ANALYSIS OF FINANCIAL TIME SERIES: EXERCISE SHEET 1

- 1. Reconsider the coin tossing example in the note on conditional distributions, where this time the coin is biased such that the probability of head up is 3/4.
 - a) Derive both the unconditional probability distribution of $X = X_1 + X_2$ and the conditional distribution of $X|X_1$.
 - b) Calculate the conditional expectation $E(X|\mathcal{F}_1) = E(X|X_1)$ and verify that the law of iterated expectations holds.
- 2. Consider the general ARCH(q) process $h_t = \omega + \sum_{i=1}^q \alpha_i u_{t-1}^2$ with $\omega > 0$, $\alpha_i \ge 0$ for all $i, \sum_{i=1}^q \alpha_i < 1$, and $u_t | \mathcal{F}_{t-1} \sim N(0, h_t)$. The idea of this exercise is to show that u_t is again white noise, just like for ARCH(1).
 - a) Show that $E(u_t) = 0$. Hint: Use the law of iterated expectations.
 - b) Show that $\operatorname{var}(u_t) = \omega/(1 \sum_{i=1}^q \alpha_i)$. Hint: Show first that repeated application of the law of iterated expectations yields an expression of the form

$$\operatorname{var}(u_t) = \omega \left(1 + \sum_{i=1}^q \alpha_i + \ldots + \left(\sum_{i=1}^q \alpha_i \right)^n \right) + \left(\sum_{i=1}^q \alpha_i \right)^n \left(\sum_{i=1}^q \alpha_i E(h_{t-i}) \right)$$

and take the limit $n \to \infty$.

Alternatively, and simpler, you may wish to write down the AR(q) representation of u_t^2 , apply the expectation operator, and use the stationarity of u_t^2 .

- c) Show that $cov(u_t, u_{t+k}) = 0$ for all $k \neq 0$. Hint: Use the law of iterated expectations.
- 3. The idea of this exercise is to compare the moments of a NID $(0, \sigma^2)$ process with the residuals of an ARCH(1) process. Consider first the m'th moment $M_m = \int_{-\infty}^{\infty} x^m f(x) dx$ of a NID $(0, \sigma^2)$ process with probability density function

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-x^2/(2\sigma^2)}.$$

For our purpose it is practical to substitute $y = x/\sigma$, such that

$$M_m = \frac{\sigma^m}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y^m e^{-y^2/2} \, dy.$$

a) Show that all uneven moments are zero, that is, $M_m = 0$ for m = 2n + 1, n = 0, 1, 2, ..., implying both zero mean and zero skewness.

Hint: Split up the integral into two integrals with limits $0, \pm \infty$ and apply the symmetry property of the integrand.

- b) Show that the variance M_2 of the process is σ^2 . *Hint: Use partial integration* $(\int uv' = uv - \int u'v)$ with u = y and $v' = -ye^{-y^2/2}$.
- c) Show that the kurtosis M_4 of the process is $3\sigma^4$. Hint: Use partial integration and apply your result obtained in b).

Let now $u_t \sim \text{ARCH}(1)$, with $u_t | u_{t-1} \sim N(0, h_t)$, where $h_t = \omega + \alpha u_{t-1}^2$, $\omega > 0$ and $0 \le \alpha < \sqrt{1/3}$.

- d) Show that all uneven moments of u_t are zero: $E(u_t^{2n+1}) = 0$, implying a symmetrical distribution with both zero mean and skewness. *Hint: There is no integration required. Just use the law of iterated expectations, the fact that* u_t *is conditionally normally distributed, and your result from* a).
- e) Show that

$$\mathbf{E}[u_t^4] = 3\frac{\omega^2}{(1-\alpha)^2} \cdot \frac{1-\alpha^2}{1-3\alpha^2},$$

which implies that u_t has a larger kurtosis than a normal distribution with the same variance.

Hint: Show first that n + 1 applications of the law of iterated expectations yield an expression of the form

$$E[u_t^4] = 3\omega^2 \frac{1+\alpha}{1-\alpha} \left(1+3\alpha^2+\ldots+\left(3\alpha^2\right)^n\right) + \left(3\alpha^2\right)^{n+1} E(u_{t-n-1}^4)$$

and take the limit $n \to \infty$.