans, P., 622
Affih, Ahmed, 444
Agbanhan, Julien, 432 1724
Agui, T., 832
Agui, Takeshi, 438 640 1053 1129 146 147 148 149 150 151 152 185
Aguirre, Hernan E., 237
Aguirre, Hernan, 236
Aguirre, Hernán, 546 564
Ahmadabadi, Majid Nili, 1730
Aihara, K., 2333
Aishima, Tetsuo, 2317
Aita, Takuyo, 2118
Aiyoshi, E., 1347 1590
Aizawa, A., 1943
Aizawa, Akiko N., 1438 12
Aizawa, Akiko, 1154
Aizawa, J., 2006
Akagi, Hiromasa, 2199
Akagi, Shinuke, 2020 41
Akahori, Hiroshi, 985
Akamatsu, N., 1518 1531 1719 2033 2053 2206
Akamatsu, Norio, 1743 2123 2349 2350 2458
Akatsuka, N., 2348 2354
Ake, Yoshihiro, 833 980
Akiba, S., 77 78
Akiho, Masaichi, 1713
Akimoto, Y., 1115
Akinari, Yoshinori, 843
Akiyama, Mamory, 13
Akiyama, T., 1588
Akiyama, Yutaka, 2333
Akizuki, K., 2377 2454
Akutsu, Masami, 282
Aleksic, Zoran, 861
Alexander, Uriyankofu, 2471
Ali, Fath El Alem Fadlallah, 912
Ali, Fath El Alem F., 1964
Hamadi, Sun-iichi, 21
Ando, H., 2341
Ando, Shin, 310
Andr, Paulo S., 626
Anma, Y., 2164
Anon., 543 98
Anzai, Kenji, 1623
Aoki, A., 1944 2189
Aoki, K., 1162 1175
Aoki, Keiko, 282 2314
Aoki, Masakatsu, 2245 2337
Aoki, Shinju, 2245
Aoki, Taka, 497
Aoki, Takeshi, 947
Aoki, T., 2393
Aoki, Y., 1078
Aoshima, Shinichi, 1293
Aoyagi, M., 1323
Aoyagi, Seiji, 666 611 615
Aoyagi, Yuji, 1163 1440
Aoyama, T., 293
Aoyanagi, Mari, 1293
Ara, K., 1729
Ara, Katuyuki, 674
Arakaki, Hiroki, 467 679 723
Arakaki, Kouichi, 1505 1546
Arakaki, S., 1851
Arakaki, Toyohiro, 2275
Arakawa, Atsushi, 1949
Arakawa, Masamoto, 623
Arakawa, Masao, 1949
Arakawa, Takemasa, 1164 1151 1704 1745 1789 1864 1914
Araki, D., 1656 1793
Araki, K., 1179 1582
Araki, Keijiro, 857 2223
Araki, M., 1457 1523
Araki, Miyuhiko, 190
Handa, H., 1871 [1926]
Handa, Keiichi, 852 [879 [1682]
Handa, K., 997
Haneda, H., 1777 [1892 [2035 [2328]
Haneji, H., 2002
Hansmann, Ulrich H. E., 2273
Hanyu, Isamu, 1194
Hao, Minghui, 686 [791 [897
Hara, F., 1174
Hara, Fumio, 653
Hara, S., 1960 [2191
Hara, Takeshi, 856
Hase, H., 84
Hase, Hideaki, 1448
Hase, K., 1623
Hase, Shuji, 354
Hasebe, Shinji, 1569
Hasegawa, J., 1118 [2312
Hasegawa, Kazuyos, 1240
Hasegawa, K., 267
Hasegawa, Kiyoshi, 1683 [1972
Hasegawa, Mitsuhiko, 1450
Hasegawa, S., 2208 [2459
Hasegawa, T., 2060
Hasegawa, Yasuyisa, 455 [564 [723 [762 [926 [931 [1141 [1154 [1155 [1156 [1162 [1164
Hasegawa, Y., 674 [2395
Hasegawa, Yoshishige, 190
Hayashi, M., 2058 [2427
Hashem, M. M. A., 1723 [2023 [2058 [2427
Hashi, K., 1860 [404
Hashi, Yuichi, 1763
Hashimoto, A., 1466
Hashimoto, Asako, 187
Hashimoto, Hideki, 841 [1001 [2470
Hashimoto, Iori, 1589
Hashimoto, Kazua, 2314
Hashimoto, Kazuo, 262
Hashimoto, Misao, 136
Hashimoto, Muneaki, 1592
Hashimoto, R., 2037 [2403
Hashimoto, Ryoichi, 1797 [1897
Hashimoto, S., 803
Hashimoto, Takeshi, 926
Hashimoto, Yasushi, 373 [1046 [1731
Hashimoto Y., 964 [1261 [1285 [1386 [1802 [1880
Hashimoto, Yoichi, 1426
Hayase, K., 2427
Hedayat, A., 1492
Hee, Han Kyung, 1812
Hellgardt, M., 1521
Henni, H., 1000
Henni, Hitoshi, 855 [777 [792 [813 [818 [1375 [1629 [1699 [2409
Hiarahara, Morio, 891
Hichi, Masahiro, 433
Hida, Toshimitsu, 1679
Hideo, Kato, 565
Higa, K., 1901
Higami, T., 567
Higashikawa, Kohei, 606
Higuchi, Takahide, 2382
Hirayama, N., 1829, 1830
Hirata, Takanori, 1202, 1203
Hirata, H., 151
Hirasawa, K., 2415
Hirose, A., 1831
Hirose, Tetsuya, 129
Hiroshi, Matsu, 1387
Hiroshi, Mizuseki, 1491
Hirota, Kaoru, 1555
Hirota, K., 1107
Hirota, Y., 161
Hirotsuji, Junji, 1459
Hirotsune, M., 1995
Hirotsune, M., 2196
Hiroysu, Makoto, 1534
Hiroysu, T., 2514
Hiroysu, Tomoyuki, 2377, 2378
Hisayoshi, Masayuki, 1428
Hitafuji, M., 2153
Hitafuji, M., 2476
Hitaka, M., 2235
Hitoami, Kazuhiro, 2214
Ho, Chun-Ying, 1104
Ho, M. C., 1718
Hoashi, Keiichiro, 2262
Hoashi, Keiichiro, 2314
Hofmann, Holger F., 456
Hoff, R. G., 1834
Hojio, Chihaha, 194
Homma, Naofumi, 397
Homma, Naoki, 327
Homma, Naoki, 310
Honda, H., 1527
Honda, H., 1530
Honda, H., 1833
Honda, Hiroyuki, 2390
Honda, Tetsuo, 1489
Honda, T., 1174
Hondo, Naohiro, 1742
Hondo, N., 1521
Hong, S. C., 1169
Honiden, S., 112
Honma, Katsumi, 2012
Hori, Koichi, 820
Hori, Toshikazu, 240
Hori, Yoshinari, 1433
Horiguchi, Hiroshi, 427
Horiguchi, Hiroshi, 161
Horiguchi, T., 1172
Hornby, Gregory S., 1505
Hosoi, Tomoaki, 318
Hosokawa, A., 411
Hosokawa, S., 1005
Hough, M., 2276
Hozumi, Takahiro, 1857
Hsu, C-C., 1239
Hsu, Chin-Chih, 992
Hsu, Chin-chih, 1172
Hsu, Chin-Chih, 2006
Hu, Jinglu, 1866
Huang, F., 1969
Huang, R., 1335
Huang, Runhe, 1761
Huppe, B. S., 558
Husimi, Shingo Ueno Yuzumru, 566
Husimi, Yuzuru, 2118
Iba, H., 1335
Iba, H., 1564
Iba, H., 1971
Iba, H., 1571
Iba, Hihi, 245
Iba, Hitoshi, 298
Iba, Hihi, 1530
Iba, Kenji, 672
Iba, S. Kamio Hitoshi, 585
Iba, T., 2125
Genetic algorithms in Japan

Ishii, Naohiro, 2016, 2029
Ishii, N., 2009
Ishii, Y., 2009
Ishii, Yoshikazu, 1013, 1224
Ishikawa, Hitoshi, 2009
Ishikawa, Masato, 1993, 2009
Ishikawa, M., 2009
Ishikawa, Nobutaka, 2009
Ishimaru, T., 2009
Ishino, Yoko, 2009
Ishiwata, Atsushi, 2009
Ishizuka, Okihiko, 2009
Ishizuka, Shinichi, 2009
Ishizuka, Yuichi, 2009
Ishobuchi, Hsiao, 2009
Isobe, R., 2009
Isokawa, T., 2009
Isshiki, M., 2009
Isshiki, Yukihiro, 2009
Itakira, S., 2009
Itami, K., 2009
Itatani, Taro, 2009
Itatani, T., 2009
Ito, A., 2009
Ito, Akira, 2009
Ito, Hiroyasu, 2009
Ito, H., 2009
Ito, Kazuaki, 2009
Ito, K., 2009
Ito, M., 2009
Itoh, K., 2009
Itoh, Masahide, 2009
Itoh, S., 2009
Itoh, T., 2009
Itoh, Y., 2009
Itoh, Kaoru, 2009
Itoh, M., 2009
Itoh, S., 2009
Itoh, Tomohide, 2009
Itoh, Takeshi, 2009
Itoh, Masao, 2009
Iwahashi, Kazuhiko, 2009
Iwahashi, K., 2009
Iwai, S., 2009
Iwai, Sosuke, 2009
Iwakura, H., 2009
Iwamoto, Kaoru, 2009
Iwamoto, S., 2009
Iwamoto, Takashi, 2009
Iwamoto, T., 2009
Iwamura, K., 2009
Iwasa, Y., 2009
Iwasa, Yoh, 2009
Iwasaki, Makoto, 2009
Iwasaki, Yuishi, 2009
Iwasa, Shoichiro, 2009
Iwata, Masaya, 2009
Iwata, Naoya, 2009
Iwata, Tadashi, 2009
Iwata, T., 2009
Izui, Kazuhiro, 2009
Izui, Y., 2009
Kajihara, H., 2009
Kajihara, K., 2009
Kajihara, Makoto, 2009
Kajihara, Nobuo, 2009
Kajihara, Shinichi, 2009
Kajihara, Takahiro, 2009
Kajihara, T., 2009
Kajihara, Tomohiro, 2009
Kakazu, Yukinori, 2009
Kakazu, Y., 2009
Kakei, Atsuyuki, 2009
Kako, E., 2009
Kaku, Soki, 2009
Kakuyama, T., 2009
Kamada, K., 2009
Kamano, Taka, 2009
Kamano, T., 2009
Kamba, Teruyasu, 2009
Kamei, Katsuyuki, 2009
Kamihira, Ichikai, 2009
Kamihira, Ikki, 2009
Kamimura, Hiroshi, 2009
Kaminaga, Masakazu, 2009

Genetic algorithms in Japan
Kamine, Hiroshige, [2262]
Kamio, Shotaro, [521]
Kamiura, Naotake, [1837]
Kamiura, N., [1837]
Kamiya, A., [1159]
Kamiya, Akimoto, [874, 1239, 1672, 1945, 2246, 2444]
Kamo, Masashi, [2057]
Kamohara, S., [2294]
Kanada, Yasushi, [875]
Kanai, S., [1021]
Kanai, Yoshi-kazu, [1691]
Kanasugi, A., [1946, 2083, 2373]
Kanata, Y., [203]
Kanayama, Yuichi, [538]
Kanazaki, M., [515]
Kanazawa, Hiroyuki, [1606]
Kanazawa, Ichiro, [231]
Kanazawa, Yasuhisa, [350, 1836, 2417]
Kaneda, Kazufumi, [2469]
Kaneda, K., [1598, 2187]
Kaneda, M., [1842, 2432]
Kanehisa, Minoru, [919]
Kaneko, Kiyoji, [1762]
Kaneko, K., [667]
Kaneko, Kunihiko, [93]
Kaneko, Mika, [297]
Kaneko, S., [1050]
Kanemitsu, Hideo, [953]
Kanetani, Toshinori, [2228]
Kaneto, Kiyoyuki, [877]
Kaneto, K., [473]
Kaneto, Kunihiro, [92]
Kaneto, Masakatsu, [2345]
Kaneto, Mika, [297]
Kaneto, S., [1050]
Kanemitsu, Hideo, [953]
Kanesige, K., [2228]
Kanetani, Toshinori, [2228]
Kaneyama, C., [996, 1821]
Kang, Daehoe, [844, 1084]
Kang, D., [1601]
Kang, L., [1599, 1865]
Kanno, T., [1794]
Kano, Satoru S., [559, 562]
Kano, Hitoshi, [1240, 1674]
Kano, H., [411, 1986]
Kanoh, T. H., [1723]
Kanoh, Y., [2035]
Kareko, Kunihiro, [93]
Kariya, N., [876]
Karube, Isao, [1433, 2298]
Karube, Masao, [1278, 2346]
Kasagi, Nobuhide, [480]
Kasai, N., [108, 2137]
Kasai, T., [1696]
Kasai, Yuji, [901]
Kasai, Yuji, [1842, 2417]
Kashiwagi, Masanori, [430]
Kashiwagi, Shigeru, [934]
Kashiwazaki, A., [1946]
Katada, Yoshiaki, [535]
Katagiri, M., [1588]
Katagiri, Tadahiro, [1290, 1484]
Katagiri, T., [1729]
Katai, O., [1627, 1871, 2380]
Katai, Osamu, [109, 110]
Kataoka, T., [701]
Kataoka, Yu., [1498]
Katayama, Kei, [594]
Katayama, Kengo, [2200, 2318]
Kato, H., [1790]
Kato, Kenji, [2199]
Kato, K., [1917, 2122, 2341]
Kato, Kosuke, [541, 1005, 1074, 1141, 1462]
Kato, Masaichi, [2415]
Kato, Masami, [291, 293]
Kato, Masana, [1459, 1489]
Kato, M., [1323]
Kato, N., [2369]
Kato, Nobuko, [1240]
Kato, S., [2100]
Kato, T., [1378]
Kato, T., [1241]
Katsuki, Satoshi, [1463]
Kawabata, Hiroaki, [661]
Kawabata, Takeshi, [517]
Kawabe, Hideki, [274]
Kawabe, T., [1379, 1795]
Kawada, Kazuo, [578]
Kawagoe, Koji, [2320]
Kawaguchi, Satomi, [356]
Kawaguchi, T., [2128, 2401]
Kawaguchi, Tsuyoshi, [1464, 1676]
Kawahara, Kunihiko, [1686]
Kawahito, Katsuhiko, [270]
Kawai, Hiroaki, [1635]
Kawai, H., [269]
Kawai, K., [2346, 2444]
Kawai, Nobuyuki, [1195]
Kawai, S., [1030]
Kawai, T., [2341]
Kawai, T., [1128, 1465, 1527]
Kawakami, Hiroshi, [1180]
Kawakami, K., [1247]
Kawakami, Takashi, [109, 110]
Kawakami, T., [764, 1242]
Kawamata, Masayuki, [1545, 2479]
Kawamura, A., [2223]
Kawamura, Hiroshi, [537, 1321]
Kawamura, H., [503]
Kawamura, Kazuhiro, [15, 16]
Kawamura, Takao, [586]
Kawamura, T., [567]
Kawana, M., [2347]
Kawana, Hiroharu, [344]
Kawanishi, H., [1029, 1243]
Kawano, Hiroshi, [576]
Kawano, M., [2128]
Kawaoka, T., [1997]
Kim, Chang Eun,
Kawase, T.,
Kawata, H.,
Kawata, K.,
Kawata, Masakado,
Kawata, S.,
Kawato, Hiroyuki,
Kawachi, Y.,
Kawachi, Yoshio,
Kawazoe, Yoshiyuki,
Kayo, Genku,
Kazuhito, Matsui,
Kazusane, Takada,
Kazuya, Okawa,
Kemochi, Y.,
Kennett, Brian L. N.,
Kermanshahi, B.,
Keymeulen, Didier,
Keymeulen, Dieter,
Kida, Hiromi,
Kidera, Akinori,
Kidô, Chiôchiro,
Kidô, Go,
Kidô, Motoyuki,
Kidô, Takashi,
Kidô, T.,
Kiga, Daisuke,
Kiguchi, Kazuo,
Kijima, Koichi,
Kikkawa, Hideaki,
Kikuchi, Hiroaki,
Kikuchi, H.,
Kikuchi, Kohki,
Kikuchi, Minoru,
Kikuchi, Shinichi,
Kikuchi, T.,
Kikuchi, Toshihiro,
Kikuno, T.,
Kim, Chang Eun,
Kim, Dajjin,
Kim, H.,
Kim, Hyunchul,
Kim, J. H.,
Kim, J. R.,
Kim, Janghyung,
Kim, Jong Ryal,
Kim, Jongryul,
Kim, Jung Hwan,
Kim, S.,
Kimura, Atsushi,
Kimura, Hajime,
Kimura, H.,
Kimura, I.,
Kimura, Makoto,
Kimura, Masayuki,
Kimura, M.,
Kimura, Takashi,
Kimura, Toshihiro,
Kimura, Yoshihito,
Kimura, Yasuko,
Kimura, Y.,
Kina, Y.,
Kino, H.,
Kinosho, Tomoo,
Kinugawa, K.,
Kirihara, Satoshi,
Kirihara, S.,
Kirokawa, Noriyasu,
Kishi, M.,
Kishi, S.,
Kishi, Y.,
Kishida, Masahiko,
Kishimoto, K.,
Kishimoto, Maki,
Kishimoto, M.,
Kishimoto, N.,
Kishino, Fumio,
Kiss, Takanobu,
Kita, E.,
Kita, Hajime,
Kita, Hiroaki,
Kita, Junji,
Kita, Shinichi,
Kita, Kohki,
Kita, T.,
Kitada, Akihito,
Kitagawa, Junji,
Kitagawa, Minoru,
Kitagawa, Mitsuo,
Kitaguchi, Takashi,
Kitajima, Hideo,
Kitajima, H.,
Kitamichi, J.,
Kitamichi, Junji,
Kitamura, Akira,
Kitamura, Mitsuru,
Kitamura, Shinzo,
Kitamura, S.,
Kitamura, Taiichi,
Kitamura, Yasuhiko,
Kitano, Hiroaki,
Kitano, H.,
Kitaoaka, Masatoshi,
Kitayama, M.,
Kitazawa, H.,
Kitazawa, R.,
Kitazawa, Shuji,
Kitazoe, T.,
Kito, N.,
Kiyamoto, Masaaki,
Kiyohara, Junya,
Kizu, Sachio,
Kizu, S.,
Koakutsu, S.,
Kobashi, Syoji,
Kobayashi, B.,
Miyahara, Yutaka,
Miyajima, K.,
Miyajima, Takashi,
Miyajima, T.,
Miyake, Yoichi,
Miyakoshi, Masaaki,
Miyamichi, J.,
Miyamoto, Junichi,
Miyamoto, Kazunori,
Miyamoto, S.,
Miyamoto, Yuichi,
Miyamura, A.,
Miyanaga, Y.,
Miyanaga, Yoshikazu,
Miyasaki, K.,
Miyasaki, Takashi,
Miyashita, Kazuo,
Miyashita, Koichi,
Miyashita, Yuto,
Miyata, H.,
Miyata, Koichi,
Miyatake, Tatsuya,
Miyauchi, Hiroshi,
Miyauchi, Masahiro,
Miyazaki, Koji,
Miyazaki, M.,
Miyazato, Akihiro,
Miyazato, A.,
Miyazato, D.,
Miyazawa, Y.,
Miyokawa, T.,
Miyoshi, Seiji,
Miyoshi, T.,
Miyoshi, Tsutomu,
Mizoe, Akihiro,
Mizoe, A.,
Mixoguchi, J.,
Mixoguchi, Jun-ichi,
Mixoguchi, R.,
Miztani, Mayumi,
Mizugaki, Yoshio,
Mizuguchi, N.,
Mizukami, Yuto,
Mizuno, Hirotaka,
Mizusaki, Hiroshi,
Mizuta, Eiji,
Mizuta, H.,
Mizuta, Y.,
Mizuta, Yoshihumi,
M. Naganai,
Mochizuki, T.,
Mogami, Y.,
Mohri, Akira,
Molinari, Diego,
Mollah, M. M.,
Momouchi, Y.,
M. Onda,
Moon, Ching,
Mori, Hiroyuki,
Mori, H.,
Mori, Kazuyuki,
Mori, K.,
Mori, Kunihiko,
Mori, Masao,
Mori, Masayuki,
Mori, M.,
Mori, Naoki,
Mori, N.,
Mori, S.,
Mori, T.,
Mori, Y.,
Mori, Yoshinobu,
Morikawa, Koji,
Morimura, Atsushi,
Morimura, Kazuo,
Morikawa, Souichi,
Morikawa, T.,
Morimoto, Hiroyuki,
Morimoto, H.,
Morimoto, Ken-Ichi,
Morimoto, Sadao,
Morimoto, Tetsuo,
Morimoto, T.,
Morishima, Hiroyuki,
Moriyama, Hiroyuki,
Moriyama, Teruki,
Moriyama, Yoshibumi,
Moriyama, T.,
Motegi, A.,
Motegi, S.,
Motokawa, Wataru,
Mouton, Ans. M.,
Mouton, Ans. M.,
M. Prad, Fuad,
Mukai, Fumio,
Mukai, Takahiko,
Mukai, T.,
Mukaidono, Masao,
Mukanda, S.,
Mukuasa, Koichi,
Mukawa, Naoki,
Munakata, Hideaki,
<table>
<thead>
<tr>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munetomi, Masaharu</td>
<td>1462</td>
</tr>
<tr>
<td>Munetom, Masaharu</td>
<td>1294</td>
</tr>
<tr>
<td>Munetom, Masaharu</td>
<td>692</td>
</tr>
<tr>
<td>Munetom, Masaharu</td>
<td>1546</td>
</tr>
<tr>
<td>Munetom, Masaharu</td>
<td>1555</td>
</tr>
<tr>
<td>Munetom, Masaharu</td>
<td>1544</td>
</tr>
<tr>
<td>Munetom, M.</td>
<td>2079</td>
</tr>
<tr>
<td>Murai, H.</td>
<td>1639</td>
</tr>
<tr>
<td>Murai, Nobuyoshi</td>
<td>2296</td>
</tr>
<tr>
<td>Murai, Tetsuya</td>
<td>953</td>
</tr>
<tr>
<td>Murakami, Daiyu</td>
<td>2311</td>
</tr>
<tr>
<td>Murakami, Kazuhito</td>
<td>624</td>
</tr>
<tr>
<td>Murakami, M.</td>
<td>2311</td>
</tr>
<tr>
<td>Murakami, Yoshihori</td>
<td>2179</td>
</tr>
<tr>
<td>Murakawa, Masahiro</td>
<td>1299</td>
</tr>
<tr>
<td>Murakawa, Masahiro</td>
<td>1409</td>
</tr>
<tr>
<td>Murakawa, M.</td>
<td>565</td>
</tr>
<tr>
<td>Murakawa, M.</td>
<td>398</td>
</tr>
<tr>
<td>Muramatsu, Hiroyuki</td>
<td>2289</td>
</tr>
<tr>
<td>Muramatsu, Shoji</td>
<td>317</td>
</tr>
<tr>
<td>Muramatsu, Takahiro</td>
<td>2390</td>
</tr>
<tr>
<td>Murao, Hajime</td>
<td>500</td>
</tr>
<tr>
<td>Murao, H.</td>
<td>1640</td>
</tr>
<tr>
<td>Muraoaka, S.</td>
<td>804</td>
</tr>
<tr>
<td>Murase, Haruhiko</td>
<td>472</td>
</tr>
<tr>
<td>Murase, I.</td>
<td>1050</td>
</tr>
<tr>
<td>Murase, K.</td>
<td>551</td>
</tr>
<tr>
<td>Murase, K.</td>
<td>551</td>
</tr>
<tr>
<td>Murata, H.</td>
<td>503</td>
</tr>
<tr>
<td>Murata, Masahiro</td>
<td>505</td>
</tr>
<tr>
<td>Murata, Masahiro</td>
<td>1796</td>
</tr>
<tr>
<td>Murata, Satoshi</td>
<td>520</td>
</tr>
<tr>
<td>Murata, Tadahiko</td>
<td>332</td>
</tr>
<tr>
<td>Murata, Tadahiko</td>
<td>884</td>
</tr>
<tr>
<td>Murata, Tomohiro</td>
<td>2119</td>
</tr>
<tr>
<td>Murata, Yoshihiro</td>
<td>610</td>
</tr>
<tr>
<td>Murayama, T.</td>
<td>694</td>
</tr>
<tr>
<td>Naga, Zen-ichirou</td>
<td>736</td>
</tr>
<tr>
<td>Mugusa, H.</td>
<td>2435</td>
</tr>
<tr>
<td>Muto, S.</td>
<td>513</td>
</tr>
<tr>
<td>Myodo, Emi</td>
<td>1196</td>
</tr>
<tr>
<td>Myung, H.</td>
<td>1206</td>
</tr>
<tr>
<td>Nade, T.</td>
<td>803</td>
</tr>
<tr>
<td>Nagahara, Toshikuni</td>
<td>661</td>
</tr>
<tr>
<td>Nagahashi, Hiroshi</td>
<td>1653</td>
</tr>
<tr>
<td>Nagahashi, Hiroshi</td>
<td>1654</td>
</tr>
<tr>
<td>Nagai, Kanehiro</td>
<td>1067</td>
</tr>
<tr>
<td>Nagai, Masao</td>
<td>1299</td>
</tr>
<tr>
<td>Nagai, N.</td>
<td>725</td>
</tr>
<tr>
<td>Nagai, Yasuhiro</td>
<td>700</td>
</tr>
<tr>
<td>Nagaiwa, A.</td>
<td>2029</td>
</tr>
<tr>
<td>Nagakawa, A.</td>
<td>2084</td>
</tr>
<tr>
<td>Nagamachi, Mitsuo</td>
<td>909</td>
</tr>
<tr>
<td>Nagamachi, Mitsuo</td>
<td>1900</td>
</tr>
<tr>
<td>Nagamatsu, Akio</td>
<td>1096</td>
</tr>
<tr>
<td>Nagamatsu, Akio</td>
<td>958</td>
</tr>
<tr>
<td>Nagami, H.</td>
<td>1092</td>
</tr>
<tr>
<td>Nagamoto, H.</td>
<td>1300</td>
</tr>
<tr>
<td>Nagano, Saburo</td>
<td>1783</td>
</tr>
<tr>
<td>Nagano, Shinobu</td>
<td>1353</td>
</tr>
<tr>
<td>Nagano, T.</td>
<td>1642</td>
</tr>
<tr>
<td>Nagao, H.</td>
<td>222</td>
</tr>
<tr>
<td>Nagao, T.</td>
<td>1148</td>
</tr>
<tr>
<td>Nagao, Tomoharu</td>
<td>1638</td>
</tr>
<tr>
<td>Nagara, R.</td>
<td>1671</td>
</tr>
<tr>
<td>Nagasaka, Ichiro</td>
<td>1749</td>
</tr>
<tr>
<td>Nagasaka, I.</td>
<td>2157</td>
</tr>
<tr>
<td>Nagasaka, Kenichiro</td>
<td>1301</td>
</tr>
<tr>
<td>Nagasaka, K.</td>
<td>1300</td>
</tr>
<tr>
<td>Nagase, Yukinori</td>
<td>586</td>
</tr>
<tr>
<td>Nagata, Isao</td>
<td>416</td>
</tr>
<tr>
<td>Nagata, J.</td>
<td>1323</td>
</tr>
<tr>
<td>Nagata, Junichi</td>
<td>2415</td>
</tr>
<tr>
<td>Nagata, R.</td>
<td>1678</td>
</tr>
<tr>
<td>Nagata, T.</td>
<td>1054</td>
</tr>
<tr>
<td>Nagaya, E.</td>
<td>1055</td>
</tr>
<tr>
<td>Nagaya, Kosuke</td>
<td>1302</td>
</tr>
<tr>
<td>Nagaya, Shigeo</td>
<td>695</td>
</tr>
<tr>
<td>Nagaya, Yoshiaki</td>
<td>534</td>
</tr>
<tr>
<td>Nagayama, I.</td>
<td>1815</td>
</tr>
<tr>
<td>Nagayoshi, M.</td>
<td>803</td>
</tr>
<tr>
<td>Nagum, H.</td>
<td>1293</td>
</tr>
<tr>
<td>Nagura, R.</td>
<td>1746</td>
</tr>
<tr>
<td>Naito, S.</td>
<td>1034</td>
</tr>
<tr>
<td>Naito, Takeshi</td>
<td>1804</td>
</tr>
<tr>
<td>Naito, T.</td>
<td>1389</td>
</tr>
<tr>
<td>Naitoh, Ken</td>
<td>910</td>
</tr>
<tr>
<td>Nakabayashi, Ayumi</td>
<td>1547</td>
</tr>
<tr>
<td>Nakada, Kazunobu</td>
<td>2232</td>
</tr>
<tr>
<td>Nakada, Masaru</td>
<td>2199</td>
</tr>
<tr>
<td>Nakada, Masshiro</td>
<td>140</td>
</tr>
<tr>
<td>Nakagama, Hayato</td>
<td>195</td>
</tr>
<tr>
<td>Nakagawa, A.</td>
<td>1161</td>
</tr>
<tr>
<td>Nakagawa, H.</td>
<td>1207</td>
</tr>
<tr>
<td>Nakagawa, Kenji</td>
<td>1194</td>
</tr>
<tr>
<td>Nakagawa, Masaya</td>
<td>2077</td>
</tr>
<tr>
<td>Nakagawa, Y.</td>
<td>1202</td>
</tr>
<tr>
<td>Nakagiri, Shigeru</td>
<td>218</td>
</tr>
<tr>
<td>Nakaguchi, Toshiya</td>
<td>622</td>
</tr>
<tr>
<td>Nakahashi, Hiroshi</td>
<td>185</td>
</tr>
<tr>
<td>Nakahashi, Kazuhiro</td>
<td>515</td>
</tr>
<tr>
<td>Nakai, Masaki</td>
<td>2333</td>
</tr>
<tr>
<td>Nakai, Takahisa</td>
<td>422</td>
</tr>
<tr>
<td>Nakajima, Akifumi</td>
<td>1589</td>
</tr>
<tr>
<td>Nakajima, Hideki</td>
<td>1634</td>
</tr>
<tr>
<td>Nakajima, Hideo</td>
<td>524</td>
</tr>
<tr>
<td>Nakajima, H.</td>
<td>1922</td>
</tr>
<tr>
<td>Nakajima, Jun</td>
<td>624</td>
</tr>
<tr>
<td>Nakajima, Masayuki</td>
<td>2099</td>
</tr>
<tr>
<td>Nakajima, M.</td>
<td>1369</td>
</tr>
<tr>
<td>Nakajima, Tatsuya</td>
<td>1195</td>
</tr>
<tr>
<td>Nakakuki, Tomoki</td>
<td>2025</td>
</tr>
<tr>
<td>Nakami, Y.</td>
<td>1029</td>
</tr>
<tr>
<td>Nakamur, H.</td>
<td>1641</td>
</tr>
<tr>
<td>Nakamura, Ikuo</td>
<td>1509</td>
</tr>
<tr>
<td>Authors</td>
<td>References</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Nishikawa, Y.,</td>
<td>1312</td>
</tr>
<tr>
<td>Nishikawa, Y.,</td>
<td>1444</td>
</tr>
<tr>
<td>Nishikawa, Y.,</td>
<td>1687, 2082</td>
</tr>
<tr>
<td>Nishikawa, Yoshikawa,</td>
<td>189, 187</td>
</tr>
<tr>
<td>Nishikawa, Yoshikazu,</td>
<td>1284, 2213, 138</td>
</tr>
<tr>
<td>Nishimura, E.,</td>
<td>400</td>
</tr>
<tr>
<td>Nishimura, Etsuko,</td>
<td>2263</td>
</tr>
<tr>
<td>Nishimura, H.,</td>
<td>646, 1742</td>
</tr>
<tr>
<td>Nishimura, Toshihiro,</td>
<td>334, 1606</td>
</tr>
<tr>
<td>Nishino, E.,</td>
<td>2205, 2451</td>
</tr>
<tr>
<td>Nishino, E.,</td>
<td>2135</td>
</tr>
<tr>
<td>Nishino, K.,</td>
<td>664</td>
</tr>
<tr>
<td>Nishino, Miyako,</td>
<td>433</td>
</tr>
<tr>
<td>Nishino, T.,</td>
<td>529</td>
</tr>
<tr>
<td>Nishio, Y.,</td>
<td>1594, 2254</td>
</tr>
<tr>
<td>Nishiwaki, Shinji,</td>
<td>627</td>
</tr>
<tr>
<td>Nishiyama, T.,</td>
<td>179</td>
</tr>
<tr>
<td>Nishizaki, Ichiro,</td>
<td>2067</td>
</tr>
<tr>
<td>Nishizaki, I.,</td>
<td>2232, 2476</td>
</tr>
<tr>
<td>Niwa, Akihiro,</td>
<td>906</td>
</tr>
<tr>
<td>Niwa, K.,</td>
<td>2027</td>
</tr>
<tr>
<td>Niwa, Tatsuya,</td>
<td>1310, 1524, 1787, 2120, 2718</td>
</tr>
<tr>
<td>N.Nagai,</td>
<td>833, 980</td>
</tr>
<tr>
<td>Nobiki, A.,</td>
<td>699, 1060</td>
</tr>
<tr>
<td>Nobue, A.,</td>
<td>768</td>
</tr>
<tr>
<td>Nobukawa, Hisashi,</td>
<td>295</td>
</tr>
<tr>
<td>Nobuo, Sannomiya,</td>
<td>486</td>
</tr>
<tr>
<td>Noguchi, H.,</td>
<td>565</td>
</tr>
<tr>
<td>Noguchi, N.,</td>
<td>700, 1748</td>
</tr>
<tr>
<td>Noguchi, S.,</td>
<td>1313</td>
</tr>
<tr>
<td>Noguchi, Y.,</td>
<td>1960, 2191</td>
</tr>
<tr>
<td>Noide, Yasushi,</td>
<td>2465</td>
</tr>
<tr>
<td>Nojima, Yusuke,</td>
<td>613</td>
</tr>
<tr>
<td>Nomoto, Kenichi,</td>
<td>1113</td>
</tr>
<tr>
<td>Nomura, Hiroyashi,</td>
<td>633</td>
</tr>
<tr>
<td>Nomura, H.,</td>
<td>209</td>
</tr>
<tr>
<td>Nomura, Tatsuya,</td>
<td>2140</td>
</tr>
<tr>
<td>Nomura, T.,</td>
<td>1749</td>
</tr>
<tr>
<td>Nonaka, M.,</td>
<td>876</td>
</tr>
<tr>
<td>Nonaka, Shiro,</td>
<td>1854, 2178</td>
</tr>
<tr>
<td>Nonaka, T.,</td>
<td>2063</td>
</tr>
<tr>
<td>Nosato, Hirokazu,</td>
<td>992</td>
</tr>
<tr>
<td>Nosato, H.,</td>
<td>965</td>
</tr>
<tr>
<td>Nose, Matsu,</td>
<td>1077, 1134, 1146, 1340, 1499, 1779</td>
</tr>
<tr>
<td>Notten, Peter H. L.,</td>
<td>2392</td>
</tr>
<tr>
<td>Nozaki, Ken,</td>
<td>781, 868</td>
</tr>
<tr>
<td>Nozoe, Toshihide,</td>
<td>1628</td>
</tr>
<tr>
<td>Nugroho, H.,</td>
<td>1751, 1989</td>
</tr>
<tr>
<td>Numao, M.,</td>
<td>2038</td>
</tr>
<tr>
<td>Numaoka, C.,</td>
<td>1317</td>
</tr>
<tr>
<td>Numata, M.,</td>
<td>2433</td>
</tr>
<tr>
<td>Numohiro, Eiji,</td>
<td>594</td>
</tr>
<tr>
<td>Nunokawa, H.,</td>
<td>2310</td>
</tr>
<tr>
<td>Nunokawa, Y.,</td>
<td>177</td>
</tr>
<tr>
<td>Oba, F.,</td>
<td>694</td>
</tr>
<tr>
<td>Obara, Kazuaki,</td>
<td>1768</td>
</tr>
<tr>
<td>Obata, H.,</td>
<td>2205, 2477</td>
</tr>
<tr>
<td>Obata, Kenzo,</td>
<td>2129</td>
</tr>
<tr>
<td>Obata, K.,</td>
<td>1103, 1104</td>
</tr>
<tr>
<td>Obayashi, Shigeru,</td>
<td>319</td>
</tr>
<tr>
<td>Obika, Masanobu,</td>
<td>578</td>
</tr>
<tr>
<td>Obogawa, Naoki,</td>
<td>1061</td>
</tr>
<tr>
<td>Obokawa, Naoki,</td>
<td>915</td>
</tr>
<tr>
<td>Ochi, Mitsuakazu,</td>
<td>2047</td>
</tr>
<tr>
<td>Ochi, M.,</td>
<td>1420, 1523</td>
</tr>
<tr>
<td>Ochiai, S.,</td>
<td>2063</td>
</tr>
<tr>
<td>Ochiai, Tatsuo,</td>
<td>1392</td>
</tr>
<tr>
<td>Oda, A.,</td>
<td>222</td>
</tr>
<tr>
<td>Oda, J.,</td>
<td>2308</td>
</tr>
<tr>
<td>Oda, Judachi,</td>
<td>702, 162</td>
</tr>
<tr>
<td>Oda, Juhachi,</td>
<td>1750</td>
</tr>
<tr>
<td>Oda, K.,</td>
<td>1486, 1752</td>
</tr>
<tr>
<td>Oda, Minoru,</td>
<td>2353</td>
</tr>
<tr>
<td>Oda, T.,</td>
<td>1741</td>
</tr>
<tr>
<td>Oda, Yasumasa,</td>
<td>539</td>
</tr>
<tr>
<td>Odagiri, R.,</td>
<td>1389</td>
</tr>
<tr>
<td>Odaka, T.,</td>
<td>1295, 1416</td>
</tr>
<tr>
<td>Oe, Kenichi,</td>
<td>434</td>
</tr>
<tr>
<td>Oe, Shunichiro,</td>
<td>2360</td>
</tr>
<tr>
<td>Oe, S.,</td>
<td>1639</td>
</tr>
<tr>
<td>Oe, Syumichiro,</td>
<td>1285, 1479</td>
</tr>
<tr>
<td>Oeda, S.,</td>
<td>457</td>
</tr>
<tr>
<td>Oganov, Artem R.,</td>
<td>587</td>
</tr>
<tr>
<td>Ogasawara, K.,</td>
<td>783, 1024</td>
</tr>
<tr>
<td>Ogata, Hiroyuki,</td>
<td>919</td>
</tr>
<tr>
<td>Ogawa, Akio,</td>
<td>894</td>
</tr>
<tr>
<td>Ogawa, Kohei,</td>
<td>1265, 1706</td>
</tr>
<tr>
<td>Ogawa, S.,</td>
<td>165</td>
</tr>
<tr>
<td>Ogawa, Toshiyuki,</td>
<td>1339</td>
</tr>
<tr>
<td>Ogino, Osao,</td>
<td>275</td>
</tr>
<tr>
<td>Ogihara, Haruo,</td>
<td>1622</td>
</tr>
<tr>
<td>Ogoshi, Yasuji,</td>
<td>1310</td>
</tr>
<tr>
<td>Ogura, H.,</td>
<td>1295, 1416</td>
</tr>
<tr>
<td>Ogura, Maki,</td>
<td>516</td>
</tr>
<tr>
<td>Oguro, R.,</td>
<td>2159</td>
</tr>
<tr>
<td>Oguro, Ryuichi,</td>
<td>450, 1747</td>
</tr>
<tr>
<td>Ohara, Shigeyuki,</td>
<td>320, 356, 483</td>
</tr>
<tr>
<td>Ohashi, Hirotada,</td>
<td>13</td>
</tr>
<tr>
<td>Ohi, Hajime,</td>
<td>324</td>
</tr>
<tr>
<td>Ohira, T.,</td>
<td>1092, 1319</td>
</tr>
<tr>
<td>Ohkawa, Kei,</td>
<td>481</td>
</tr>
<tr>
<td>Ohkawa, T.,</td>
<td>1013, 1222</td>
</tr>
<tr>
<td>Ohk, M.,</td>
<td>1282, 2062</td>
</tr>
<tr>
<td>Ohki, Toshihiko,</td>
<td>2390</td>
</tr>
<tr>
<td>Ohkita, M.,</td>
<td>1282, 2062</td>
</tr>
<tr>
<td>Ohkubo, Masaki,</td>
<td>563</td>
</tr>
<tr>
<td>Ohkura, Kazuhiro,</td>
<td>535, 545, 703</td>
</tr>
<tr>
<td>Ohkura, Tatsuya,</td>
<td>1321</td>
</tr>
<tr>
<td>Ohmachi, Tatsuya,</td>
<td>1321</td>
</tr>
<tr>
<td>Ohmachi, Yasutaka,</td>
<td>1321</td>
</tr>
</tbody>
</table>
Genetic algorithms in Japan
| Sakanashi, H. | 712 | 708 | | | | | | | | | | | | | | | |
| Sakane, Shigeyuki | 713 |
| Sakane, S. | 198 |
| Sakano, Ei | 1181 | 1602 |
| Sakano, Hitoshi | 1340 | 1645 |
| Sakano, S. | 1052 | 2107 | 2172 |
| Sakasai, Kaoru | 1279 |
| Sakata, M. | 1289 |
| Sakata, Yasuhiro | 183 |
| Sakauchi, Masaaki | 1168 |
| Sakaue, K. | 714 | 943 |
| Sakauma, I. | 1798 |
| Sakawa, Masatoshi | 255 | 289 | 435 | 541 | 289 | 435 | 541 | 1289 |
| Sakawa, T. | 2202 |
| Saito, T. | 1734 | 2187 | 2242 | 2461 | 2482 | 2478 | 2477 | 172 |
| Saito, Y. | 717 | 1495 | 1627 | 1871 | 1975 | 1627 | 1871 | 1975 | 1734 | 2187 | 2242 | 2461 | 2482 | 2478 | 2477 | 172 |
| Samadi, Saed | 2108 | 2292 |
| Samat, Pathiah Abd | 2257 |
| Sankai, Yoshiyuki | 1068 |
| Sammoiniya, Nobuo | 223 | 715 | 746 | 1011 | 1124 | 1101 | 1342 | 1294 | 1617 | 1381 | 1596 | 1822 | 1942 | 1997 | 88 | 532 | 98 |
| Sammoiniya, N. | 560 | 1030 | 1559 |
| Sano, A. | 837 | 1075 | 1421 |
| Sano, M. | 1659 |
| Sano, Y. | 1974 |
| Santori, Charles | 1395 |
| Sasagawa, Fumiyo | 234 | 1606 |
| Sasagawa, Masaki | 1249 |
| Sasakura, H. | 1810 |
| Sasaki, Masahide | 2339 | 2344 |
| Sasaki, Toshihiko | 137 | 133 |
| Sasaki, Yutaka | 1341 |
| Sasaki, Y. | 1716 |
| Sato, Taisuke | 718 | 714 |
| Sato, Tatsuhiko | 2119 |
| Sato, Tomoaki | 270 |
| Sato, Tomomasa | 713 |
| Sato, Tomoya | 487 |
| Sato, Toshinori | 133 |
| Sato, Yuji | 1344 | 1432 |
| Satoh, Hiroshi | 233 | 287 |
| Satoh, H. | 1660 |
| Satoh, T. | 1199 |
| Satomi, K. | 2033 |
| Satou, Makihiro | 1505 | 1735 | 2043 | 2204 | 2231 | 2406 |
| Savchenko, V. V. | 2379 |
| Sawa, Toshiyuki | 2411 | 877 |
| Sawada, T. | 1218 |
| Sawagami, T. | 1218 |
| Seki, H. | 755 | 755 |
| Seki, M. | 2204 |
| Seki, Shunichi | 549 |
| Sekiguchi, T. | 2087 |
| Sekimoto, Hiroshi | 2245 |
| Sebaaly, M. F. | 1346 | 1540 |
| Sebaaly, Milad | 2042 | 2263 |
| Segawa, Kazuhiro | 1391 |
| Segawa, K. | 2158 |
| Seki, H. | 755 | 1036 | 1171 | 1286 |
| Seki, M. | 2004 |
| Seki, Shunichi | 549 |
| Sekiguchi, T. | 2087 |
| Sekimoto, Hiroshi | 2245 |
Genetic algorithms in Japan

Smith, Stephen F., 114
Snider, Greg, 195
Someno, Toshihiro, 372
Someno, Yoshihiro, 491
Someya, Hiroshi, 244
Somugiyatsuto, Tankitsutsowanitsuchi, 1813
Sonohara, Noboru, 2235, 2337
Song, R. G., 443
Song, Wei, 572, 590
Soramoto, Sayaka, 566
Sota, T., 2004
Sue, Suchen, 181
Sueoka, Kazunori, 586
Sueoka, Kazuhisa, 351
Suzukake, Y., 2109
Suzuki, A., 1865
Suzuki, Atsuyuki, 1755
Suzuki, Hideaki, 1647
Suzuki, H., 1034
Suzuki, Joe, 2005, 99
Suzuki, J., 1802, 1880
Suzuki, Kenji, 1221
Suzuki, Kenji, 1644
Suzuki, Masakazu, 581, 2338
Suzuki, Masahige, 2021
Suzuki, Shinji, 1270, 1380
Suzuki, Takashi, 231
Suzuki, Takayuki, 1363
Suzuki, Tatsuya, 1247
Suzuki, Tetsuo, 178
Suzuki, Toshihiro, 2146, 2220
Suzuki, T., 1369, 1489, 1498, 1493, 2227, 2223
Suzuki, Yasuhiro, 148
Suzuki, Yasuo, 1220
Suzuki, Y., 1396, 1430
Suzuki, Yuji, 480
Suzuki, J., 1922
Swarup, K. S., 1472, 97
Tabata, Yoshiho, 519
Tabuchi, Ichiro, 566
Tabuchi, Mototsugu, 2283
Tabuchi, M., 1363
Tabuse, M., 2070
Tachibana, Kanta, 2337
Tachibana, K., 2113
Tachibana, Tatsuhiro, 510
Tachiya, H., 1364
Tada, Y., 2181
Tada, Yukio, 539, 1853
Tadokoro, T., 1736
Tadokoro, Yoshihisa, 291
Takahashi, K., 1366
Tajima, Kenichi, 1788
Tajima, K., 1387
Takada, Kazumi, 2248
Takada, Toru, 2415
Takada, T., 2175, 2176
Takagawa, Y., 1436, 1752
Takagi, Hideyuki, 252, 145, 1453
Takagi, H., 1102, 1221, 1283, 1455, 1675, 1994, 2110, 2294
Takagi, J., 213
Takagi, K., 890
Takagi, Noboru, 1081
Authors

Takagi, T., 179
Takagi, Yuji, 1417, 2167
Takahama, T., 2156, 153
Takahara, M., 464
Takahashi, Eiichi, 301, 330, 401, 590
Takahashi, Hiroki, 2060
Takahashi, Hirotoshi, 486
Takahashi, H., 1021, 1369, 1648, 185
Takahashi, Jiichi, 1195
Takahashi, Katsutoshi, 555
Takahashi, Keiko, 1245
Takahashi, K., 2116, 2280, 2428
Takahashi, M., 255, 2074
Takahashi, Osamu, 305
Takahashi, Shingo, 344
Takahashi, Shinichi, 2115
Takahashi, S., 1753, 1989
Takahashi, Yoshikane, 728, 2182
Takahashi, Y., 1659, 184
Takai, Yoshiaki, 692, 1049, 1183
Takai, Y., 795, 1727
Takai, Y., 2073
Takaku, J., 1082
Takakusa, T., 401
Takamura, S., 2315, 365
Takanashi, Susumu, 917, 1063
Takano, K., 1205
Takano, Naoki, 1298, 2077
Takano, N., 305, 2084
Takano, Shuichi, 279
Takano, T., 1019
Takano, T., 1221, 2049
Takano, Y., 927
Takano, Yutaka, 1211
Takanori, N., 729
Takanori, Tsukahara, 1487, 1932
Takaoka, Ken, 76
Takara, T., 1402, 1816
Takashi, H., 1789
Takashi, Kenichi, 415
Takashi, Midori, 1937
Takashi, M., 1058, 1139, 1589, 1911, 1927
Takashina, Tomomi, 941, 1083
Takata, Hisahiro, 1915
Takata, H., 1620, 2123
Takata, R., 1471
Takata, T., 1324
Takatama, Yoshiki, 2439
Takeda, F., 1135, 1192
Takeda, Fumiaki, 1212, 2064
Takeda, K., 1702, 1901
Takeda, Norio, 1298, 2077
Takeda, N., 1420, 2049
Takeda, T., 2294
Takefuji, Y., 2125
Takegawa, Naoki, 2445
Takehisa, Yasuo, 149
Takei, H., 1819
Takekuma, Ikiko, 371
Takematsu, Katsuhiro, 837
Takenaka, H., 1765, 2290
Takenaka, T., 1781, 1824
Takeshita, Toyoaki, 2452
Takeuchi, Jun, 2310
Takeuchi, Kazuyuki, 1853
Takeuchi, K., 2181
Takeuchi, Masaru, 690
Takeuchi, M., 186
Takeuchi, R., 308
Takeuchi, Toshihiko, 1782
Takeuchi, T., 2416
Takeya, Nobuyuki, 1315
Takeyama, Kenichi, 2392
Takiguchi, M., 1504
Takita, Masatoshi, 971
Takizawa, Atsushi, 537
Takizawa, Takeshi, 340
Takeuchi, Hiroshi, 348
Takuma, Masanori, 2047
Takusagawa, T., 1692
Tamaki, Hisashi, 500, 538
Tamaki, H., 1457, 1523, 1550, 1649, 1687, 1995
Tamaki, Y., 1324
Tamamotu, H., 1427
Tamane, Shotaro, 373
Tamaoki, Tomokazu, 2410
Tayamaya, Yuuya, 1447
Tamori, S., 2435
Tamura, Hiroyuki, 294
Tamura, Hisashi, 1327
Tamura, H., 657
Tamura, Shigeru, 2411
Tamura, Shinichi, 1546, 1573, 1689
Tamura, S., 1106, 1569
Tamura, Tohru, 745
Tanabe, Yosinori, 2440
Tanahashi, H., 943, 1785
Tanaka, Chin-Ichi, 208
Tanaka, E., 2412
Tanaka, H., 1217
Tanaka, Hideo, 781, 816
Tanaka, Hidekichi, 825, 884, 1089, 1203, 1315, 85
Tanaka, Hidekoshi, 754, 1374
Tanaka, Hiroshi, 348
Tanaka, H., 1127, 1377, 1503, 1319
Tanaka, Kazuo, 844, 1032
Tanaka, K., 1235, 1703
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taniguchi, Toshiyuki</td>
<td>235, 237</td>
</tr>
<tr>
<td>Tanigawa, Yuao</td>
<td>1589</td>
</tr>
<tr>
<td>Tanigawa, Y.</td>
<td>691, 906</td>
</tr>
<tr>
<td>Tanigawa, T.</td>
<td>1130, 1372</td>
</tr>
<tr>
<td>Tanigawa, Toru</td>
<td>1495, 2380</td>
</tr>
<tr>
<td>Tanijima, Yusuke</td>
<td>131</td>
</tr>
<tr>
<td>Tanini, Tetsuzo</td>
<td>873, 906</td>
</tr>
<tr>
<td>Tanizaki, N.</td>
<td>1595</td>
</tr>
<tr>
<td>Tanka, Hideo</td>
<td>925</td>
</tr>
<tr>
<td>Tanno, Koichi</td>
<td>1860</td>
</tr>
<tr>
<td>Tano, Hiroaki</td>
<td>104</td>
</tr>
<tr>
<td>Tanomaru, J.</td>
<td>1147</td>
</tr>
<tr>
<td>Tanomaru, Julio</td>
<td>1136, 1372</td>
</tr>
<tr>
<td>Tashima, Koichi</td>
<td>1860</td>
</tr>
<tr>
<td>Tashiro, Tomoko</td>
<td>2336, 2353</td>
</tr>
<tr>
<td>Tatsuki, Masahiko</td>
<td>1071</td>
</tr>
<tr>
<td>Tatemura, Kyochi</td>
<td>1494</td>
</tr>
<tr>
<td>Tatsumi, Hiroyuki</td>
<td>1634</td>
</tr>
<tr>
<td>Tatsumi, Shoji</td>
<td>1037, 1709, 1878, 76</td>
</tr>
<tr>
<td>Tatsuo, Sakai</td>
<td>466</td>
</tr>
<tr>
<td>Tatsuzawa, Yoshihiro</td>
<td>351, 2301</td>
</tr>
<tr>
<td>Taura, Toshiharu</td>
<td>1240</td>
</tr>
<tr>
<td>Taura, T.</td>
<td>1363, 2157</td>
</tr>
<tr>
<td>Tazaki, Eijichiro</td>
<td>1010, 1352</td>
</tr>
<tr>
<td>Tazaki, E.</td>
<td>1221</td>
</tr>
<tr>
<td>Tawara, L.</td>
<td>1665</td>
</tr>
<tr>
<td>Tekuichi, T.</td>
<td>195</td>
</tr>
<tr>
<td>Tengan, T.</td>
<td>1436</td>
</tr>
<tr>
<td>Tenne, Yoel</td>
<td>627</td>
</tr>
<tr>
<td>Terada, Kengo</td>
<td>732, 801</td>
</tr>
<tr>
<td>Terai, Hideozawa</td>
<td>613, 615</td>
</tr>
<tr>
<td>Terai, K.</td>
<td>304</td>
</tr>
<tr>
<td>Teramati, Y.</td>
<td>1794</td>
</tr>
<tr>
<td>Terano, K.</td>
<td>1261</td>
</tr>
<tr>
<td>Terano, Takao</td>
<td>313, 176</td>
</tr>
<tr>
<td>Terano, Toshiro</td>
<td>1269</td>
</tr>
<tr>
<td>Terano, T.</td>
<td>1542, 1705, 2038</td>
</tr>
<tr>
<td>Terao, H.</td>
<td>1709, 1748</td>
</tr>
<tr>
<td>Terao, Makoto</td>
<td>246</td>
</tr>
<tr>
<td>Teraoka, Masaya</td>
<td>1737, 1813</td>
</tr>
<tr>
<td>Terasaki, Takeshi</td>
<td>2117</td>
</tr>
<tr>
<td>Terasaki, Tomio</td>
<td>2417</td>
</tr>
<tr>
<td>Terasaki, Toshiki</td>
<td>947</td>
</tr>
<tr>
<td>Terauchi, A.</td>
<td>2388</td>
</tr>
<tr>
<td>Tezuka, Akira</td>
<td>954</td>
</tr>
<tr>
<td>Tezuka, K.</td>
<td>957</td>
</tr>
<tr>
<td>Tezuka, Masaru</td>
<td>438</td>
</tr>
<tr>
<td>Thanapandi, Chitra Malini</td>
<td>396, 483</td>
</tr>
<tr>
<td>Tiziani, Hans J.</td>
<td>539</td>
</tr>
<tr>
<td>Tobita, Toshimitsu</td>
<td>1391</td>
</tr>
<tr>
<td>Tobita, T.</td>
<td>2158</td>
</tr>
<tr>
<td>Tochinai, Koji</td>
<td>1020, 1555</td>
</tr>
<tr>
<td>Tochinai, K.</td>
<td>1179, 1685</td>
</tr>
<tr>
<td>Toda, Kenji</td>
<td>330</td>
</tr>
<tr>
<td>Toda, Kenji</td>
<td>401</td>
</tr>
<tr>
<td>Toda, K.</td>
<td>2280</td>
</tr>
<tr>
<td>Todaka, T.</td>
<td>1973</td>
</tr>
<tr>
<td>Todoroki, Akira</td>
<td>740, 1090</td>
</tr>
<tr>
<td>Togawa, A.</td>
<td>847</td>
</tr>
<tr>
<td>Toto, Yoshihiro</td>
<td>252</td>
</tr>
<tr>
<td>Tohma, Y.</td>
<td>1041</td>
</tr>
<tr>
<td>Tohyama, Hisao</td>
<td>2390</td>
</tr>
<tr>
<td>Tojami, A.</td>
<td>266</td>
</tr>
<tr>
<td>Tojoda, J.</td>
<td>710</td>
</tr>
<tr>
<td>Tokawa, Akhiro</td>
<td>1679</td>
</tr>
<tr>
<td>Tokinaga, Shoio</td>
<td>197</td>
</tr>
<tr>
<td>Tokoro, Ken-ichi</td>
<td>316</td>
</tr>
<tr>
<td>Tokoro, M.</td>
<td>1319</td>
</tr>
<tr>
<td>Tokumaru, H.</td>
<td>1291</td>
</tr>
<tr>
<td>Takahashi, S.</td>
<td>804, 864</td>
</tr>
<tr>
<td>Tokura, S.</td>
<td>2302</td>
</tr>
<tr>
<td>Tomikawa, T.</td>
<td>1137, 212</td>
</tr>
<tr>
<td>Tomimura, Daisuke</td>
<td>229, 555</td>
</tr>
<tr>
<td>Tomimura, D.</td>
<td>2063</td>
</tr>
<tr>
<td>Tomiyama, Yukio</td>
<td>2183, 2226</td>
</tr>
<tr>
<td>Tomizaka, S.</td>
<td>1942</td>
</tr>
<tr>
<td>Tomita, Keiichii</td>
<td>1091</td>
</tr>
<tr>
<td>Tomita, Kohji</td>
<td>520</td>
</tr>
<tr>
<td>Tomita, Masaru</td>
<td>555</td>
</tr>
<tr>
<td>Tomita, M.</td>
<td>856</td>
</tr>
<tr>
<td>Tomita, S.</td>
<td>996, 1621</td>
</tr>
<tr>
<td>Tozegawa, Taroh</td>
<td>1448</td>
</tr>
<tr>
<td>Tonegawa, T.</td>
<td>84</td>
</tr>
<tr>
<td>Authors</td>
<td>References</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Yagi, S.</td>
<td>2112</td>
</tr>
<tr>
<td>Yagiura, Mutsunori</td>
<td>1416 1510</td>
</tr>
<tr>
<td>Yagiura, M.</td>
<td>755</td>
</tr>
<tr>
<td>Yaguchi, Toshiyuki</td>
<td>596</td>
</tr>
<tr>
<td>Yagyu, Tatsuo</td>
<td>1108</td>
</tr>
<tr>
<td>Yahagi, T.</td>
<td>1725 2095</td>
</tr>
<tr>
<td>Yahata, Y.</td>
<td>1109</td>
</tr>
<tr>
<td>Yahiro, Masakazu</td>
<td>1775</td>
</tr>
<tr>
<td>Yakabe, T.</td>
<td>404</td>
</tr>
<tr>
<td>Yaku, Masaji</td>
<td>311</td>
</tr>
<tr>
<td>Yaku, S.</td>
<td>1709</td>
</tr>
<tr>
<td>Yamada, Akihiko</td>
<td>1168</td>
</tr>
<tr>
<td>Yamada, Akira</td>
<td>1168</td>
</tr>
<tr>
<td>Yamada, Hiromitsu</td>
<td>2209</td>
</tr>
<tr>
<td>Yamada, Hitoshi</td>
<td>1653 1452</td>
</tr>
<tr>
<td>Yamada, H.</td>
<td>763 806</td>
</tr>
<tr>
<td>Yamada, M.</td>
<td>1286 2071</td>
</tr>
<tr>
<td>Yamada, Seiji</td>
<td>312</td>
</tr>
<tr>
<td>Yamada, Shin-ichi</td>
<td>216 1171</td>
</tr>
<tr>
<td>Yamada, S.</td>
<td>863 1171</td>
</tr>
<tr>
<td>Yamada, Takaaki</td>
<td>1632</td>
</tr>
<tr>
<td>Yamada, Takahiro</td>
<td>625</td>
</tr>
<tr>
<td>Yamada, Takayuki</td>
<td>200</td>
</tr>
<tr>
<td>Yamada, Takeshi</td>
<td>317 632 159 2019 1415 1508 2419</td>
</tr>
<tr>
<td>Yamada, T.</td>
<td>1819 1828 1902 1926 2116</td>
</tr>
<tr>
<td>Yamada, Yukio</td>
<td>204</td>
</tr>
<tr>
<td>Yamada, Y.</td>
<td>1128 2325</td>
</tr>
<tr>
<td>Yamada, Shin-ichi</td>
<td>644</td>
</tr>
<tr>
<td>Yamafuji, K.</td>
<td>924 1099</td>
</tr>
<tr>
<td>Yamagata, Y.</td>
<td>1343</td>
</tr>
<tr>
<td>Yamagishi, A.</td>
<td>2157</td>
</tr>
<tr>
<td>Yamagishi, M.</td>
<td>39</td>
</tr>
<tr>
<td>Yamagishi, T.</td>
<td>212</td>
</tr>
<tr>
<td>Yamaguchi, A.</td>
<td>225</td>
</tr>
<tr>
<td>Yamaguchi, Azusa</td>
<td>2250</td>
</tr>
<tr>
<td>Yamaguchi, Fumiko</td>
<td>230 327</td>
</tr>
<tr>
<td>Yamaguchi, Hayato</td>
<td>525</td>
</tr>
<tr>
<td>Yamaguchi, Katsuhisa</td>
<td>2039</td>
</tr>
<tr>
<td>Yamaguchi, K.</td>
<td>222 419</td>
</tr>
<tr>
<td>Yamaguchi, Masahiro</td>
<td>259 371</td>
</tr>
<tr>
<td>Yamaguchi, Takasato</td>
<td>1416 2166</td>
</tr>
<tr>
<td>Yamaguchi, Takayuki</td>
<td>1860</td>
</tr>
<tr>
<td>Yamaguchi, Toru</td>
<td>2370</td>
</tr>
<tr>
<td>Yamaguchi, T.</td>
<td>1416 2166</td>
</tr>
<tr>
<td>Yamaguchi, Y.</td>
<td>2404</td>
</tr>
<tr>
<td>Yamaillura, M.</td>
<td>1356</td>
</tr>
<tr>
<td>Yamai, M.</td>
<td>505</td>
</tr>
<tr>
<td>Yamakawa, Hiroshi</td>
<td>1417 1449 2167 213</td>
</tr>
<tr>
<td>Yamakawa, T.</td>
<td>1707</td>
</tr>
<tr>
<td>Yamakura, Makoto</td>
<td>447</td>
</tr>
<tr>
<td>Yamamoto, Hideliko</td>
<td>1829</td>
</tr>
<tr>
<td>Yamamoto, Hiroyuki</td>
<td>138 133</td>
</tr>
<tr>
<td>Yamamoto, H.</td>
<td>864</td>
</tr>
<tr>
<td>Yamamoto, Kazuhiko</td>
<td>2299</td>
</tr>
<tr>
<td>Yamamoto, Kenji</td>
<td>887 943</td>
</tr>
<tr>
<td>Yamamoto, K.</td>
<td>1034 1110 2005</td>
</tr>
<tr>
<td>Yamamoto, Motoji</td>
<td>763 905</td>
</tr>
<tr>
<td>Yamamoto, M.</td>
<td>1255</td>
</tr>
<tr>
<td>Yamamoto, Naohisa</td>
<td>763 824</td>
</tr>
<tr>
<td>Yamamoto, N.</td>
<td>1418 1799</td>
</tr>
<tr>
<td>Yamamoto, S.</td>
<td>864</td>
</tr>
<tr>
<td>Yamamoto, Takahiko</td>
<td>686</td>
</tr>
<tr>
<td>Yamamoto, Tetsuya</td>
<td>549</td>
</tr>
<tr>
<td>Yamamoto, Toru</td>
<td>578</td>
</tr>
<tr>
<td>Yamamoto, T.</td>
<td>1684 1842 2439</td>
</tr>
<tr>
<td>Yamamoto, Yoshihisa</td>
<td>236 327</td>
</tr>
<tr>
<td>Yamamoto, Y.</td>
<td>2238</td>
</tr>
<tr>
<td>Yamamura, Kazuto</td>
<td>888</td>
</tr>
<tr>
<td>Yamamura, Massayuki</td>
<td>244 759 874 184 1212 1223 1239 1245 1267 1672 1945 2272 2382 214 219</td>
</tr>
<tr>
<td>Yamamura, M.</td>
<td>1156</td>
</tr>
<tr>
<td>Yamamura, T.</td>
<td>2111</td>
</tr>
<tr>
<td>Yamane, K.</td>
<td>1653</td>
</tr>
<tr>
<td>Yamane, Shotaro</td>
<td>2221</td>
</tr>
<tr>
<td>Yamane, S.</td>
<td>2016</td>
</tr>
<tr>
<td>Yamaoka, M.</td>
<td>1476 1519</td>
</tr>
<tr>
<td>Yamaoka, Takumi</td>
<td>1404</td>
</tr>
<tr>
<td>Yamashiro, Hirohito</td>
<td>530</td>
</tr>
<tr>
<td>Yamashiro, M.</td>
<td>1076</td>
</tr>
<tr>
<td>Yamashita, Hideo</td>
<td>360 2469</td>
</tr>
<tr>
<td>Yamashita, H.</td>
<td>1598 2187</td>
</tr>
<tr>
<td>Yamashita, Katsumi</td>
<td>147 558</td>
</tr>
<tr>
<td>Yamashita, T.</td>
<td>1632</td>
</tr>
<tr>
<td>Yamashita, Yosuke</td>
<td>623</td>
</tr>
<tr>
<td>Yamashita, Y.</td>
<td>1830</td>
</tr>
<tr>
<td>Yamato, Kazuharu</td>
<td>1837</td>
</tr>
<tr>
<td>Yamato, Kimiaki</td>
<td>1419</td>
</tr>
<tr>
<td>Yamauchi, Hirohori</td>
<td>613</td>
</tr>
<tr>
<td>Yamauchi, H.</td>
<td>505</td>
</tr>
<tr>
<td>Yamauchi, S.</td>
<td>967</td>
</tr>
<tr>
<td>Yamauchi, Toshiyuki</td>
<td>155</td>
</tr>
<tr>
<td>Yamaura, H.</td>
<td>2152</td>
</tr>
<tr>
<td>Yamazaki, Genji</td>
<td>1608</td>
</tr>
<tr>
<td>Yamazaki, G.</td>
<td>1176 2288</td>
</tr>
<tr>
<td>Yamazaki, Koetsu</td>
<td>1419</td>
</tr>
<tr>
<td>Yamazaki, K.</td>
<td>804 2040</td>
</tr>
<tr>
<td>Yamazaki, N.</td>
<td>1623</td>
</tr>
<tr>
<td>Yanagi, Shinichiro</td>
<td>2387</td>
</tr>
<tr>
<td>Yanagiya, H.</td>
<td>216</td>
</tr>
<tr>
<td>Yanagiya, Masayuki</td>
<td>903 217</td>
</tr>
<tr>
<td>Yanaru, T.</td>
<td>652</td>
</tr>
<tr>
<td>Yanase, Masakazu</td>
<td>496</td>
</tr>
<tr>
<td>Yang, Fengxiang</td>
<td>295</td>
</tr>
<tr>
<td>Yang, Guowei</td>
<td>540</td>
</tr>
<tr>
<td>Yang, X. H.</td>
<td>1411</td>
</tr>
<tr>
<td>Yang, Xiaofeng</td>
<td>763</td>
</tr>
<tr>
<td>Yang, Xuhua</td>
<td>2122</td>
</tr>
<tr>
<td>Yang, X.</td>
<td>1104</td>
</tr>
<tr>
<td>Yang, Z. -J.</td>
<td>994</td>
</tr>
<tr>
<td>Yang, Z. J.</td>
<td>1435</td>
</tr>
<tr>
<td>Yang, Zi-Jiang</td>
<td>652 776</td>
</tr>
<tr>
<td>Yang, Zenji</td>
<td>809 1449 1857 1910</td>
</tr>
</tbody>
</table>
Genetic algorithms in Japan

Yano, F., [2258]
Yano, Hiroyuki, [1019, 1597]
Yano, H., [1996]
Yano, K., [893]
Yao, Xin, [377, 597, 601, 2352]
Yao, Y., [1261]
Yashioka, M., [2105]
Yasuda, Kazuhiko, [897]
Yasuda, Keiichiro, [973]
Yasuda, K., [1059, 1116, 1485, 1780]
Yasuda, Mitsuhiro, [395, 417, 2304]
Yasuda, Yutaka, [535]
Yasumoto, Keiichi, [610]
Yasumoto, Kiyotoshi, [619]
Yasunaga, Moritoshi, [258, 298, 370, 380, 383, 384, 607, 2359, 2473]
Yasunaga, M., [760, 2074]
Yasunaga, T., [1498, 2127]
Yasuoka, T., [2085]
Yasushi, Sakakibara, [1756]
Yasuura, Hiroto, [395]
Yatagi, Toyohiko, [915, 1062]
Yauchi, Katsuhiko, [2244, 2476]
Yazu, Yusuke, [1782]
Yazu, Y., [2416]
Ye, Fu, [1238]
Yeh, J., [371]
Yinwen, Li, [992]
Yoda, Ikushi, [2299]
Yoda, I., [1113, 2005]
Yokata, T., [1133]
Yokobayashi, Yohei, [1433]
Yokobayashi, Youhei, [2346]
Yokobayashi, Yuohei, [1278]
Yokoi, Hiroshi, [535]
Yokoi, Horoshi, [671]
Yokoi, H., [2311]
Yokomori, Takashi, [265]
Yokono, J., [235]
Yokoo, Hironori, [251]
Yokoo, T., [1820]
Yokosawa, K., [2321]
Yokose, Yoshio, [803]
Yokote, T., [1137, 1149, 1405, 2389, 2421]
Yokoyama, Atsushi, [1067, 1114]
Yokoyama, H., [1427, 1471]
Yokoyama, Masao, [550]
Yokoyama, R., [979, 1116]
Yokoyama, Ryuichi, [973]
Yokoyama, Shigeyuki, [265]
Yokoyama, S., [1952, 2251]
Yomo, Tetsuya, [2422]
Yomo, T., [2161]
Yoneda, Hajime, [1321]
Yoneda, Kenji, [1391, 1579]
Yoneda, K., [1558]
Yoneda, Takao, [133]
Yonekura, H., [1716]
Yoneya, Hideo, [2179]
Yoneyama, M., [433, 731]
Yonezawa, Yasuo, [1353]
Yoroi, Katsumori, [789]
Yoshida, Akito, [1221]
Yoshida, Hideo, [1654]
Yoshida, Hiroshi, [901]
Yoshida, Junji, [979]
Yoshida, K., [1116]
Yoshida, Mitsuhiro, [395, 417, 2304]
Yoshida, Shigeyuki, [265]
Yoshida, Tetsuya, [1846]
Yoshida, Toshiya, [2147]
Yoshida, Yukiko, [1851, 1907, 2149, 2443]
Yoshida, Y., [930, 1567]
Yoshinohara, Ikuo, [258, 298, 370, 380, 383, 384, 2359, 2473]
Yoshikawa, Akira, [393]
Yoshikawa, Masaya, [913, 916]
Yoshikawa, Nobukazu, [916, 1062]
Yoshikawa, Tomohiro, [143]
Yoshikawa, T., [649, 765, 807]
Yoshimi, Masashi, [1297]
Yoshimi, M., [1472, 97]
Yoshimi, S., [2388]
Yoshimoto, Katsuhisa, [273]
Yoshimoto, Kazuho, [2289]
Yoshimoto, K., [1116]
Yoshimura, Hiroyuki, [2418]
Yoshimura, Kazuyuki, [2419]
Yoshimura, M., [2041]
Yoshimura, Masata, [766]
Yoshimura, Motohide, [1286, 1470, 1732, 1881, 1889, 2360, 2460]
Yoshinaga, Kazuyuki, [1087]
Yoshinaga, Toshiaki, [1254]
Yoshinaga, T., [2184]
Yoshino, Toshi, [2233]
Yoshino, T., [1531]
Yosio, Hitaka, [2067]
Yosioka, Hirokazu, [2295]
Yosioka, Keisuke, [1032]
Yosioka, Michifumi, [1738, 1771]
Yosioka, M., [2180, 2209]
Yosioka, S., [495]
Yosioka, Takeshi, [1838]
Yosioka, Toru, [2423]
Yoshitomi, Yasunari, [533]
Yoshizawa, Shuji, [1295, 1452]
<table>
<thead>
<tr>
<th>Authors</th>
<th>Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoshizawa, S.</td>
<td>2365</td>
</tr>
<tr>
<td>Yoshizawa, Takeshi</td>
<td>180</td>
</tr>
<tr>
<td>Yoshiida, N.</td>
<td>2085</td>
</tr>
<tr>
<td>Yu, Yang</td>
<td>531</td>
</tr>
<tr>
<td>Yubazaki, N.</td>
<td>1004</td>
</tr>
<tr>
<td>Yuda, Kotaro</td>
<td>1268</td>
</tr>
<tr>
<td>Yue-Jin, Tang</td>
<td>1899</td>
</tr>
<tr>
<td>Yuen, David A.</td>
<td>2065</td>
</tr>
<tr>
<td>Yufu, Masano</td>
<td>851</td>
</tr>
<tr>
<td>Yugawa, Masaru</td>
<td>2277</td>
</tr>
<tr>
<td>Yuki, Hiroshi</td>
<td>340</td>
</tr>
<tr>
<td>Yukito, K.</td>
<td>975, 1515</td>
</tr>
<tr>
<td>Yutaka, Miyahara</td>
<td>2102</td>
</tr>
<tr>
<td>Yuzo, Yamane</td>
<td>1412, 1626</td>
</tr>
<tr>
<td>Zako, Masaru</td>
<td>1298, 2049</td>
</tr>
<tr>
<td>Zako, M.</td>
<td>1004, 2084</td>
</tr>
<tr>
<td>Zang, Yuwen</td>
<td>1036</td>
</tr>
<tr>
<td>Zeng, X. Y.</td>
<td>2186</td>
</tr>
<tr>
<td>Zeng, Xiang-Yan</td>
<td>147</td>
</tr>
<tr>
<td>Zeng, X.-Y.</td>
<td>175</td>
</tr>
<tr>
<td>Zha, Hong-Bin</td>
<td>1054</td>
</tr>
<tr>
<td>Zhang, Dong</td>
<td>1120</td>
</tr>
<tr>
<td>Zhang, Lei</td>
<td>750, 1036</td>
</tr>
<tr>
<td>Zhang, Ping</td>
<td>1068</td>
</tr>
<tr>
<td>Zhang, Q. Z.</td>
<td>443</td>
</tr>
<tr>
<td>Zhao, Linhu</td>
<td>1708</td>
</tr>
<tr>
<td>Zhao, Q. F.</td>
<td>1331</td>
</tr>
<tr>
<td>Zhao, Qiangfu</td>
<td>136, 1069</td>
</tr>
<tr>
<td>Zhou, G.</td>
<td>1619, 1971</td>
</tr>
<tr>
<td>Zhu, Jianing</td>
<td>589</td>
</tr>
<tr>
<td>Zoka, Y.</td>
<td>769, 979</td>
</tr>
<tr>
<td>Zukeran, C.</td>
<td>1861</td>
</tr>
<tr>
<td>Zuo, Kewei</td>
<td>1956</td>
</tr>
<tr>
<td>Zurawski, R.</td>
<td>1695</td>
</tr>
<tr>
<td>total 2464 articles by 3221 different authors</td>
<td></td>
</tr>
</tbody>
</table>
4.7 Subject index

All subject keywords of the papers given by the editor of this bibliography are shown next.
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>apples, sugar content</td>
<td>623</td>
</tr>
<tr>
<td>application, agriculture, applications</td>
<td>106, 195</td>
</tr>
<tr>
<td>evolvable hardware, tutorial,</td>
<td>2334</td>
</tr>
<tr>
<td>aquaculture, archaeology, image recovery,</td>
<td>943, 2356, 599</td>
</tr>
<tr>
<td>architecture, ARMA, artificial brain</td>
<td>645</td>
</tr>
<tr>
<td>artificial intelligence, reasoning,</td>
<td>2233</td>
</tr>
<tr>
<td>artificial life</td>
<td>37, 206, 219,235, 1021, 1658</td>
</tr>
<tr>
<td>automobile body, lineless, planning</td>
<td>569, 513</td>
</tr>
<tr>
<td>assembly line balancing, assembly-line balancing, assignment problem, associative memory,</td>
<td>1654</td>
</tr>
<tr>
<td>Hebb-rule, atomic clusters, atomic clusters?, automata learning, automaton, autonomous agents, adaptation, autonomous robot Khepera,</td>
<td>1223, 2324, 2326, 2270, 1482, 1534, 860, 106, 1019, 1317, 551, 561</td>
</tr>
<tr>
<td>autonomous systems, Avatar, AVR, Baldwin effect, bee system, BEM, bin-packing, 3D?, binpacking, biochemistry gene regulation, molecular dynamics, biology breeding, entomology, evolution, genetic networks, mate preference, simulation, biophysics, biotechnology, breeding, brewing, bridges deck, BUGS, buildings disassembly, cabbage, cables, CAD, CAD automobile body, design, electronics, hardware design, modeling, shape design, VLSI, wiring, CAM, cancer breast, brest, carbon, cardiology, diagnosis, imaging, case-based reasoning, cat’s cradle, CEBOT, cellular automata, neural networks, CeP, channel routing, chaos, character recognition, combinatorial, physical, structural, chemometrics, wavelength selection, chromosome multidimensional, variable length, chromosomes fixing, local improvement, stabilizable, variable length, CIM, classification, fuzzy, linguistics, pattern,</td>
<td>820, 1663, 699, 1812, 1899, 1583, 2150, 1650, 2261, 108, 109, 668, 784, 2320, 547, 1471, 1246, 2760, 1626, 555, 2057, 787, 808, 177, 1956, 1246, 7390, 1597, 0, 937, 277, 1289, 144, 134, 73, 84, 144, 173, 174, 534, 210, 144, 134, 73, 84, 144, 173, 174, 534, 210, 144, 134, 73, 84, 144, 173, 174, 534, 210, 85, 89, 1525, 1621, 2261, 2349, 4264, 449, 816, 888, 954, 1315, 1662, 1916, 1125, 2004</td>
</tr>
</tbody>
</table>
Genetic algorithms in Japan

<table>
<thead>
<tr>
<th>54</th>
<th>1226</th>
<th>1729</th>
<th>1487</th>
</tr>
</thead>
<tbody>
<tr>
<td>patterns, rules, classifier, character, face image, classifier system, classifier systems, distributed, fuzzy, classifiers, fuzzy, nearest neighbor pattern, cluster analysis, clustering, conceptual, constrained, documents, fuzzy, structures, clusters, atomic, molecular, coalfired power plant, coding, binary, diploid, DNA, parameter free, real, scheduling, simplex, spanning trees, variable length, coevolution, coevolution learning, niching, collision avoidance, color paint, colors, combinatorial logic design, combinatorial problems, combinatorics, comparison in aerodynamics design, comparison conventional method, digital filters, experimental design, gene duplication, GP, Gray coded, greedy, in CT reconstruction, in JSS, in SAT, in TSP, integer programming, linearization, machine learning, metaheuristics, parallel GA, PiGA, scheduling methods, simulated annealing, tabu search, truss, complexity, composites, 3-D, FEM, computational geometry, cutting, computational geometry, curve, nesting, shape modeling, computer graphics, animation, lighting, shading, superquadrics, computer graphics?, computer science, computing Turing, constraint satisfaction, constraint satisfaction problems, constraint satisfaction, constraint satisfaction problems, constraint-based reasoning, contingency screening, control, actuators, adaptive, adaptive, air conditioning, assembly?, attention, autonomous robots, design, discrete, double pendulum, elevator group, elevator, exhaust emissions, fermentation, flight, FMS, force, FPGA, 553</td>
<td>561</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
fuzzy, 1242, 1513
179, 1848, 1854, 1855, 1900, 975, 985, 999, 1033, 1093, 1099, 1107, 1150, 1152, 1214, 1260, 1269, 1406, 1428, 1514, 1548, 1734, 1802, 2066, 2092, 2112, 2135, 2156, 2216, 233, 363
fuzzy systems, 1920
gaits, 235
GP, 2306
identification, 1883
inverted pendulum, 762, 1325
2066, 2105
manipulator, 1724, 1919
microscopy, 568
mobile robot, 2427
motion, 1053, 419
multiobjective, 951
neural network, 2131
neural networks, 2352, 2402
neuro, 1004
noise, 1896, 2014
nonlinear, 1127, 1490
optimal, 1830, 2114
optimum H-infinity, 1398
pendulum, 783, 1024
PID, 1795
plant physiology, 903
plnt growth, 1386
pole assignment, 2296
position, 568
power, 2121
power system, 2221, 2236
power systems, 373
process, 857
production system, 1285
prosthesis, 593
reactive power, 2274
robot, 1400
1770, 1895, 2159, 2163, 318, 441
576, 578, 582
robust, 2412
rule based, 1428
rules, 2225
servo, 1362
shape, 1300
sound, 995
stepper motor, 1801
stepping motor, 2407
structural, 958, 1088
system identification, 1461
system identification, signal processing, source separation, 558
tracking, 2458
traffic, 2374
traffic signal, 684
traffic signals, 974
turbulence, 480
vehicle, 1260, 2020
vehicle suspension, 2336
vibraion, 2045
walking, 1785, 1864, 2000, 2349
1164, 1623
control systems, 150, 2000
control?, 1029
controller, 1728
actuator, 1576, 1577
fuzzy, 1812, 1899
controllers, 1316, 2116, 2203
559, 891
fuzzy, 1673, 1893, 1730, 1751, 1792, 1920
1928, 2363, 1911
motor, 1841, 209
neural, 575
nonlinear, 944, 1703
PID, 930, 1328
robot, 930, 1328
1770, 1871, 1842, 2105, 2432
2402
robust, 1379
controllers, 2402
convergence, 1841, 649
premature, 1677
schema theory, 961
SGA, 914
theory, 625
cooperation, 2113
2113, 1887
crossover, 242
759
2D, 709
adapting, 2163
adaptive, 2126
biased, 928
comparison of 13 types, 752
Gaussian, 2287
hardware, 654
harmonic, 2035
linear, 1749
multi-parent, 2382
multi-step, 1415
performance, 2200
permutation, 261, 2017
robustness, 1011
scheduling, 895
selection, 2001
simplex, 2382
TSP, 707
unimodal, 1651
unimodal normal, 255
crystallography
CaCO3, 587
CT
reconstruction, 1964
cube mirror, 1948
cutting
curves, 212
by a robot, 1779
robotic, 800
cutting problems, 924
cutting tools, 685
damps, 1309
design, 1448
data compression, 1290
data mining
www, 2310
databases
image, 1213, 2105
MODIS, 594
Genetic algorithms in Japan

DCGA, [1759]
distributing, [656]
deception, [105, 1113]
deceptive functions, [1190]
decision
Markov model, [550]
decision making, [407, 55, 1917, 289]
fuzzy, [1689]
decision support systems, [300]
decision theory, [641]
decision trees, [1356]
Pareto optimal, [1356]
decisions, [193, 124, 806]
deconvolution, [2171]
design, [1292, 1488, 2391]
aerodynamics, [627]
composites, [464]
interactive, [124]
layout, [41]
printed circuit boards, [174]
shape, [1028, 1448]
VLSI, [173]
diagnosis, [1111, 1244]
AC drives, [1834]
cardiology, [232]
failure, [1281, 1490]
fault, [2088, 1060]
fuzzy, [1759, 2007]
medical, [1845, 124]
myocardial heart disease, [2259]
diagnostics
fault, [442]
digital electronics
synthesis, [1695]
diploidy, [131, 208]
disparity hypothesis, [749]
distributed systems
load balancing, [1294]
distribution loss, [150, 160]
distribution system configuration, [124]
distribution system loss, [1118]
distribution systems, configuration, [1201]
district heating, [2028]
dithering?, [2447]
diversity, [250, 536, 88]
DNA, [1200, 1374]
pattern analysis, [1502]
phylogenetic tree, [1977]
phylogenetic trees, [1466]
sequencing, [1960, 2191]
DNA alignment,
DNA analysis, [124]
DNA computing, [283, 1776]
SAT, [255, 1170]
DNA sequence analysis, [754]
document retrieval
fuzzy, [953]
drug design, [2220]
dynamics
chaos, [1429]
economics
consumption, [484]
finance, [2286]
financial data, [2278]
industrial, [1099, 954]
portfolio management, [197]
prediction, [2286]
project, [1059]
purchase, [256]
stock markets, [1538]
supply chain network, [603]
education, [1705]
Eigen, [242]
elasticity, [677]
electric current, [1968]
electromagnetics, [721, 1295, 1970, 2111, 2134, 2168, 2249, 2308]
electromagnetics
antennas, [2395, 2211, 333, 489, 490]
defect testing, [704]
FEM, [506]
inverse problem, [202]
inverse problems, [203]
inversion, [677]
pole shape, [1598]
shape design, [360]
[2187, 2442]
electronics, [555]
analogy, [2295, 301]
assembly, [2051]
channel routing, [174, 175]
design, [497]
digital, [191, 602]
filters, [500]
HDL, [813, 818]
layout, [777, 792]
log, [1234]
layout design, [766]
life prediction, [2002]
manufacturing, [2392]
microwave, [529]
PCB assembly, [765]
electronics?, [2083, 450]
electromagnetics, [1313]
electromagnetics, [351]
elevators
group control, [2158]
elitism, [1351]
inverse, [2013]
emergence, [2090, 2313]
symbiosis, [23]
emergency, 1846
energy 615
distributed, 616
energy storage 606
superconductor, 73
engineering, 2115
aerodynamics, 2115
aerospace, 169, 676, 740
applications, 292
assembly, 715
bio, 195
bio, 1631, 1956
biotechnology, 1287
chemical, 665
civil, 537, 745
construction, 165, 169
design, 757, 1879
electric, 1955
electrical, 113, 152
electronics, 176
energy, 615
environmental, 1762
hydraulics, 13
machine, 791, 1330
marine, 295
material, 695, 1604
materials, 443
mechanical, 588, 702
169, 174, 1745, 1309, 1364
1831, 1896, 493, 569
nuclear, 1111, 1755
power, 130, 141
159, 57, 112, 113, 143, 160, 171, 648
592, 658, 710, 725, 726, 769
772, 791, 810, 819, 821, 874
884, 888, 895, 913, 927, 945, 966
971, 975, 977, 979, 981, 985, 1023
1046, 1111, 1211, 1212, 1211, 1246
1478, 1681, 1832, 1833, 1834
1279, 1289, 1297, 1322, 1323, 1325
1358, 1356, 1446, 1472, 1515, 1519
1598, 1609, 1639, 1672, 1691, 1758
1791, 1799, 1806, 1811, 1834, 1836
1899, 1945, 2106, 2134, 2139, 2141
2201, 2221, 2236, 2246, 2274, 2277
2312, 2411, 2412, 2415, 2417, 2425
2436, 2444, 2453, 2468, 2669, 2139
2650, 2681, 2760, 2771, 303, 311, 319
139, 245, 150, 154, 173, 181, 185
479, 529, 530, 606, 628
1116
1956, 1993
721, 1770
1781, 1834, 2009, 2188, 2396, 2399
153, 389, 563, 629
539, 1965, 64
137, 138, 165, 183, 218, 576, 677
172, 174, 180, 189, 198, 204, 266
195, 263, 301, 1048, 1055
1665, 1676, 1068, 1090, 1091, 1114
1276, 1298, 1302, 1306, 1321, 1376
1409, 1419, 1421, 1459, 1463, 1475
1429, 1479, 1520, 1544, 1650, 1660
1694, 1805, 1840, 1843, 1966, 2047
2049, 2086, 2164, 2160, 2181, 2237
2239, 2269, 2324, 2351, 2429, 2435
2152, 2154, 2175, 2203, 2226, 2244, 2455
structural?, 1854
vehicle, 700
engineering design, 213
engineering design?, 1007
cars, 515
entropy, 706
environment dynamic, 1284
environmental issues, 1247
ergonomi information, 2044
ergonomics, 1395
aviation, 831
esthetics
KANSEI, 695
eugenics, 1238
evolution, 2389
artificial life, 2404
cooperation, 2046
Eisen’s model, 1189
ESS, 1626
fitness landscape, 2118
phylogenetic tree, 1077
phylogenetic trees, 1469
social, 243
evolution strategies, 1657, 2058, 2391
analysing, 1263
statistical information, 2023
evolutionary strategies, 1723
evolvable hardware, 2063, 590
analog, 302, 597
application, 298
FPGA, 2404, 593
expert systems, 1002, 1519
medical, 1036
rule based, 1542
extinction, 477
facial image
3D, 2430
fault detection
motor, 345
feature extraction, 2235, 2348, 2354
feature selection, 378
features, 294
FEM, 325, 479
fermentation
ethanol, 1287
sake, 1633
filters, 1119, 1419
2D, 965, 1025, 1138
acoustic wave, 549
adaptive, 580
digital, 1105, 1290, 1474
evolvable, 580
FIR, 1713, 1736
FPGA, 580
IIR, 1250, 1710, 1810
morphological, 1113, 1160
multiplierless, 1508, 1535
snake, 1845
waveguide, 1970
FIN, 1037
FIR
nonminimum phase, 1736
fish
swimming,
fishery,
fishing,
fitness
filtered,
fractional,
fraction /noisy,
fuzzy,
interactive,
interactive?,
partial,
royal road,
sharing,
stochastic,
temporal,
fitness function,
dynamic,
fitness landscape,
fractional,
Fuji,
fluid dynamics,
FMS,
food
apples,
soy sauce,
storage,
forecasting
power,
forking GA,
formal languages
context-free grammars,
formulation
incremental,
Fourier transform,
FPGA,
Xilinx,
Xilinx Virtex-II Pro,
fruit treatment,
fuel
nuclear,
fuel cells,
functions
Boolean,
fuzzy ,
fuzzy rules,
fuzzy logic,
fuzzy control,
fuzzy reasoning,
fuzzy squared,
fuzzy sets,
classification,
membership functions,
fuzzy systems,
classification,
control,
diagnosis,
ecological modeling,
identification,
inference,
modeling,
parameter discovery,
planning,
reasoning,
review,
rule based,
rule-based,
rules,
fuzzy systems?,
GA
interactive,
multistep,
society model,
GAFLEX,
GALME,
game theory,
iterated prisoners dilemma,
Markov decision process,
games,
computer,
go,
lottery,
prisoner’s dilemma,
soccer,
GARP
comparison to Maxent,
gates
CNOT,
gauge theory,
gene length
variable,
gene regulation
metabolic pathways,
generation expansion planning,
generations,
generators
photovoltaic,
genetic drift,
genetic fusion,
genetic programming,
genetic programming
agents,
breeding,
<table>
<thead>
<tr>
<th>Subject index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>2306</td>
</tr>
<tr>
<td>decision diagrams</td>
<td>1339</td>
</tr>
<tr>
<td>distributed</td>
<td>1310</td>
</tr>
<tr>
<td>hill-climbing</td>
<td>778</td>
</tr>
<tr>
<td>initial population</td>
<td>1143</td>
</tr>
<tr>
<td>multi niche</td>
<td>2061</td>
</tr>
<tr>
<td>prediction</td>
<td>2286</td>
</tr>
<tr>
<td>system identification</td>
<td>815</td>
</tr>
<tr>
<td>genetics</td>
<td>1187</td>
</tr>
<tr>
<td>bacterial</td>
<td>227</td>
</tr>
<tr>
<td>GenNETS</td>
<td>2244</td>
</tr>
<tr>
<td>GENOCOP III</td>
<td>27</td>
</tr>
<tr>
<td>genome</td>
<td>92</td>
</tr>
<tr>
<td>variable size</td>
<td>1643</td>
</tr>
<tr>
<td>geometry</td>
<td>1705</td>
</tr>
<tr>
<td>geophysics</td>
<td>705</td>
</tr>
<tr>
<td>seabed</td>
<td>394</td>
</tr>
<tr>
<td>seismology</td>
<td>1721</td>
</tr>
<tr>
<td>goal programming</td>
<td>1776</td>
</tr>
<tr>
<td>nonlinear</td>
<td>1812</td>
</tr>
<tr>
<td>GOV</td>
<td>591</td>
</tr>
<tr>
<td>graph theory</td>
<td>211</td>
</tr>
<tr>
<td>minimum spanning tree</td>
<td>2269</td>
</tr>
<tr>
<td>graphics</td>
<td>520</td>
</tr>
<tr>
<td>drawing</td>
<td>1700</td>
</tr>
<tr>
<td>generation</td>
<td>304</td>
</tr>
<tr>
<td>graph coloring</td>
<td>2328</td>
</tr>
<tr>
<td>Hamiltonian</td>
<td>1776</td>
</tr>
<tr>
<td>independent set</td>
<td>1766</td>
</tr>
<tr>
<td>layout</td>
<td>804</td>
</tr>
<tr>
<td>spanning trees</td>
<td>1619</td>
</tr>
<tr>
<td>grinding</td>
<td>133</td>
</tr>
<tr>
<td>gyroscopy</td>
<td>1309</td>
</tr>
<tr>
<td>Hadamard transform</td>
<td>2108</td>
</tr>
<tr>
<td>fast</td>
<td>151</td>
</tr>
<tr>
<td>half-toning</td>
<td>1031</td>
</tr>
<tr>
<td>handbook</td>
<td>2480</td>
</tr>
<tr>
<td>in Japanese</td>
<td>114</td>
</tr>
<tr>
<td>AdAM</td>
<td>1625</td>
</tr>
<tr>
<td>design</td>
<td>1659</td>
</tr>
<tr>
<td>evolvable</td>
<td>1248</td>
</tr>
<tr>
<td>evolvable</td>
<td>328</td>
</tr>
<tr>
<td>genetic</td>
<td>779</td>
</tr>
<tr>
<td>ID3-GA</td>
<td>1521</td>
</tr>
<tr>
<td>IDSET</td>
<td>487</td>
</tr>
<tr>
<td>IIR</td>
<td>165</td>
</tr>
<tr>
<td>image processing</td>
<td>17</td>
</tr>
<tr>
<td>2D</td>
<td>165</td>
</tr>
<tr>
<td>image processing</td>
<td>1776</td>
</tr>
<tr>
<td>3D</td>
<td>1217</td>
</tr>
<tr>
<td>3D reconstruction</td>
<td>1610</td>
</tr>
<tr>
<td>3D shape</td>
<td>819</td>
</tr>
<tr>
<td>3D shape estimation</td>
<td>1797</td>
</tr>
<tr>
<td>analysis</td>
<td>1538</td>
</tr>
<tr>
<td>characters</td>
<td>1076</td>
</tr>
<tr>
<td>coin</td>
<td>1646</td>
</tr>
<tr>
<td>color</td>
<td>1056</td>
</tr>
<tr>
<td>compression</td>
<td>1359</td>
</tr>
<tr>
<td>CT</td>
<td>2477</td>
</tr>
<tr>
<td>CT</td>
<td>2446</td>
</tr>
<tr>
<td>curve</td>
<td>1605</td>
</tr>
<tr>
<td>deconvolution</td>
<td>1413</td>
</tr>
<tr>
<td>dithering</td>
<td>227</td>
</tr>
<tr>
<td>dithering?</td>
<td>2447</td>
</tr>
<tr>
<td>edge detection</td>
<td>1732</td>
</tr>
<tr>
<td>evolvable hardware</td>
<td>591</td>
</tr>
<tr>
<td>face</td>
<td>1848</td>
</tr>
<tr>
<td>face detection</td>
<td>1753</td>
</tr>
<tr>
<td>face extraction</td>
<td>1433</td>
</tr>
<tr>
<td>feature selection</td>
<td>995</td>
</tr>
<tr>
<td>filters</td>
<td>699</td>
</tr>
<tr>
<td>FPGA</td>
<td>575</td>
</tr>
<tr>
<td>tabu search</td>
<td>394</td>
</tr>
<tr>
<td>and simulated annealing</td>
<td>117</td>
</tr>
<tr>
<td>hydraulics</td>
<td>1063</td>
</tr>
<tr>
<td>aquifer</td>
<td>1369</td>
</tr>
<tr>
<td>piping</td>
<td>1174</td>
</tr>
<tr>
<td>hydrid</td>
<td>1555</td>
</tr>
<tr>
<td>simulated annealing</td>
<td>480</td>
</tr>
<tr>
<td>hydrodynamics</td>
<td>1528</td>
</tr>
<tr>
<td>image compression</td>
<td>591</td>
</tr>
<tr>
<td>image processing</td>
<td>1776</td>
</tr>
<tr>
<td>3D</td>
<td>1217</td>
</tr>
<tr>
<td>3D reconstruction</td>
<td>1610</td>
</tr>
<tr>
<td>3D shape</td>
<td>819</td>
</tr>
<tr>
<td>3D shape estimation</td>
<td>1797</td>
</tr>
<tr>
<td>analysis</td>
<td>1538</td>
</tr>
<tr>
<td>characters</td>
<td>1076</td>
</tr>
<tr>
<td>coin</td>
<td>1646</td>
</tr>
<tr>
<td>color</td>
<td>1056</td>
</tr>
<tr>
<td>compression</td>
<td>1359</td>
</tr>
<tr>
<td>CT</td>
<td>2477</td>
</tr>
<tr>
<td>CT</td>
<td>2446</td>
</tr>
<tr>
<td>curve</td>
<td>1605</td>
</tr>
<tr>
<td>deconvolution</td>
<td>1413</td>
</tr>
<tr>
<td>dithering</td>
<td>227</td>
</tr>
<tr>
<td>dithering?</td>
<td>2447</td>
</tr>
<tr>
<td>edge detection</td>
<td>1732</td>
</tr>
<tr>
<td>evolvable hardware</td>
<td>591</td>
</tr>
<tr>
<td>face</td>
<td>1848</td>
</tr>
<tr>
<td>face detection</td>
<td>1753</td>
</tr>
<tr>
<td>face extraction</td>
<td>1433</td>
</tr>
<tr>
<td>feature selection</td>
<td>995</td>
</tr>
<tr>
<td>filters</td>
<td>699</td>
</tr>
<tr>
<td>FPGA</td>
<td>575</td>
</tr>
<tr>
<td>Genetic algorithms in Japan</td>
<td>fractographs,</td>
</tr>
<tr>
<td></td>
<td>handwriting,</td>
</tr>
<tr>
<td></td>
<td>line drawing,</td>
</tr>
<tr>
<td></td>
<td>morphological,</td>
</tr>
<tr>
<td></td>
<td>object recognition,</td>
</tr>
<tr>
<td></td>
<td>posture recognition,</td>
</tr>
<tr>
<td></td>
<td>reconstruction,</td>
</tr>
<tr>
<td></td>
<td>remote sensins,</td>
</tr>
<tr>
<td></td>
<td>image processing</td>
</tr>
<tr>
<td></td>
<td>retrieval,</td>
</tr>
<tr>
<td></td>
<td>shape detection,</td>
</tr>
<tr>
<td></td>
<td>stereo,</td>
</tr>
<tr>
<td></td>
<td>image processing,</td>
</tr>
<tr>
<td></td>
<td>imaging</td>
</tr>
<tr>
<td></td>
<td>microwave,</td>
</tr>
<tr>
<td></td>
<td>imaging</td>
</tr>
<tr>
<td></td>
<td>immune systems,</td>
</tr>
<tr>
<td></td>
<td>implant</td>
</tr>
<tr>
<td></td>
<td>DSP,</td>
</tr>
<tr>
<td></td>
<td>hardware,</td>
</tr>
<tr>
<td></td>
<td>Java,</td>
</tr>
<tr>
<td></td>
<td>industry</td>
</tr>
<tr>
<td></td>
<td>integer programming</td>
</tr>
<tr>
<td></td>
<td>interactive design,</td>
</tr>
<tr>
<td></td>
<td>current distribution,</td>
</tr>
<tr>
<td>Subject</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>inversion problems, 2D</td>
<td>61</td>
</tr>
<tr>
<td>inverted pendulum triple, 2D</td>
<td>61</td>
</tr>
<tr>
<td>isolation</td>
<td>131</td>
</tr>
<tr>
<td>iterated prisoner's dilemma</td>
<td>660</td>
</tr>
<tr>
<td>iterated prisoner's dilemma</td>
<td>287</td>
</tr>
<tr>
<td>job shop scheduling</td>
<td>155, 851</td>
</tr>
<tr>
<td>JOX</td>
<td>261</td>
</tr>
<tr>
<td>JPN</td>
<td>554</td>
</tr>
<tr>
<td>JSS</td>
<td>1944</td>
</tr>
<tr>
<td>multifunction machine</td>
<td>1944</td>
</tr>
<tr>
<td>Kansei engineering</td>
<td>909</td>
</tr>
<tr>
<td>Khepera control</td>
<td>551, 551</td>
</tr>
<tr>
<td>Kleenean functions</td>
<td>1081</td>
</tr>
<tr>
<td>knapsack</td>
<td>2339</td>
</tr>
<tr>
<td>fuzzy</td>
<td>1767</td>
</tr>
<tr>
<td>knapsack problem</td>
<td>199, 208</td>
</tr>
<tr>
<td>knowledge acquisition</td>
<td>1373, 1501</td>
</tr>
<tr>
<td>knowledge based systems</td>
<td>1391</td>
</tr>
<tr>
<td>knowledge-based systems</td>
<td>736</td>
</tr>
<tr>
<td>Kohonen nets, koji</td>
<td>21, 1993</td>
</tr>
<tr>
<td>Lamarckian GA</td>
<td>972</td>
</tr>
<tr>
<td>laminated composites</td>
<td>740</td>
</tr>
<tr>
<td>laminates</td>
<td>676, 1090</td>
</tr>
<tr>
<td>stacking</td>
<td>2141</td>
</tr>
<tr>
<td>languages</td>
<td>1179</td>
</tr>
<tr>
<td>machine translation</td>
<td>1179</td>
</tr>
<tr>
<td>lasers</td>
<td>592</td>
</tr>
<tr>
<td>surface treatment</td>
<td>443</td>
</tr>
<tr>
<td>wave-front correction</td>
<td>555</td>
</tr>
<tr>
<td>lattice gauge theory</td>
<td>225</td>
</tr>
<tr>
<td>layout design</td>
<td>1762</td>
</tr>
<tr>
<td>layout design</td>
<td>82, 83, 663</td>
</tr>
<tr>
<td>layout design</td>
<td>355, 1122, 1236, 4160, 1588, 1618, 1771, 1655, 2015, 2355, 2381, 352</td>
</tr>
<tr>
<td>layout design</td>
<td></td>
</tr>
<tr>
<td>1D, facility</td>
<td>2258</td>
</tr>
<tr>
<td>manufacturing system</td>
<td>1538</td>
</tr>
<tr>
<td>layout design?</td>
<td>1493</td>
</tr>
<tr>
<td>learning</td>
<td>105</td>
</tr>
<tr>
<td>Q, reinforcement</td>
<td>1159</td>
</tr>
<tr>
<td>backup</td>
<td>555</td>
</tr>
<tr>
<td>reinforcement learning</td>
<td>1544</td>
</tr>
<tr>
<td>robotics</td>
<td>495</td>
</tr>
<tr>
<td>structural</td>
<td>1567</td>
</tr>
<tr>
<td>Turing</td>
<td>1875</td>
</tr>
<tr>
<td>machine learning?</td>
<td>2142</td>
</tr>
<tr>
<td>machine vision</td>
<td>419, 825</td>
</tr>
<tr>
<td>tracking</td>
<td>1724, 2458</td>
</tr>
<tr>
<td>walking</td>
<td>1882</td>
</tr>
<tr>
<td>machining</td>
<td>781, 1021</td>
</tr>
<tr>
<td>grinding</td>
<td>1072</td>
</tr>
<tr>
<td>macromolecules</td>
<td>2039, 573</td>
</tr>
<tr>
<td>magnets</td>
<td></td>
</tr>
<tr>
<td>superconductor</td>
<td>606</td>
</tr>
<tr>
<td>maintenance</td>
<td>1459</td>
</tr>
<tr>
<td>diagnosis</td>
<td>923</td>
</tr>
<tr>
<td>leak localization</td>
<td>1371</td>
</tr>
<tr>
<td>machine</td>
<td>395</td>
</tr>
<tr>
<td>mammography</td>
<td>856, 563</td>
</tr>
<tr>
<td>man-machine interface</td>
<td>2044</td>
</tr>
<tr>
<td>management</td>
<td></td>
</tr>
<tr>
<td>negotiations</td>
<td>1254</td>
</tr>
<tr>
<td>project</td>
<td>1059</td>
</tr>
<tr>
<td>manufacturing</td>
<td>205, 579, 765</td>
</tr>
<tr>
<td>machine learning</td>
<td>245, 246, 357</td>
</tr>
<tr>
<td>machine learning agents</td>
<td>1976, 2154</td>
</tr>
<tr>
<td>classification</td>
<td>1525</td>
</tr>
<tr>
<td>concept</td>
<td>986</td>
</tr>
<tr>
<td>control</td>
<td>999</td>
</tr>
<tr>
<td>features</td>
<td>2089</td>
</tr>
<tr>
<td>fuzzy</td>
<td>811, 913</td>
</tr>
<tr>
<td>multi-agent</td>
<td>1659</td>
</tr>
<tr>
<td>facility location problem</td>
<td>1176</td>
</tr>
<tr>
<td>AGV</td>
<td>2378</td>
</tr>
<tr>
<td>AVG</td>
<td>1447</td>
</tr>
<tr>
<td>casting</td>
<td>1592, 2398</td>
</tr>
<tr>
<td>cell design</td>
<td>1596</td>
</tr>
<tr>
<td>cellular</td>
<td>2289</td>
</tr>
<tr>
<td>CIM</td>
<td>1045, 1188</td>
</tr>
<tr>
<td>cutting</td>
<td>1499</td>
</tr>
<tr>
<td>diagnosis</td>
<td>2375</td>
</tr>
<tr>
<td>drilling</td>
<td>1798</td>
</tr>
</tbody>
</table>
Genetic algorithms in Japan

FMS, layout, layout design, machining, membranes, metal forming, molding, pharmaceutical industry, scheduling, sheet metal, steel, transfer line, maps, marketing, data analysis, Markov chains, Markov models, states, MASCOT, material science, mathematical morphology, max cut, mazes, measurement, pose, stereo, mechanics, surface waves, waves, mechanisms, planar multilink, mechatronics, actuators, medical imaging, angiography, blood vessels, chest, CT, MR, MRI, neutron, segmentation, tomography, X-ray, medicine, anaesthesiology, cancer, cardiology, consultation system, dentistry, diagnosis, diagnosti,

line-segment circuits, migration, mimetic algorithm, mineralogy, mirrors, deformable, mixed-integer programming, mobile robot, control, navigation, mobile robotics, control, mobile robotics autonomous, mobile robots, obstacle avoidance, walking, model identification, modelling, fuzzy, MOGA, molecular computing, TSP, molecular dynamics, morphological filters, motion control, motion planning, motor, electrical, motors, induction, stepper, multi-valued logic, multimedia, image retrieval, multipopulation, music, instruments, mutation, adaptive.
<table>
<thead>
<tr>
<th>Subject index</th>
</tr>
</thead>
<tbody>
<tr>
<td>deterministic,</td>
</tr>
<tr>
<td>variable rate,</td>
</tr>
<tr>
<td>mutation rate</td>
</tr>
<tr>
<td>large,</td>
</tr>
<tr>
<td>mutations</td>
</tr>
<tr>
<td>asymmetric,</td>
</tr>
<tr>
<td>deterministic,</td>
</tr>
<tr>
<td>neutral,</td>
</tr>
<tr>
<td>navigation,</td>
</tr>
<tr>
<td>robot,</td>
</tr>
<tr>
<td>negotiation,</td>
</tr>
<tr>
<td>nesting,</td>
</tr>
<tr>
<td>cutting,</td>
</tr>
<tr>
<td>neural network,</td>
</tr>
<tr>
<td>neural network,</td>
</tr>
<tr>
<td>control,</td>
</tr>
<tr>
<td>design,</td>
</tr>
<tr>
<td>fuzzy,</td>
</tr>
<tr>
<td>neural networks</td>
</tr>
<tr>
<td>architecture,</td>
</tr>
<tr>
<td>associative memory,</td>
</tr>
<tr>
<td>back-propagation,</td>
</tr>
<tr>
<td>back-propagation,</td>
</tr>
<tr>
<td>binary logic,</td>
</tr>
<tr>
<td>Boltzmann,</td>
</tr>
<tr>
<td>CA,</td>
</tr>
<tr>
<td>cellular automata,</td>
</tr>
<tr>
<td>cellular automata,</td>
</tr>
<tr>
<td>classification,</td>
</tr>
<tr>
<td>design,</td>
</tr>
<tr>
<td>control,</td>
</tr>
<tr>
<td>delayed reward,</td>
</tr>
<tr>
<td>design,</td>
</tr>
<tr>
<td>DSP,</td>
</tr>
<tr>
<td>Elman,</td>
</tr>
<tr>
<td>evolutionary,</td>
</tr>
<tr>
<td>fault detection,</td>
</tr>
<tr>
<td>feedforward,</td>
</tr>
<tr>
<td>fuzzy,</td>
</tr>
<tr>
<td>fuzzy rules,</td>
</tr>
<tr>
<td>hardware,</td>
</tr>
<tr>
<td>Hebbian,</td>
</tr>
<tr>
<td>Hopfield,</td>
</tr>
<tr>
<td>hybrid,</td>
</tr>
<tr>
<td>image processing,</td>
</tr>
<tr>
<td>image segmentation,</td>
</tr>
<tr>
<td>knowledge,</td>
</tr>
<tr>
<td>Kohonen,</td>
</tr>
<tr>
<td>learning,</td>
</tr>
<tr>
<td>massive,</td>
</tr>
<tr>
<td>memory,</td>
</tr>
<tr>
<td>motion planning,</td>
</tr>
<tr>
<td>multistrategy learning,</td>
</tr>
<tr>
<td>mutation,</td>
</tr>
<tr>
<td>optimization,</td>
</tr>
<tr>
<td>pattern matching,</td>
</tr>
<tr>
<td>pattern recognition,</td>
</tr>
<tr>
<td>planning,</td>
</tr>
<tr>
<td>recurrent,</td>
</tr>
<tr>
<td>rule extraction,</td>
</tr>
<tr>
<td>self-organizing map,</td>
</tr>
<tr>
<td>signal processing,</td>
</tr>
<tr>
<td>SOM,</td>
</tr>
<tr>
<td>structure,</td>
</tr>
<tr>
<td>training,</td>
</tr>
<tr>
<td>training,</td>
</tr>
<tr>
<td>VLSI,</td>
</tr>
<tr>
<td>neural networks & control,</td>
</tr>
<tr>
<td>neural networks,</td>
</tr>
<tr>
<td>neural networks/independent component analysis,</td>
</tr>
<tr>
<td>neurology</td>
</tr>
<tr>
<td>prosthesis control,</td>
</tr>
<tr>
<td>niching</td>
</tr>
<tr>
<td>coevolution,</td>
</tr>
<tr>
<td>NMR</td>
</tr>
<tr>
<td>imaging,</td>
</tr>
<tr>
<td>quantum computing,</td>
</tr>
<tr>
<td>noise,</td>
</tr>
<tr>
<td>noise control,</td>
</tr>
<tr>
<td>adaptive,</td>
</tr>
<tr>
<td>nonlinear integer programming,</td>
</tr>
<tr>
<td>nonlinear mixed integer programming,</td>
</tr>
<tr>
<td>nonlinear programming,</td>
</tr>
<tr>
<td>NOx,</td>
</tr>
<tr>
<td>nuclear energy</td>
</tr>
<tr>
<td>fuel management,</td>
</tr>
<tr>
<td>nuclear power,</td>
</tr>
<tr>
<td>numerical analysis equations,</td>
</tr>
<tr>
<td>OBDD design,</td>
</tr>
<tr>
<td>oceanology?,</td>
</tr>
<tr>
<td>OCR,</td>
</tr>
<tr>
<td>operating systems load balancing,</td>
</tr>
<tr>
<td>operations research,</td>
</tr>
<tr>
<td>operators,</td>
</tr>
<tr>
<td>adaptive,</td>
</tr>
<tr>
<td>Operon-GA,</td>
</tr>
<tr>
<td>optical computing</td>
</tr>
<tr>
<td>neural network,</td>
</tr>
<tr>
<td>optical design,</td>
</tr>
<tr>
<td>mirror,</td>
</tr>
<tr>
<td>optical fibers,</td>
</tr>
<tr>
<td>alignment,</td>
</tr>
<tr>
<td>optics,</td>
</tr>
<tr>
<td>adaptive,</td>
</tr>
<tr>
<td>design,</td>
</tr>
<tr>
<td>evolvable,</td>
</tr>
</tbody>
</table>
optimization

Genetic algorithms in Japan

pareto, multiobjective, mixed-integer, fuzzy, global, goal programming, hierarchical, mixed-integer, multiobjective, multicriteria, multimodal, multiobjective, nesting, nonlinear mixed integer, nonlinear programming, nonnumeric, nonstationary, numerical, pareto, Pareto, robust, stochastic, system, packing, packing problems, rectangular

parallel GA, parallel GA, FIN, hardware, island, island model, parallel path selection problem, parallel processing load balancing, parameter estimation, parameters adaptive, particle swarm, partitioning, patent

path planning, mobile robot, mobile robots, vehicles, pattern recognition, pattern matching, pattern recognition, pattern recognition, pattern recognition, 3D, bill, character, coin, color, DNA, face, faces, feature selection, handwriting, paper currency, person, posture, protein fold, quantum computing, road sign boards, shape detection
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>signature, spectroscopy,</td>
<td>65</td>
</tr>
<tr>
<td>speech, texture analysis, traffic sign, voice, word, pattern search, PBGA, PCR, peptides, libraries, permutation problems, Petri nets, fuzzy, reachability, PfGA, pharmacology, phenotype, physics</td>
<td>2112</td>
</tr>
<tr>
<td>atomic, chemical, elasticity, magnetics, material, molecular, nuclear, quantum, solid state, superconductors, X-ray, physiology saccade, PID controllers, self-tuning, piezo, piping, planning, electronics, fuzzy,</td>
<td>2270</td>
</tr>
<tr>
<td>long range, motion, path, process, trajectory, plasma current profile, polypeptides, popular DNA computing, population age, diversity, initial, spatial, population size 200, 24, 8, infinite, optimal, small, positioning, power distribution, power plant start-up, power systems planning, prediction electric load, neural networks, printing halftoning, 161, 675</td>
<td>1185</td>
</tr>
<tr>
<td>environmental management, facility layout, Kansei, process planning, reliability, scheduling, production economics?, production planning, protein sequence analysis, protein fold recognition, protein folding, in solution, Monte Carlo polypeptides, protein structure, proteins, evolution, function estimation, phylogeny, QSAR, sequence analysis, proteomics, pumping, QSPR, quality, reliability, sake, quality control, quantum communications, quantum computing CNOT, crystal lattice, spin, superconductor, quantum computing CNOT, circuit design, conservative, 2258</td>
<td>1094</td>
</tr>
</tbody>
</table>
Genetic algorithms in Japan

- gates, 525
- hardware, 406
- implementation, 2279
- NMR, 185
- number partitioning problem, 405
- optical, 283, 495, 542
- quantum dot, 2279
- quantum dots, 413
- solid state, 404, 560, 588
- spintronics, 413
- superconduction, 531
- VLSI, 560
- quantum dots, 239, 127
- dynamics, 2279
- triple, 413
- quantum gates
 - quantum, 239
 - silicon, 525
 - spintronics, 413
- radiology, 1511, 2322
- thorax, 621
- reachability, 1701
- reactive power, 1472, 239
- reasoning, 1680
- fuzzy, 2229, 2325, 2459
- recombination, 1009
- multi-parent, 1922, 2235
- regression, 2271
- curve, 1848
- nonlinear, 1654
- regression analysis, 428
- reliability, 1113, 1137, 1378, 1547, 1572, 1207
- 2330, 2344, 2389
- reliability fuzzy, 2227
- REM, 211
- remote sensing, 2110
- atmosphere, 1948
- satellite, 594
- on activities, 2283, 2313
- representation, 743
- resource planning, 2279
- restoration, 2410
- Bayesian, 1084
- review, 209
- agriculture in Japan, 372
- artificial life, 275
- genetic programming, 606
- in Japanese, 1216
- industrial application in Japan, 838
- neuro-fuzzy rule generation, 324
- parallel GA, 157
- power systems, 276
- reliability, 2455
- RNA, 919
- RNA folding, 2039, 773
- road building, 745
- road networks, 1588
- RoboCup, 2606
- robot, 1293
- AIBO, 955
- autonomous, 2048
- biped, 1301, 1934
- cellular, 64
- control, 1642
- machine vision, 917
- manufacturing, 1033
- mobile, 570
- moving, 176
- path planning, 934
- patient, 600, 611
- pneumatic, 2249
- walking, 1301
- robot control, 149
- robotics, 42, 65, 66, 47
- 135, 50, 57, 69, 81, 83, 64, 65
- 06, 104, 719, 729, 799, 1517, 1565
- 1611, 1742, 1973, 1600, 1899, 1893
- 1919, 2060, 2088, 2089, 2179, 2395
- adaptive, 461
- AIBO, 235
- autonomous, 1040, 551, 1271, 584, 609
- biped, 1164
- cellular, 1027
- collision avoidance, 542, 1658
- control, 804, 1179
- control?, 1929
- coordination, 1054
- fuzzy, 2466
- high DOF, 955
- intelligent, 1120
- learning, 585
- machine vision, 520
- manipulator control, 751
- mobile, 1511, 644, 811
- 870, 921, 984, 1099, 1126, 1144
- 1187, 1227, 1454, 1583, 1601, 1624
- 1655, 1743, 1862, 1934, 1962, 1990
- 1991, 2000, 2018, 2107, 2257, 2468
- 235, 355, 408, 575, 582, 584, 609
- modeling, 931
- motion planning, 79, 272, 880
- 932, 1349, 1575, 1779, 2331
- movement, 2268
- multi, 48, 191
- navigation, 110, 2018
- path planning, 1077, 1219
- planning, 1242
- programming, 1230
- redundant, 1134, 1146
- sensing, 854
- servoing, 2334
- tracking, 2349
- trajectory planning, 755, 1553
- 1914
- vision, 713
- walking, 664, 1126
- route planning, 2342
- robots, 871
- kinematics, 1052
- manipulators, 1248
- mobile, 841, 1017
- walking, 1789
Genetic algorithms in Japan

shape design
aerodynamics,
MEMS,
roofs,
wing,
wings,

shape design?
shape detection,
shape generation,
shape modeling,
shape-genes,
shapes
2D,
sheet metal
assembly,
bending,
forming,

shortest path problems,
signal processing,

signal processing
acoustics,
analog,
compressing,
detection,
diagnosis,
estimation,
feature selection,
filters,
impulse response,
motion,
music,
noise,

pattern recognition,
sensor fusion,
separation,
sound,
speaker verification,
spectrum estimation,
speech recognition,
voice,

word isolation,
signal processing
filters,
signature verification,
signatures,
SIMCA,
simple GA,
simulated annealing,
simulation,
cutting,
ecolo
gy,
ecosystem,
ecosystems,
evolution,
hydraulics,
power plants,
traffic light control,
simulated annealing,
soccer game,
software,
reliability,
software testing,
solar power,
SOM,

fuzzy,
sonor,
electronics design,
spanning tree,
minimum,
spanning trees
quadratic,
spectroscopy
IR,
near-infrared,
NIR,
speech restoration,
springs
helical,
SSE,
stable marriage problem,
stereo imaging
pose recognition,
stereo matching,
stereo vision,

measurement,
StGA,
strain testing
implant,

string alignment,
stringology?,
strings,

STROGANOFF,
structures

crack identification,
SU(2),

subdivision,

subpopulation,

superconductors,
superquadrics,
supply balance,
survey

parallel GA,
system estimation,
system identification,
s

system identification
fuzzy,
nonlinear,
tabu search,

channel equalization,
connectivity,
data transfer,
telecommunication,

network design,
optical net,
Subject index

routing, [2251]
service, [277]
teleconferencing, [586]
teleportation, [325]
quantum, [406]
testing
material, [272]
service, [1041]
software, [1041]
structures, [325]
VLSI, [361]
text book, [118, 152, 1047]
text processing
kanji, [1377]
texture, [2460]
edge detection, [1732]
theory
Turing, [1875]
Turing machines, [1670]
thin films, [224]
elipsometry, [626]
thinning
gray-scale, [1078]
TIERRA, [361]
time series, [2305]
fuzzy, [387]
prediction, [387]
time tabling
university, [415]
time-series, [2102, 2399]
prediction, [2102, 2399]
timetabling, [502, 2071]
school, [2053]
Tokamaks, [1279]
tomato
storage, [657]
tomography, [1965, 2124]
infrared, [904]
medical, [1835]
X-ray, [2072]
topological observability, [688]
topology, [19]
tracking, [1555]
traffic
sign recognition, [1163]
traffics, [974]
trajectory planning, [1164, 1575]
transportation, [1641]
berth allocation, [2263]
bicriteria, [826]
delivery systems, [747]
planning, [788]
Shinkansen, [2076]
train, [8076]
vehicle routing, [747]
transportation problem
bicriteria, [253, 2054]
multicriteria, [1512]
transportation problems, [1905]
trees
phylogenetic, [1466]
Trellis coding, [1622]
truss structures, [1699, 918]
TSP, [2239]
TSP
Euclidean, [971]
molecular computing, [1712]
operators, [2006]
tutorial, [494]
control, [1893]
DNA computing, [643]
evolvable hardware, [801]
fuzzy systems, [1894]
games, [1532]
in Japanese, [119]
JSS, [1337]
networks, [1893]
networks, [1893]
soft computing, [2462]
unit commitment, [710]
UPS, [1834]
urban planning, [2305]
USPEX, [587]
VAR, [977]
Var planning, [1244]
VEGA, [1262, 1565]
vehicle
shock absorber, [1796]
steering, [1635, 2083]
vehicle routing, [519]
vehicles, [1729, 456]
avtomonomous, [1326]
control, [1032]
motion control, [1289, 1484]
path planning, [1260]
ships, [196]
shock absorber, [1686]
truck, [1032]
underwater, [576]
VHDL
generation, [604]
quantum computing, [625]
vibration control, [1488]
vibrations
spectra, [135]
virus, [1311]
vision, [33]
VLSI, [271, 399]
CAD, [18]
channel routing, [711]
design, [663, 671, 711]
876, [879, 1319]
1696, [1694, 1801]
2063, [2074, 2078, 1235]
2393, [2473, 330, 447]
evolvable hardware, [2394, 2409]
filters, [387]
floorplanning, [2016, 318]
HDL, [38]
testing, [738, 328, 444]
VLSI design, [1020, 301]
analog, [597]
cell placement, [997]
channel routing, [1333]
<table>
<thead>
<tr>
<th>Term</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>clock,</td>
<td>590</td>
</tr>
<tr>
<td>digital logic,</td>
<td>1718</td>
</tr>
<tr>
<td>floorplan,</td>
<td>1086, 1665</td>
</tr>
<tr>
<td>FPGA,</td>
<td>134</td>
</tr>
<tr>
<td>MEMS,</td>
<td>248</td>
</tr>
<tr>
<td>power dissipation,</td>
<td>590</td>
</tr>
<tr>
<td>routing,</td>
<td>168</td>
</tr>
<tr>
<td>VOD,</td>
<td>1431</td>
</tr>
<tr>
<td>walking,</td>
<td>104</td>
</tr>
<tr>
<td>control,</td>
<td>882</td>
</tr>
<tr>
<td>warehousing,</td>
<td>1698</td>
</tr>
<tr>
<td>wastewater,</td>
<td>140</td>
</tr>
<tr>
<td>water,</td>
<td>135, 445</td>
</tr>
<tr>
<td>trimer,</td>
<td>512</td>
</tr>
<tr>
<td>water loss</td>
<td>557</td>
</tr>
<tr>
<td>tomato,</td>
<td>657</td>
</tr>
<tr>
<td>wavelet transform,</td>
<td>2360</td>
</tr>
<tr>
<td>wavelets</td>
<td></td>
</tr>
<tr>
<td>adaptive,</td>
<td>159</td>
</tr>
<tr>
<td>texture,</td>
<td>2064</td>
</tr>
<tr>
<td>wavequides</td>
<td></td>
</tr>
<tr>
<td>measurement,</td>
<td>675</td>
</tr>
<tr>
<td>welfare,</td>
<td>2294</td>
</tr>
</tbody>
</table>
Annual index

The following table gives references to the contributions by the year of publishing.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>82, 85, 92, 93</td>
</tr>
<tr>
<td>1991</td>
<td>15, 17, 18, 2400, 100, 106, 114, 113</td>
</tr>
<tr>
<td>1992</td>
<td>11, 24, 42, 43, 44, 45, 46, 47, 40, 49</td>
</tr>
<tr>
<td>1993</td>
<td>12, 13, 14, 16, 19, 20, 21, 22, 23, 23</td>
</tr>
<tr>
<td>1994</td>
<td>27, 79, 83, 87, 89, 90, 101, 102, 107, 109, 115, 122, 123</td>
</tr>
<tr>
<td>1995</td>
<td>112, 123, 132, 133, 140, 141, 145, 146, 147, 153, 155, 159</td>
</tr>
<tr>
<td>1996</td>
<td>166, 167, 169, 170, 171, 172, 173, 174, 175, 178, 203, 204</td>
</tr>
<tr>
<td>1997</td>
<td>205, 206, 207, 208, 209, 210, 211, 212, 213, 219</td>
</tr>
</tbody>
</table>

Note: The table continues with references for each year from 1998 to 2007.
Genetic algorithms in Japan

2000,

<table>
<thead>
<tr>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>226</td>
</tr>
<tr>
<td>2001</td>
<td>232</td>
</tr>
<tr>
<td>2002</td>
<td>238</td>
</tr>
<tr>
<td>2003</td>
<td>244</td>
</tr>
<tr>
<td>2004</td>
<td>250</td>
</tr>
<tr>
<td>2005</td>
<td>256</td>
</tr>
<tr>
<td>2006</td>
<td>262</td>
</tr>
<tr>
<td>2007</td>
<td>268</td>
</tr>
<tr>
<td>2008</td>
<td>274</td>
</tr>
<tr>
<td>2009</td>
<td>280</td>
</tr>
<tr>
<td>2010</td>
<td>286</td>
</tr>
<tr>
<td>2011</td>
<td>292</td>
</tr>
</tbody>
</table>

1999,

<table>
<thead>
<tr>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>187</td>
</tr>
<tr>
<td>2000</td>
<td>193</td>
</tr>
<tr>
<td>2001</td>
<td>199</td>
</tr>
<tr>
<td>2002</td>
<td>205</td>
</tr>
<tr>
<td>2003</td>
<td>211</td>
</tr>
<tr>
<td>2004</td>
<td>217</td>
</tr>
<tr>
<td>2005</td>
<td>223</td>
</tr>
<tr>
<td>2006</td>
<td>229</td>
</tr>
<tr>
<td>2007</td>
<td>235</td>
</tr>
<tr>
<td>2008</td>
<td>241</td>
</tr>
<tr>
<td>2009</td>
<td>247</td>
</tr>
<tr>
<td>2010</td>
<td>253</td>
</tr>
<tr>
<td>2011</td>
<td>259</td>
</tr>
</tbody>
</table>

2000,

<table>
<thead>
<tr>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>226</td>
</tr>
<tr>
<td>2001</td>
<td>232</td>
</tr>
<tr>
<td>2002</td>
<td>238</td>
</tr>
<tr>
<td>2003</td>
<td>244</td>
</tr>
<tr>
<td>2004</td>
<td>250</td>
</tr>
<tr>
<td>2005</td>
<td>256</td>
</tr>
<tr>
<td>2006</td>
<td>262</td>
</tr>
<tr>
<td>2007</td>
<td>268</td>
</tr>
<tr>
<td>2008</td>
<td>274</td>
</tr>
<tr>
<td>2009</td>
<td>280</td>
</tr>
<tr>
<td>2010</td>
<td>286</td>
</tr>
<tr>
<td>2011</td>
<td>292</td>
</tr>
</tbody>
</table>

1999,

<table>
<thead>
<tr>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>187</td>
</tr>
<tr>
<td>2000</td>
<td>193</td>
</tr>
<tr>
<td>2001</td>
<td>199</td>
</tr>
<tr>
<td>2002</td>
<td>205</td>
</tr>
<tr>
<td>2003</td>
<td>211</td>
</tr>
<tr>
<td>2004</td>
<td>217</td>
</tr>
<tr>
<td>2005</td>
<td>223</td>
</tr>
<tr>
<td>2006</td>
<td>229</td>
</tr>
<tr>
<td>2007</td>
<td>235</td>
</tr>
<tr>
<td>2008</td>
<td>241</td>
</tr>
<tr>
<td>2009</td>
<td>247</td>
</tr>
<tr>
<td>2010</td>
<td>253</td>
</tr>
<tr>
<td>2011</td>
<td>259</td>
</tr>
</tbody>
</table>
4.9 Geographical index

The following table gives references to the contributions by country.

- **Australia**: [553]
- **Belgium**: [1399, 1405, 1424, 1531]
- **China**: [413, 1557, 1558]
- **Finland**: [206, 207, 520, 522, 1129, 127, 2432, 134]
- **Germany**: [109, 19, 20, 538, 539]
- **Greece**: [2263]
- **Israel**: [23, 696]
- **Japan**: [228, 229, 237, 238, 242, 243, 244, 245, 246]
- **Italy**: [558]
- **Iran**: [2292]
- **India**: [2110, 321, 619]
- **Ireland**: [2292]
- **Israel**: [23, 696]
- **Japan**: [228, 229, 237, 238, 242, 243, 244, 245, 246]
- **India**: [2110, 321, 619]
- **Ireland**: [2292]
- **Israel**: [23, 696]
- **Japan**: [228, 229, 237, 238, 242, 243, 244, 245, 246]
- **India**: [2110, 321, 619]
- **Ireland**: [2292]
- **Israel**: [23, 696]
- **Japan**: [228, 229, 237, 238, 242, 243, 244, 245, 246]
- **India**: [2110, 321, 619]
- **Ireland**: [2292]
- **Israel**: [23, 696]
- **Japan**: [228, 229, 237, 238, 242, 243, 244, 245, 246]
- **India**: [2110, 321, 619]
- **Ireland**: [2292]
- **Israel**: [23, 696]
- **Japan**: [228, 229, 237, 238, 242, 243, 244, 245, 246]
- **India**: [2110, 321, 619]
- **Ireland**: [2292]
- **Israel**: [23, 696]
- **Japan**: [228, 229, 237, 238, 242, 243, 244, 245, 246]
- **India**: [2110, 321, 619]
- **Ireland**: [2292]
- **Israel**: [23, 696]
- **Japan**: [228, 229, 237, 238, 242, 243, 244, 245, 246]
- **India**: [2110, 321, 619]
- **Ireland**: [2292]
- **Israel**: [23, 696]
- **Japan**: [228, 229, 237, 238, 242, 243, 244, 245, 246]
- **India**: [2110, 321, 619]
- **Ireland**: [2292]
- **Israel**: [23, 696]
Bibliography

Hisashi Tamaki and Yoshikawa Nishikawa. [title unknown to the editor of this bibliography]. * Journal of the Institute of Systems, Control, and Information Engineers (Japan),* 37(8):?–449, 1993. (in Japanese) ga:Hisashi93c.

Genetic algorithms in Japan

[284] Masahide Sasaki and Masayuki Irutsu. Quantum decoder for single photon communication. Communica-

Genetic algorithms in Japan

See the full text for more bibliographic information.

Genetic algorithms in Japan

Genetic algorithms in Japan

Hiromi Wakaki and Hitoshi Iba. Motion design of a 3D-CG avatar that uses humanoid animation. In Ueda [508], pages 195–201. ga02aHiromiWakaki.

Japanese.

In Kanji Ueda, editor, Proceedings of the 4th International Workshop on Emergent Synthesis, IWES '02, Kobe, Japan, 9.-10. May 2002. Kobe University (Japan). ga02aIWES.

Genetic algorithms in Japan

Bibliography

[545] Yoshiyuki Matsumura, Kazuhiro Ohkura, and Kanji Ueda. ($\mu/\mu, \lambda$)-evolution strategies for noisy objective functions. In Ueda [508], pages 13–22. ga02aYoshiyukiMatsumura.

Genetic algorithms in Japan

[591] Hidenori Sakanashi, Masaya Ivata, and Tetsuya Higuchi. Ch. 2. EWH applied to image data compression. In Higuchi et al. [599], pages 19–40. ga06aHidenoriSakanashi.

[592] Hirokazu Nosato, Masahiro Murakawa, Yuji Kasai, and Tetsuya Higuchi. Ch. 11. evolvable optical systems. In Higuchi et al. [599], pages 199–207. ga06aHirokazuNosato.

[593] Isamu Kajitani, Masaya Ivata, and Tetsuya Higuchi. Ch. 3. a GA hardware engine and its applications. In Higuchi et al. [599], pages 41–63. ga06aIsamuKajitani.

[597] Masahiro Murakawa, Yuji Kasai, Hidenori Sakanashi, and Xin Yao. Ch. 7. evolvable analog LSI. In Higuchi et al. [599], pages 121–143. ga06aMasahiroMurakawa.

[601] Tetsuya Higuchi, Yong Liu, Masaya Iwata, and Xin Yao. Ch. 1. introduction to evolvable hardware. In Higuchi et al. [599], pages 1–17. ga06bTetsuyaHiguchi.

Genetic algorithms in Japan

Bibliography

Hugo de Garis. CAM-BRAIN the evolutionary engineering of a billion neuron artificial brain by 2001 which grows/evolves at electronic speeds inside a cellular automata machine (CAM). In Pearson et al. †ga95adeGaris.

Shigenobu Kobayashi, Isao Ono, and Masayuki Yamamura. An efficient genetic algorithm for shop scheduling problems. In Eshelman [2511], page ? [prog ga95aKobayashi]

Sadayoshi Mikami, Mitsuo Wada, and Terence C. Fogarty. Learning to achieve co-operation by temporal-spatial fitness sharing. In ICEC’95 [2508], pages 803–807. [prog. ga95aMikami]

Yujiro Miyata, Takeshi Furuhashi, and Yoshiki Uchikawa. A proposal of a new local improvement mechanism for genetic algorithm and a creative thinking support. In ICEC’95 [2508], pages 485–490. [prog. ga95aMiyata]

Eiji Mizutani, Hideyuki Takagi, and David M. Auslander. Evolving color paint. In ICEC’95 [2508], pages 533–538. [prog. ga95aMizutani]

Naoki Mori, Junji Yoshida, Hisashi Tamaki, Hajime Kita, and Yoshikazu Nishikawa. A thermodynamical selection rule for the genetic algorithm. In ICEC’95 [2508], pages 188–192. [prog. ga95aMori]

Koji Morikawa, Takeshi Furuhashi, and Yoshiki Uchikawa. Cooperation and evolution of scheduling system with genetic algorithms. In ICEC’95 [2508], pages 491–494. [prog. ga95aMorikawa]
Genetic algorithms in Japan

[1009] Hitoshi Iba. Recombination guidance for numerical genetic programming. In ICEC’95 [2508], pages 97–102. \[\text{\textcopyright prog. ga95bIba.}\]

Bibliography

[1223] Akira Imada and Keijiro Araki. Basin of attraction of associative memory as it is evolved by a genetic algorithm. In WEC2 [1578], pages 44–44. ga96aIImada.

146

Genetic algorithms in Japan

Qiangfu Zhao and Tatsuo Higuchi. Efficient learning of NN-MLP based on individual evolutionary algorithm. Neurocomputing (Netherlands), 13(2-4):201–215, 1996. \(\text{¶EI M009225/97 ga96cQZhao} \).

Bibliography

Bibliography

[1655] Hitoshi Iba. Multiple-agent learning for a robot navigation task by genetic programming. In Koza et al. [2515], page ?. †conf.prog ga97aiba.

[1711] Tetsuya Maeshiro and MasayukiKimura. Genetic code as an evolving organism. In Koza et al. [2515], page 2.†Conf.prog ga97aMaeshiro.

Bibliography

dilemma game with spatial players. In Proceedings of the 5th International Conference on Soft Computing
World Scientific, Singapore. †CCA76704/99 ga98aTNakari.

[2139] Tomoharu Nakashima, Hisao Ishibuchi, and Tadahiko Murata. Evolutionary algorithms for constructing
linguistic rule-based systems for high-dimensional pattern classification problems. In Proceedings of the
1998 IEEE International Conference on Evolutionary Computation, pages 752–757, Anchorage, AK (USA),

[2140] Tatsuya Nomura and Tsutomu Miyoshi. An adaptive fuzzy rule extraction using hybrid model of the fuzzy
self-organizing map and the genetic algorithm with numerical chromosomes. Journal of Intelligent and

[2141] Akira Todoroki and Raphael T. Hafikka. Lamination parameters for efficient genetic optimization of the
American Institute of Aeronautics and Astronautics, Reston, VA. †A98-39789 ga98aTodoroki.

[2142] T. Okamoto and T. Matsumoto. Automatic generation of sequencing teaching items using genetic algo-

[2143] T. Omata. Learning with assistance based on evolutionary computation computation. In

Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing, volume 1, pages
450–454, Aachen (Germany), 7–10. September 1998. Verlag Mainz, Aachen (Germany). †CCA69155/99
ga98aToNo.

[2145] T. Onuki, S. Wakao, T. Miyokawa, and Y. Nishimura. Design optimization of simulation coil system for

[2146] Toshihiro Suzuki, Norberto Eiji Nawa, and Takeshi Furushashi. Efficient generation of fuzzy rules us-
ging bacterial evolutionary algorithm and clarification of fuzzy rules. In Proceedings of the 5th Inter-
ga98aToshihiroSuzuki.

†CCA64607/98 ga98aTSenjyu.

Second International Conference on Knowledge-Based Intelligent Electronic Systems, volume 2, pages

World Scientific, Singapore. †CCA68597/99 ga98aTSuzuki.

X. Li, Y. Anma, Tetsuji Kodama, and Yoshiki Uchikawa. A surface-morphology reconstruction method from an SEM image with genetic algorithms. 1:157–158, 1998. \(\text{P}82589 \) \(\text{ga98aXLi} \).

Bibliography

Notations

†(ref) = the bibliography item does not belong to my collection of genetic papers.
* = only abstract seen.
? = data of this field is missing (BiBTeX-format).

The last field in each reference item in Teletype font is the BiBTeXkey of the corresponding reference.
Appendix A

Bibliography entry formats

This documentation was prepared with \LaTeX{} and reproduced from camera-ready copy supplied by the editor. The ones who are familiar with \TeX{} may have noticed that the references are printed using \emph{abbrv} bibliography style and have no difficulties in interpreting the entries. For those not so familiar with \TeX{} are given the following formats of the most common entry types. The optional fields are enclosed by "[]" in the format description. Unknown fields are shown by "?". † after the entry means that neither the article nor the abstract of the article was available for reviewing and so the reference entry and/or its indexing may be more or less incomplete.

Book: Author(s), \emph{Title}, Publisher, Publisher’s address, year.

Example

Journal article: Author(s), Title, \emph{Journal}, volume(number): first page – last page, [month,] year.

Example

Note: the number of the journal unknown, the article has not been seen.

Proceedings article: Author(s), Title, editor(s) of the proceedings, \emph{Title of Proceedings}, [volume,] pages, location of the conference, date of the conference, publisher of the proceedings, publisher’s address.

Example

Technical report: Author(s), Title, type and number, institute, year.

Example

Vaasa Genetic Algorithm Bibliography

Search & Optimise

Main features:

• Over 20,000 references to published papers
• by over 20,000 researchers.
• Available as over 70 special bibliographies online:
• Covers all sciences and engineering fields, from basic theory to applications.
• Several indexes and statistical summaries.
• See what problems evolution can solve for you!

Global optimisation and search heuristics called genetic algorithm mimics evolution in nature using recombination and selection from a set of solution trials called population. One of the most prominent attractive features of genetic algorithms from the practical point of view of software techniques is their simplicity, which makes them easy to implement and tailor to solve practical search and optimisation problems.

In spite of the seemingly simple processing, the genetic algorithms are good at solving some problems that are known to be hard. The simplicity, generality, flexibility, parallelism, and the good problem solving capability have made genetic algorithm very popular among various disciplines desperately searching methods to solve difficult optimisation problems.

Observe that our server has also a selection of our papers on genetic algorithms and other computational topics. See our bibliographies or file ftp.uwasa.fi/cs/README for further details.
<table>
<thead>
<tr>
<th>file</th>
<th># refs</th>
<th>updated</th>
<th>contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>ga90bib.ps.Z</td>
<td></td>
<td></td>
<td>GA in 1990</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ga02bib.ps.Z</td>
<td>557</td>
<td>2002</td>
<td>GA in 2002</td>
</tr>
<tr>
<td>gaAlbib.pdf</td>
<td>2550</td>
<td>2012/10/16</td>
<td>GA in artificial intelligence</td>
</tr>
<tr>
<td>gaAERObib.pdf</td>
<td>854</td>
<td>2009/01/07</td>
<td>GA in aerospace</td>
</tr>
<tr>
<td>gaAGRObib.pdf</td>
<td>405</td>
<td>2012/08/01</td>
<td>GA in agriculture (new)</td>
</tr>
<tr>
<td>gaALIFebib.pdf</td>
<td>181</td>
<td>2009/07/24</td>
<td>GA in artificial life</td>
</tr>
<tr>
<td>gaARTbib.pdf</td>
<td>170</td>
<td>2010/08/12</td>
<td>GA in art and music</td>
</tr>
<tr>
<td>gaAUSBib.pdf</td>
<td>720</td>
<td>2013/05/14</td>
<td>GA in Australia and New Zealand</td>
</tr>
<tr>
<td>gaBASICsibib.pdf</td>
<td>1154</td>
<td>2012/09/17</td>
<td>Basics of GA</td>
</tr>
<tr>
<td>gaBIBib.pdf</td>
<td>1358</td>
<td>2008/08/11</td>
<td>GA in biosciences including medicine</td>
</tr>
<tr>
<td>gaCDibib.pdf</td>
<td>1407</td>
<td>2012/07/30</td>
<td>GA in Computer Aided Design</td>
</tr>
<tr>
<td>gaCHEMbib.pdf</td>
<td>938</td>
<td>2009/07/24</td>
<td>GA in chemical sciences; previously in gaCHEMPhysbib.ps.Z</td>
</tr>
<tr>
<td>gaCIVILbib.pdf</td>
<td>1068</td>
<td>2009/01/07</td>
<td>GA in civil, structural, and mechanical engineering</td>
</tr>
<tr>
<td>gaCODEbib.pdf</td>
<td>377</td>
<td>2008/03/20</td>
<td>GA coding</td>
</tr>
<tr>
<td>gaCDEVbib.pdf</td>
<td>232</td>
<td>2008/09/18</td>
<td>co- and differential evolution GA(new)</td>
</tr>
<tr>
<td>gaCONTROLbib.pdf</td>
<td>1881</td>
<td>2012/08/08</td>
<td>GA in control and process engineering</td>
</tr>
<tr>
<td>gaCSbib.pdf</td>
<td>1453</td>
<td>2008/03/20</td>
<td>GA in comp. sci. (incl. databases, /mining, software testing and GP)</td>
</tr>
<tr>
<td>gaEAST-EURUsbib.ps.Z</td>
<td>723</td>
<td>2008/03/12</td>
<td>GA in yearly yeas (upto 1989) new</td>
</tr>
<tr>
<td>gaECOlbib.pdf</td>
<td>1569</td>
<td>2012/07/16</td>
<td>GA in economics and finance</td>
</tr>
<tr>
<td>gaECLbib.pdf</td>
<td>177</td>
<td>2012/07/16</td>
<td>GA in ecology and biodiversity (new: 1.8.2008)</td>
</tr>
<tr>
<td>gaELMbib.pdf</td>
<td>574</td>
<td>2012/07/20</td>
<td>GA in electromagnetics</td>
</tr>
<tr>
<td>gaESbib.pdf</td>
<td>464</td>
<td>2008/08/13</td>
<td>Evolution strategies</td>
</tr>
<tr>
<td>gaFEMbib.pdf</td>
<td>86</td>
<td>2009/07/24</td>
<td>GA & FEM (new May 2008)</td>
</tr>
<tr>
<td>gaFJbib.pdf</td>
<td>890</td>
<td>2013/05/13</td>
<td>GA in Finland (new May 2013)</td>
</tr>
<tr>
<td>gaFPGAbib.pdf</td>
<td>391</td>
<td>2012/10/16</td>
<td>GA & FPGA (new May 2008)</td>
</tr>
<tr>
<td>gaFRAbib.ps.Z</td>
<td>540</td>
<td>2011/12/29</td>
<td>GA in France</td>
</tr>
<tr>
<td>gaFTPbib.ps.Z</td>
<td>1353</td>
<td>2003/07/09</td>
<td>GA papers available via web (ftp and www)</td>
</tr>
<tr>
<td>gaFUZZTbib.pdf</td>
<td>1521</td>
<td>2012/09/21</td>
<td>GA and fuzzy logic</td>
</tr>
<tr>
<td>gaGEObib.pdf</td>
<td>436</td>
<td>2011/12/28</td>
<td>GA in geosciences</td>
</tr>
<tr>
<td>gaGERbib.ps.Z</td>
<td>1586</td>
<td>2004/09/22</td>
<td>GA in Germany, Austria, and Switzerland</td>
</tr>
<tr>
<td>gaGPbib.pdf</td>
<td>1006</td>
<td>2012/07/30</td>
<td>genetic programming</td>
</tr>
<tr>
<td>gaIMPLEbib.pdf</td>
<td>1500</td>
<td>2012/07/30</td>
<td>implementations of GA</td>
</tr>
<tr>
<td>gaINDIAbib.ps.Z</td>
<td>276</td>
<td>2003/05/23</td>
<td>GA in India</td>
</tr>
<tr>
<td>gaINVERSEbib.pdf</td>
<td>291</td>
<td>2010/01/08</td>
<td>GA in inverse problems (new: Aug 2007)</td>
</tr>
<tr>
<td>gaIREGbib.pdf</td>
<td>197</td>
<td>2012/07/16</td>
<td>image registration (new: July 2009)</td>
</tr>
<tr>
<td>gaISbib.pdf</td>
<td>87</td>
<td>2009/08/17</td>
<td>immune systems</td>
</tr>
<tr>
<td>gaJAPANbib.ps.Z</td>
<td>2475</td>
<td>2013/05/14</td>
<td>GA in Japan</td>
</tr>
<tr>
<td>gaLCSbib.pdf</td>
<td>211</td>
<td>2012/08/08</td>
<td>Learning Classifier Systems</td>
</tr>
<tr>
<td>gaLASERbib.pdf</td>
<td>58</td>
<td>2009/07/31</td>
<td>GA and lasers (new: April 2008)</td>
</tr>
<tr>
<td>gaLATINbib.ps.Z</td>
<td>649</td>
<td>2003/07/09</td>
<td>GA in Latin America, Portugal & Spain</td>
</tr>
<tr>
<td>gaLOGISTICSbib.pdf</td>
<td>689</td>
<td>2009/07/27</td>
<td>GA in logistics (incl. TSP)</td>
</tr>
<tr>
<td>gaMANUbib.pdf</td>
<td></td>
<td></td>
<td>GA in manufacturing</td>
</tr>
<tr>
<td>gaMATbib.pdf</td>
<td>846</td>
<td>2009/07/27</td>
<td>GA in mathematics</td>
</tr>
<tr>
<td>gaMEDICINEbib.pdf</td>
<td>739</td>
<td>2012/08/01</td>
<td>GA in medicine (new: Nov 2007)</td>
</tr>
<tr>
<td>gaMEDITERbib.ps.Z</td>
<td>1810</td>
<td>2003/07/09</td>
<td>GA in the Mediterranean</td>
</tr>
<tr>
<td>gaMICRObib.pdf</td>
<td>83</td>
<td>2008/03/31</td>
<td>GA in microscopy & microsystems (new: March 2008)</td>
</tr>
<tr>
<td>gaMILbib.pdf</td>
<td>113</td>
<td>2009/09/17</td>
<td>GA in military applications</td>
</tr>
<tr>
<td>gaMLbib.pdf</td>
<td>1231</td>
<td>2012/08/08</td>
<td>GA in machine learning new</td>
</tr>
<tr>
<td>gaMSbib.pdf</td>
<td>490</td>
<td>2008/06/11</td>
<td>GA in materials new</td>
</tr>
<tr>
<td>gaNANObib.pdf</td>
<td>117</td>
<td>2012/07/17</td>
<td>GA in nanotechnology new</td>
</tr>
<tr>
<td>gaNIRbib.pdf</td>
<td>256</td>
<td>2012/07/17</td>
<td>GA in NIRS (spectroscopy) new</td>
</tr>
<tr>
<td>gaNNbib.pdf</td>
<td>1883</td>
<td>2012/06/28</td>
<td>GA in neural networks</td>
</tr>
<tr>
<td>gaNORDICbib.pdf</td>
<td>1060</td>
<td>2013/05/07</td>
<td>GA in Nordic countries</td>
</tr>
<tr>
<td>gaOPTICsbib.pdf</td>
<td>2104</td>
<td>2012/07/30</td>
<td>GA in optics and image processing</td>
</tr>
<tr>
<td>gaOPTIMbib.pdf</td>
<td>923</td>
<td>2003/07/09</td>
<td>GA and optimization (only a few refs)</td>
</tr>
<tr>
<td>gaORbib.pdf</td>
<td>1704</td>
<td>2012/07/30</td>
<td>GA in operations research</td>
</tr>
</tbody>
</table>

...table continues on the next page...
<table>
<thead>
<tr>
<th>file</th>
<th># refs</th>
<th>updated</th>
<th>contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>gaPARAbib.pdf</td>
<td>833</td>
<td>2012/07/30</td>
<td>Parallel and distributed GA</td>
</tr>
<tr>
<td>gaPARETObib.pdf</td>
<td>469</td>
<td>2009/03/24</td>
<td>Pareto optimization</td>
</tr>
<tr>
<td>gaPATENTbib.pdf</td>
<td>462</td>
<td>2009/07/27</td>
<td>GA patents</td>
</tr>
<tr>
<td>gaPATTERNbib.pdf</td>
<td>1654</td>
<td>2012/09/21</td>
<td>GA in pattern recognition incl. LCS (new)</td>
</tr>
<tr>
<td>gaPHYSbib.pdf</td>
<td>2313</td>
<td>2008/04/07</td>
<td>GA in physical sciences ; previously in gaCREMPHYSbib.ps.Z</td>
</tr>
<tr>
<td>gaPIEZObib.pdf</td>
<td>57</td>
<td>2012/07/18</td>
<td>GA & piezo (new: March 2008)</td>
</tr>
<tr>
<td>gaPOWERbib.pdf</td>
<td>976</td>
<td>2012/06/28</td>
<td>GA in power engineering</td>
</tr>
<tr>
<td>gaPROTEINbib.pdf</td>
<td>491</td>
<td>2008/03/12</td>
<td>GA in protein research</td>
</tr>
<tr>
<td>gaQChib.pdf</td>
<td>547</td>
<td>2011/03/09</td>
<td>quantum computing</td>
</tr>
<tr>
<td>gaREMOTEbib.pdf</td>
<td>302</td>
<td>2012/07/20</td>
<td>GA in remote sensing (new: 1.8.2008)</td>
</tr>
<tr>
<td>gaROBOTbib.pdf</td>
<td>775</td>
<td>2009/07/27</td>
<td>GA in robotics</td>
</tr>
<tr>
<td>gaSAbib.pdf</td>
<td>331</td>
<td>2009/07/24</td>
<td>GA and simulated annealing</td>
</tr>
<tr>
<td>gaSCHEDULINGbib.pdf</td>
<td>862</td>
<td>2011/12/20</td>
<td>GA in scheduling</td>
</tr>
<tr>
<td>gaSELECTIONbib.ps.Z</td>
<td>295</td>
<td>2009/07/27</td>
<td>Selection in GAs (new)</td>
</tr>
<tr>
<td>gaSIGNALbib.pdf</td>
<td>2587</td>
<td>2012/07/27</td>
<td>GA in signal and image processing</td>
</tr>
<tr>
<td>gaSIMULAbib.pdf</td>
<td>1037</td>
<td>2009/07/24</td>
<td>GA in simulation</td>
</tr>
<tr>
<td>gaTELEbib.pdf</td>
<td>840</td>
<td>2009/07/27</td>
<td>GA in telecom</td>
</tr>
<tr>
<td>gaTHEORYbib.pdf</td>
<td>2654</td>
<td>2012/09/17</td>
<td>Theory and analysis of GA</td>
</tr>
<tr>
<td>gaTHESESbib.pdf</td>
<td>578</td>
<td>2009/01/07</td>
<td>PhD etc theses</td>
</tr>
<tr>
<td>gaVLSibib.pdf</td>
<td>799</td>
<td>2012/07/16</td>
<td>GA in electronics, VLSI design and testing</td>
</tr>
<tr>
<td>gaUKbib.ps.Z</td>
<td>1998</td>
<td>2008/05/22</td>
<td>GA in United Kingdom</td>
</tr>
<tr>
<td>gaXbib.ps.Z</td>
<td>123</td>
<td>2010/10/22</td>
<td>GA & X-rays new: October 2010</td>
</tr>
</tbody>
</table>

Table A.1: Indexed genetic algorithm special bibliographies available online in directory http://lipas.uwasa.fi/~TAU/reports/report94-1. New updates only as .pdf files.