2.6 Cointegration

Motivation and Definition

Consider the unbiased forward rate hypothe-
sis in the foreign exchange market, according
to which the forward exchange rate of a cur-
rency should equal today’s expectation of the
spot rate one period ahead, that is,

ft — Etst—|—17
where f; and s; denote the logarithm of the
forward and the spot exchange rate respec-
tively. Now rational expectations require that
the forecasting errors

€t .= St4+1 — EtSt-|-1 — St+1 — Jt
are serially uncorrelated with zero mean, in
particular ¢ should be stationary. This ap-
pears to be quite a special relationship, be-
cause both f; and s; are I(1) variables, and
for most cases, linear combinations of I(1)
variables are I(1) variables themselves *.

*Recall that, if z; and y; are I(1), and z; is stationary
then for any a,b(# 0) (i) axt + bz ~ I(1) (ii) usually
ax: + by ~ I(1).
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The preceding example illustrates the con-
cept of cointegration introduced by Engle
and Granger (1987). They consider a set
of economic variables in equilibrium when

Bi1x1t + Boxor + ... + Bnxnt =0

or
Bxy =0

where 8 = (B81,...,0n) and zy = (x14, ..., Tnt)".
The time series of deviations from the long

run equilibrium relationship gx; = 0

et 1= Py

is called the equilibrium error. Clearly, if the
equilibrium relationship has any meaning, the
equilibrium error process must be stationary.

Now the processes {xi:},{xot}...,{znt} are
said to be cointegrated, if they are integrated
but the equilibrium error e; is stationary.
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The general definition of cointegration is:
The components of x; = (x14,...,xn) are
said to be cointegrated of order d, b, denoted
by z; ~ CI(d,b), if

1. All components of x; are integrated of the
same order d.

2. There exists a vector 8= (81,...,8n) =0
such that Bz ~ I(d —b), where b > 0.

Note: The most common caseiszy ~ CI(1,1).

Example: Unbiased forward rate hypothesis

xy = (s441, ft)' is cointegrated of order 1,1
with cointegrating vector 8 = (1, —1) since:
L. sgq1, fr ~I(1), and

2. (1,-1)(s441, ft) = e ~ I1(0).

Note: If 3 is a cointegrating vector, then A\g3
is also a cointegrating vector for any A # 0.
Usually the cointegrating vector is normalized
such that one of the components of 3 is equal

to one.
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Cointegrating regressions

Consider regressing a univariate time series

= (y1,...,y7)" upon a possibly stochastic
regressor ¢ = (x1,...,x7)’, that is,
:5135"‘6, 2(61,...,€T)/,

where nothing is said yet about the statis-
tical properties of y, x and e, except that e

is a residual, that is E(e) = 0, if stationary.
Innocent estimation of 3 by OLS vyields

B = (a'z) 'a'y = ('z) 12 (xB +€)
T -1 T
=B+ (dz) ta'e =5+ (Z xf) - (Z :Utet>
t=1

t=1
1 T
T Zt:l L€t

= .
% Zt=1 x%

Note that, assuming ergodicity and stationarity, the

numerator of the fraction estimates the covariance
between x; and ¢, whereas the denominator estimates
the second moment of z;. Whether 3 is a consistent
estimator of B depends upon the statistical properties

of x; and ¢. We consider 4 cases.

101



Case 1

x1 = ... = xp =const., ¢ stationary with E(¢) = O.
This is the linear statistical model, the most simple
case of OLS. Since z; is non-stochastic, we have

1 T
th Zt: 1 €t

B= B-I—TZt 17— g4

th 13% %(Tfl?%)
T E(e
Tt
So B is a consistent, unbiased estimator of 3.

Case 2
Both x; and ¢ are stationary with E(e;) = 0, then:

Zt 1 Tt€t T—>oo COV(CBt Et)
+ T i i
=0 T Zt 1 xt 7 E(w%)

We note that 8 is still a consistent, though biased,
estimator of 3, unless x; and ¢; are uncorrelated, which
is always the case when x; is weakly exogeneous with
respect to (.

Case 3
x¢+ and y; are cointegrated with ¢ = yt—ﬁa:t stationary:

Lt€t T
B = B—I—TZt L —3 B since th — 0.
TZt 1wt

So A is a consistent, unbiased estimator of 5 no matter
whether x; is correlated with ¢ or not. It can even be
shown that convergence of 8 to 3 is faster than in
the stationary case, which is why 3 is then called a
superconsistent estimator of 3.
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Case 4

x+ and y; are integrated, but not cointegrated,
such that ¢ = y+ — Bxy contains a unit root.
Then

1
ngzl L€t

T 5 does not converge,
T 2t=1%i

because both the numerator and the denom-
inator approach infinity for increasing sample
size T. So (B is not consistent and any regres-
sion line between x+ and y; is spurious!

Even worse, it can be shown that, apply-
ing usual ¢t and F' statistics, that B tends to
appear statistically different from zero, even
though there is no relationship between x4
and y; whatsoever! The main lesson to learn
from this is that it is dangerous to regress
non-stationary variables upon each other, un-
less having checked before that they are coin-
tegrated!
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Cointegration and Common Trends

Consider an arbitrary unit root (or difference
stationary) process

(1 -L)ys = p+ V(L)e.

Then the Beveridge-Nelson decomposition as-
serts that we may decompose any I(1) process
as above into a random walk (with or with-
out drift for u equal or unequal zero) and a
stationary component (not necessarily white
noise), where the random walk component
is referred to as the stochastic trend of the
process.

Let’'s apply this to two I(1) processes y; and

z¢, and check what is required for the result-

ing vector =y = (y¢, 2+)’ to be cointegrated:
Yt = Myt T €yt, 2t = Pt T €t with

ui: = random walk (stochastic trend) in variable 1,

e, — Stationary component of variable 1.
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In order for {y:}, {z:} ~ CI(1,1) we need to find nonzero
values of (31, 8> such that

B1y: + Bozt = B1(pyt + eyt) + Bo(pzt + ezt)
= (Bipyt + Bopzt) + (Breye + Boest)

IS stationary, which requires

B2
,Bl,uyt + /BQMzt =0 or pyt = /B_Mzt-
1

We note that the parameters of the cointegrating vec-
tor must be such that they eliminate the stochastic
trend from the linear combination of the I(1) processes,
which implies that both stochastic trends are identical
up to a constant. This insight by Stock and Watson
(1988) is easily generalized to the case of n variables
by considering the vector representation

Tt = Ut + e,
where x; = (x1¢,...,Tnt) IS the vector of I(1) processes,
we = (pie, ..., une)’ is the vecot of stochastic trends

and e; is an (n x 1) vector of stationary components.
Then cointegration will occur whenever the trend in
one variabel can be expressed as a linear combination
of the trends in the other variables, because then

But = Bipit + ...+ Bupnt = 0
which implies

Bx: = Bu: + Ber = Bex,

such that Bxz; = [e; is stationary.
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Cointegration and Error Correction

Consider two I(1) variables xq and z», for
which the equilibrium relationship x1 = Bxo
holds. Now suppose that the equilibrium is
currently disturbed, x4 > Bzo4, say. In that
case there are three possibilities to restore
equilibium:

1. a decrease in 1 and/or an increase in x»,

2. an increase in 1 but a larger increase in x»,
3. a decrease in xo but a larger decrease in x1.

Such a dynamic may be modelled in an error correction
model as follows:

>
8
=
~
|

— a1(x1 41— Brot—1) + €14, 1 >0
Azp = ap(z14-1—Px2t-1) + €24, ap >0

where €1 ; and ey, are (possibly correlated)
white noise processes and a1 and as may
be interpreted as speed of adjustment para-
meters to the equilibium. Note that validity
of the error correction model above requires
x1,2x> ~ CI(1,1) with cointegrating vector
(1,—-8), since both Ax;; and ¢; ; are assumed
to be stationary!
106



Nothing about this cointegration requirement changes
if we introduce lagged changes into the model:

Azi:= a0 — a1(x14-1 — Brot—1)

p p
+ Z a11(i) Az i + Z a12(2) Axos—i + €14,
Azoy = aso+ as(z1t-1 — Br2s-1)

b b
+ Z a21 (1) Az + Z a22(i) Axot—; + €2y
i—1 i=1

This is because €;; and all terms involving Az, and
Axo; are stationary.

The result, that an error-correction representation im-

plies cointegrated variables, may be generalized to n

variables as follows. Formally the I(1) vector x;

(z1¢,...,xnt) is said to have an error-correction repre-

sentation if it may be expressed as

p
Axy = g+ mxi_1 + Z T Axi_; + €t
1=1

where mg is a (n x 1) vector of intercept terms, =

is a (n x n) matrix not equal to zero, m; are (n X n)

coefficient matrices and ¢; is a (nx1) vector of possibly
correlated white noise.
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Then the stationarity of Axz;_;, :=0,1,...,p
and ¢ implies that

p
mxi_1 = Ax — o — Z T AT _; — €t
i=1
IS stationary with the rows of 7 as cointe-
grating vectors!

It can also be shown that any cointegration
relationship implies the existence of an error-
correction model. The equivalence of coin-
tegration and error-correction is summarized
in Granger’s representation theorem:

et x4+ be a difference stationary vector process.
Then z ~ C(1,1) if and only if there exists
an error-correction representation of xy:

p
Azxy = 7mg+ wri_q1 + Z i Axi_; +e€, mw™HFO
1=1

such that 7z ~ I(0).
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Note that the (n x n) matrix « in the error-
correction representation may be decomposed
into two (n x r) matrices a and 3 as m = o/,
where B’ contains the cointegrating (row) vec-
tors, a contains the (column) vectors of speed
of adjustment parameters to the respective
equilibria, and r < n is the rank of .

Example: For our two-component error cor-
rection model we had

Axyy —a1 o T1t-1 €1t
A p— ’ p— ) )
Tt (sz,t) ( a2 —aQﬁ) (wz,tl) T (62,t)

= TTT-1 + €
; — [ &1 a1 [ —oaa
with m = ( (87%9) —O{QIB) o ( 6% ) (1 _/B)
and rank(w) = 1, since the second row is —g—f

times the first row and the second column is
—03 times the first column, so there is only 1
linearly independent vector involved.
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Error Correction and VAR

Consider again a multivariate difference sta-
tionary series y; = (y1¢,...,ynt)’. It has been
mentioned earlier, that modelling Ay in a
vector autoregression model is inappropriate
if y; is cointegrated. In order to see this
important point, assume that y; follows a
VAR(p) in levels:

p
ye=p+ Y Py +e, €~ NID(O,X).
i1

We shall now show that it is always possible
to rewrite the VAR in levels as a vector error
correction model for the first differences. For
that purpose, introduce = := Yr_; &; — I,
such that

Yy
Ay =p+7yi—1+ > Pi(y—i —ye—1) + &
1=1
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Now, note that
Yt-1 — Yt—i = (Y—1 —yt—2) + (yt—2 —ye—3) + . .. + (Yr—it1 — Yt—i)

1—1
= Z Ay
j=1

such that

p p p 1—1
Z DPi(yYr—i — Yt—1) = — Z Pi(yt—1— Yt—i) = — S: P; ;: Ay
=1 i=1 i=1  j=1

p—1
- — ¢2Ayt—1 - ¢3(Ayt_1 + Ayt—Q) e T cbpz Ayt—j
Jj=1
p—1 p
:Z rz'Ayt—i where [, = — Z ij.
i=1 j=i+1
Therefore,

p—1
Ay = p+ my—1 + Z Ay + €.
i=1
Comparing this with an ordinary VAR in differences,

p—1
Ayi=p+ Y Tilbyi+e

=1
we notice that such a VAR in differences is misspec-
ified (by leaving out the explanatory variable y; 1)
whenever © #*= 0, which is exactly what is required
for y; being cointegrated. Intuitively, for cointegrated
series, the term wy;—1 is needed in order to model how
far the system is out of equilibrium.
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Exogeneity in cointegrated systems

Consider again a two variate cointegrated vector x =
(z1,x2)’, where this time the speed of adjustment pa-
rameter for the first component a7 is zero, such that
Azxz> has to do all of the adjustment to equilibrium:

p p
Az = aio+ Z a11(i)Axy - + Z a12(i) Axot—; + €14,

=1 =1

b b
Azxoy = azo + Z a21(i) Az - + Z a22(2) Axosi + €24
+ ao(z1-1 — Brot—1).
We note that in such a case the marginal distribtution
of 1 contains no information about the paramters of
interest, as and 3. Therefore, x1 is weakly exogeneous
with respect to these paramters, such that estimation
of a» and B can be done based upon the equation for

Ax> alone without reference to the specific model for
Ax.

Also, it is necessary to reinterpret Granger causality in
a cointegrated system. Note that x> does not Granger
cause z1 if both all terms proportional to Az,;_; van-
ish and x1 does not respond to deviations from long-
run equilibrium (because this involves a term propor-
tional to xz2:-1). So block exogeneity of x;1 requires
both a12(i) = 0 for all ¢t = 1,...,p and a1 = O, that
IS weak exogeneity of x1. Therefore, cointegration
between two I(1) processes implies always Granger
causality in at least one direction!
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Cointegration and Rank

For notational convenience, consider the sim-
ple error correction model

Ay = my;—1 +e&, €~ NID(0,X)

where y; = (y1¢,...,ynt)’ as before.

We shall show in the following that we can
use the rank of  in order to determine whether
Yyt IS cointegrated. More precisely, the num-
ber of cointegrating relationships, or cointe-
grating vectors, is given by the rank of .
There are 3 cases.

1. rank(w) = 0 which implies = = 0.

T herefore the model reduces to Ay; = €4,
thatis all y; ~ I(1) since Ay = ¢ ~ I1(0),
and there is no linear combination of the
y+; S Which is stationary because all vec-
tors 3 with the property By; ~ I(0) have
zero entries everywhere. So all compo-
nents of y; are unit root processes and
IS not cointegrated.
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2. rank(m) = r with 1 <r < n.
Consider first the case rank(w) = 1, that is, there
IS only one linearly independent row in m, which
implies that all rows of = can be written as scalar
multiples of the first. Thus, each of the {Ay;}
sequences can be written as

Ay = —(m11y1t—1+m1oy2 -1+ . - FT1nYnt—1)F€ir.

7T1j
Hence, the linear combination

14
L (Ayi—eir)

(m11y1—1+moy2 -1+ . FT1nYnt—1) =

is stationary, since both Ay;; and ¢;; are stationary.

So each row of # may be regarded as cointegrat-
ing vector of the same cointegrating relationship.

Similarly, if rank(w) = r, each row may be written
as a linear combination of r linearly independent
combinations of the {y;} sequences that are sta-
tionary. That is, there are r cointegrating rela-
tionships (cointegrating vectors).

3. rank(mr) =n = the inverse matrix 7~ exists.
Premultiplying the error correction model with
n~1 yields then

T Ay = y1 + 1 e

such that all components of y; are stationary,
since both 7~ !Ay; and n~l¢ are stationary. In
particular, y: is not cointegrated.
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Johansen’s Cointegration tests

Recall from introductory courses in matrix
algebra that the rank of a matrix equals the
number of its nonzero eigenvalues, also called
characteristic roots. Johansen’s (1988) test
procedure exploits this relationship for iden-
tifying the number of cointegrating relations
between non-stationary variables by testing
for the number of significantly nonzero eigen-
values of the (m x m) matrix 7 in

p
Axy =7+ i1 + Z T, AT _; + €.
i=1
Specifically, the Johansen cointegration test
statistics are

m

1. Atrace(r) = =T ) log(1 —1};), and
=1

2. Amax(r,r+ 1) = —-Tlog(1l — >‘r+1)v

referred to as trace statistics and maximum
eigenvalue statistics, where T is the number
of usable observations and ); are the esti-
mated characteristic roots obtained from the
estimated © matrix in decreasing order.
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The first test statistic

™m
Atrace(r) = =T Z log(1 — ;)
1=1

tests the null hypothesis of less or equal to
r distinct cointegrating vectors against the
alternative of m cointegrating relations, that
IS a stationary VAR in levels. Note that A¢race
equals zero when all A; = 0. The further the
estimated characteristic roots are from zero,
the more negative is log(1—2X;) and the larger

IS Atrace-

T he second test statistic

Amax(r,7 4+ 1) = —T'log(1 — A, 41)
— Atrace("“) — )\trace("“ + 1)

tests the null of r cointegrating vectors against
the alternative of r+ 1 cointegrating vectors.
Adain Amax Will be small if Xr+1 IS small.

Critical values of both the Atfgce and Amax
statistics are obtained numerically via Monte

Carlo simulations.
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Example. Consider Helsinki, Oslo and Stock-
holm stock indexes (see figure).

Nordic Stock Indices
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We observe that especially Stockholm and
Oslo seem to follow each other rather closely,
so the series might well be cointegrated.
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In the first step we test the integration of the
three stock index shares price series. (EViews
output). ADF with five lags.

Stock ADF Test
Exchange Statistic

Finland -2.50
Norway -0.96
Sweden -1.24

Finland -12.0
Norway -10.8
Sweden -11.1

1Y% Critical Valuex -3.4418
5% Critical Value -2.8658
10%, Critical Value -2.5691

*MacKinnon critical values for rejection
of hypothesis of a unit root.

None of the test statistics for the indexes is
significant. Hence all (logarithmic) stock in-
dexes are integrated, and checking the first
differences reveals that each index is inte-
grated of order one.
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Next we test whether the series are cointe-
grated using Johansen’s likelihood ratio tests.

Included observations: 736 after adjusting for endpoints
Test assumption: Linear deterministic trend

Series: LFIN LNOR LSWE

Lags interval (in first differences): 1 to 5

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 5 Percent 1 Percent
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value

None *x* 0.046420 43.04799 29.68 35.65
At most 1 0.010303 8.064672 15.41 20.04
At most 2 0.000601 0.442435 3.76 6.65

*(*xx) denotes rejection of the hypothesis at 5%(1%) level
Trace test indicates 1 cointegrating equation(s)
at both 5% and 1/ levels

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max-Eigen 5 Percent 1 Percent
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value

None *x* 0.046420 34.98331 20.97 25.52
At most 1 0.010303 7.622238 14.07 18.63
At most 2 0.000601 0.442435 3.76 6.65

*(**) denotes rejection of the hypothesis at 5%(1%) level
Max-eigenvalue test indicates 1 cointegrating equation(s)
at both 5% and 1} levels

Both test results suggest that there is one
cointegrating vector.
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Note: Whether or not significant cointegration rela-
tions are found depends crucially upon the assump-
tions regarding the possible presence of intercepts and
deterministic trends in the variables and/or the cointe-
gration equation. Refer to Seppo Pynnonen’'s lecture
notes or the EViews manual for further details.

Below are 8 and & with the cointegrating coefficient
for Sweden scaled to one.

Normalized cointegrating coefficient (std.err. in parentheses)

LSWE LNOR LFIN
1.000000 -1.052674 -0.032285
(0.04941) (0.05263)

Adjustment coefficients (std.err. in parentheses)
D(LSWE) -0.025430

(0.01477)
D(LNOR) 0.031677
(0.01278)
D(LFIN) -0.056941
(0.01838)

Looking at the estimates of the cointegrating vector
B, it seems that the Finnish series is not statistically
significant in the cointegration relation while the coin-
tegration relation beween Sweden and Norway could
well be 8 = (1,—1)". This suggests testing the re-
striction 8 = A(1,—1,0)" which can be done using
likelihood ratio tests.
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