
5. Event-Study Analysis (Ch 4 in CLM)

The effect of an economic event on the value

of a firm. Typical events are firm-specific

events like earnings, investment, mergers and

acquisitions, issues of new debt or equity,

stock splits, etc. announcements, or econ-

omy wide events like inflation, interest rate,

consumer confidence, trade deficient, etc. an-

nouncements. Also impacts of announce-

ments in changes of regulatory environments

or legal-liability cases are events that may af-

fect the firm value.

Event studies have a long history, Dolley (1933)∗

investigated the impact of stock splits.

∗Dolley, J. (1933). Characteristics and procedure of
common stock split-ups. Harvard Business Review,
316–326. Other important papers are Brown, S. and
J. Warner (1983) Journal of Financial Economics,
8, 205–258, and (1985) Journal of Financial Eco-
nomics, 14, 3–31. Boehmer, E. J. Musumeci, and
A. Poulsen (1991). Journal of Financial Economics,
30, 253–272.
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5.1 Outline of an event study (CLM, pp. 151–152)

1. Event definition: The event of interest and the
period over which the related security prices will
be examined—event window.

2. Selection criteria for inclusion of a given firm in
the study. Availability of data, listing in particular
stock exchange, membership in a specific indus-
try, etc.

3. Normal and abnormal returns

ε∗it = Rit − E[Rit|Xt],

where ε∗it, Rit, and E[Rit|Xt] are the abnormal,
actual, and normal returns, respectively, and Xt

is the conditioning information for normal perfor-
mance. Two common choices for E[Rit|Xt] are
the constant-mean-return (E[Rit|Xt] = E[Rit] =
µi)and the market model, with Xt the market re-
turn Rmt, so that E[Rit|Xt] = αi + βiRmt.

4. Estimation procedure. The parameters of the
normal performance are estimated using estima-
tion window, which is set before the event win-
dow. In a daily data the estimation sample period
is typically 120 or 250 trading days. Usually event
period is not included.(
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5. Testing procedure. A (statistically) significant
abnormal return indicates a response of the event
on returns. Usually a version of t-test is employed.

6. Empirical results. The basic empirical results,
and diagnostics should be presented (distribution
statistics of the abnormal returns, and especially
outliers should be checked)

7. Interpretation and conclusions. Information leaks,
adjustment process (immediate, gradual).

Example. (CLM pp. 152–167)

1) Event definition: Information content of quarterly

earnings announcements. Earnings surprise can be

defined with respect to the market expectations (e.g.

analysts mean prediction). Three categories: good

news (exceed predictions at least 2.5%), no news (as

expected), bad news (below expectations at least 2.5%).

Event window ±20 days around the announcement

day. Thus the length of event window is 41 days.

2) Selection criteria: 30 firms in the Dow Jones Indus-

trial Index over the five-year period from January 1988

to December 1993, total of 600 announcements.

3) Normal and abnormal returns. Market model re-

turns.

4) Estimation: 250 days estimation window.
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5.2 Models for Measuring Normal Performance

Statistical models: Constant-mean-model, mar-
ket model, multifactor models

Economic models: CAPM family of models,
APT family of models

Statistical Models

Conventional assumption:

(A1) Let Rt be an N × 1 vector of asset
returns for calendar time period t. Rt is in-
dependently multivariate normally distributed
with mean vector µ and covariance matrix Ω
for all t.

Constant-Mean-Return Model

(2) Rit = µi + ξit

with E[ξit] = 0 and Var[ξit] = σ2
ξi

.

Brown and Warner (1980, 1985): this model
often yields results similar to those of more
sophisticated.
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Market Model

(3) Rit = αi + βiRmt + εit

with E[εit] = 0 and Var[εit] = σ2
εi

, where Rmt
is period-t market return (e.g. S&P500 in
US markets).

Note. 1) If βi = 0 one gets the constant-mean-model.
2) If βi = 1 and αi = 0 such that ε∗it = Rit − Rmt,
one obtains market-adjusted-model. In this case no
estimation period is necessarily needed!

Warning. Imposing wrong restrictions may arise bias!

Other possibilities are different kinds of multi-
index (multifactor) models

(4) Rit = βi,0 + βi1I1,t + · · ·+ βipIp,t + ηit

with E[ηit] = 0 and Var[ηit] = σ2
ηi

, where Ij,t
are some market factors (e.g., industry re-
turns), j = 1, . . . , p.

Note. The market model and constant-mean-
model are special cases of the multi-index
model.

In practice, however, the gains from employ-
ing multifactor models for event studies are
limited.
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Sensitivity to Normal Return Model

Use of the market model reduces the vari-

ance of the abnormal return compared to the

constant-mean-model, implying more power-

ful tests. This is because

(5) σ2
εi

= (1− r2
im)Var[Rit]

where rim = Corr(Rit, Rmt).

Exercise. Verify the above formula.

For the constant mean model

(6) σ2
ξi

= Var[Rit − µi] = Var[Rit].

Thus

(7) σ2
εi

= (1− r2
im)σ2

ξi
≤ σ2

ξi

because 0 ≤ r2
im ≤ 1.

Example (CLM, p. 163).
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Economic Models

Economic models restrict the parameters of

statistical models to provide more constrained

normal return models. Most important of

these are CAPM and APM. No practical ad-

vantages relative to the unrestricted market

model found in event studies. Thus employed

rarely.

Measuring and Analyzing Abnormal Returns

Let τ denote the time index in the event

study.

Event date: τ = 0

Event window: τ = T1 + 1 to τ = T2.

Estimation window τ = T0 + 1 to τ = T1.

Post-event window: τ = T2 + 1 to τ = T3.

The window lengths: L1 = T1 − T0, L2 =

T2 − T1 and L3 = T3 − T2.
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Estimation of the Market Model

The market model in matrix form is

(8) Ri = Xiθi + εi

where Ri = (Ri,T0+1, . . . , Ri,T1
)′: (L1 × 1),

Xi = (1,Rm): (L1 × 2) with 1 = (1, . . . ,1)′: (L1 × 1),

and Rm = (Rm,T0+1
, . . . , Rm,T1

)′: (L1 × 1),

θi = (αi, βi)′: (2× 1),

εi = (εi,T0+1, . . . , εi,T1
)′, and the prime denotes the trans-

pose.

OLS estimators

θ̂i = (X′iXi)
−1X′iRi

σ̂2
εi

=
1

L1 − 2
ε̂′iε̂i

ε̂i = Ri −Xiθ̂i(9)

Var[θ̂i] = (X′iXi)
−1σ2

εi

V̂ar[θ̂i] = (X′iXi)
−1σ̂2

εi
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5.3 Regression based Event Study∗

Consider first only a single event day, that is, L2 = 1.
If an event affects the price of stock i by imposing
a return effect δi on the event date, we can model
the case by introducing a dummy variable Dτ = 1 for
τ = 0 (the event day), and Dτ = 0 otherwise. Then

(10) Ri,τ = αi + δiDτ + βiRm,τ + εi,τ .

Then the abnormal returns are

(11) ε∗i,τ = Ri,τ − (αi + βiRm,τ) = εi,τ + δiDτ

with

(12) E[ε∗i,τ |Rm,τ ] = δiDτ

Basically the no-event-effect null hypothesis then is

(13) H0 : δi = 0,

which can be tested with a traditional t-test.

If L2 > 1, we simply introduce L2 dummy variables
Di1, . . . , DiL2

for the return effects δi1, . . . , δiL2
on days

T1+1, T1+ 2, . . . , T2. The no-event-effect null hypoth-
esis then is

(14) H0 : δi1 + . . .+ δiL2
= 0,

which can be tested with a traditional F -test for linear

restrictions.

∗Pynnönen, Seppo (2005). On regression based event study.
Acta Wasaensia No. 143, 327-354
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5.4 Statistical Properties of Abnormal Returns

Usually return data is too noisy to allow in-

ference of event effects based upon a single

stock, which necessitates aggregation of ab-

normal returns across securities.

Additionally, uncertainty about when the event

information has entered the market often re-

quires aggregation of abnormal returns over

time.

In order to do that, we need the distributional

properties of the abnormal returns. The esti-

mated abnormal returns in the event window

are

(15) ε̂∗i = R∗i − α̂i1− β̂iR
∗
m = R∗i −X∗i θ̂i,

where R∗i = (Ri,T1+1, . . . , Ri,T2
)′: (L2 × 1),

R∗m = (Rm,T1+1, . . . , Rm,T2
)′: (L2 × 1), and

X∗i = (1,R∗m): (L2 × 2). θ̂i was obtained in

the estimation period as θ̂i = (X′iXi)
−1X′iRi.
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Now E[Ri|X∗i ] = X∗i θ̂i and by unbiasedness
of OLS estimators and because θ̂i is inde-
pendent of X∗i by assumption (A1), we get
(under the null hypothesis of no event effect)

E[ε̂∗i |X
∗
i ] = E[R∗i −X∗i θ̂i|X

∗
i ] = 0(16)

Vi = E[ε̂∗i ε̂
∗′
i |X

∗
i ](17)

= Iσ2
εi

+ X∗i (X
′
iXi)

−1X∗
′
i σ

2
εi
,

where I is the L2 × L2 identity matrix.

Under the null hypothesis of no event-effect
(and assumption A1)

ε̂i ∼ N(0,Vi).

Note.
1) Vi is estimated (denoted as V̂i) by replac-
ing σ2

εi
with the estimator σ̂2

εi
, defined in(9).

2) It can be shown that the abnormal re-
turns are asymptotically independent, that is,
Vi → Iσ2

εi
for infinitely long estimation win-

dows (L1 → ∞). In finite estimation win-
dows, however, Iσ2

εi
will always underestimate

the true variance of abnormal returns.
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5.5 Aggregation over Time

Let T1 < τ1 ≤ τ2 ≤ T2. Cumulative Abnormal
Return, CAR(τ1, τ2) is defined as

(18) ĈARi(τ1, τ2) =
T1+τ2∑

j=T1+τ1

ε̂∗ij = γ ′ε̂∗i ,

where γ is an L2-vector with ones in positions
τ1 − T1 to τ2 − T1 and zeros elsewhere.

Then under the null hypothesis of no event
impact

(19) ĈARi(τ1, τ2) ∼ N
(
0, σ2

i (τ1, τ2)
)

where
(20)

σ2
i (τ1, τ2) = Var[ĈARi(τ1, τ2)] = γ ′Viγ.

with Vi defined in (17). In other words, to
obtain the variance of the cumulative abnor-
mal returns within the estimation window,
we must sum up all elements of Vi and not
just its diagonal elements, as we would if
the ε̂∗ij were independent (and is the case for
L1 →∞).

Exercise. Show that the variance is of this form.
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A useable test statistic for the null hypothesis

of no event impact for security i is then the

Standardized Cumulative Abnormal Return

(21) ŜCAR(τ1, τ2) =
ĈARi(τ1, τ2)

σ̂i(τ1, τ2)

with

(22) σ̂i(τ1, τ2) =
√
γ ′V̂iγ.

Under the null hypothesis of no-event-effect,

the standardized CAR has a t-distribution with

L1−2 degrees of freedom (for large L1 ap-

proximately N(0,1)).

Note. Using the standardized SCAR defined

in (21) and the F -test for assessing the linear

restriction (14) in the regression approach

will always lead to the same conclusion, since

both the t-test based upon (21) and the F -

test to assess (14) produce the same p-values.
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5.6 Aggregation across Securities

Average abnormal return:

(23) ε̄∗ =
1

N

N∑
i=1

ε̂∗i

with variance-covariance matrix

(24) Var[ε̄∗] = V =
1

N2

N∑
i=1

Vi

provided that the abnormal returns are uncor-

related across securities, that is, there must

not be any overlap in the event windows of

any two securities. The case of overlapping

event windows (clustered events) will be dis-

cussed later.
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Averaging security CARs yields

(25)

CAR(τ1, τ2) = γ ′ε̄∗ =
1

N

N∑
i=1

ĈARi(τ1, τ2)

and

(26) Var[CAR(τ1, τ2)] = σ̄2(τ1, τ2) = γ ′Vγ

or equivalently

(27)

σ̄2(τ1, τ2) =
1

N2

N∑
i=1

σ2
i (τ1, τ2) =

σ2
A(τ1, τ2)

N
,

where

(28) σ2
A(τ1, τ2) =

1

N

N∑
i=1

σ2
i (τ1, τ2)

is the average variance over the N securities,

that is, the average of the variances σ2
i (τ1, τ2)

defined in (20).
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Inference about the cumulative abnormal re-

turns (under the null hypothesis of no effect)

can be based on

(29) CAR(τ1, τ2) ∼ N
(
0, σ̄2(τ1, τ2)

)
which gives a test statistic for testing the null

hypotesis of no event impact

(30) J1 =
CAR(τ1, τ2)√

ˆ̄σ2(τ1, τ2)
∼ AN(0,1),

where

(31)

ˆ̄σ2(τ1, τ2) =
1

N2

N∑
i=1

σ̂2
i (τ1, τ2) =

σ̂2
A(τ1, τ2)

N
,

σ̂i(τ1, τ2) has been defined in (22), and J1 ∼
AN(0,1) means that the distribution of J1 is

asymptotically normal.
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A second alternative is to average the stan-

dardized cumulative abnormal returns (21)

across securities in order to obtain

(32) SCAR(τ1, τ2) =
1

N

N∑
i=1

ŜCARi(τ1, τ2).

with variance

(33) Var
[
SCAR(τ1, τ2)

]
=

L1 − 2

N(L1 − 4)
.

assuming cross-sectionally independent events.

This yields the test statistics∗

(34)

J2 =

(
N(L1 − 4)

L1 − 2

)1
2

SCAR(τ1, τ2) ∼ AN(0,1).

under the null hypothesis of no event effect.

Usually J2 is more powerful than J1 (detect-

ing abnormal returns more easily) and should

therefore be preferred in empirical work.

∗Patell (1976), Journal of Accounting and Research
14, 246–276.
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5.7 Isolating the Mean Effect

So far the null hypothesis has been that the
event has no impact on the behavior of the
return whatsoever. Both a mean effect and
a variance effect violate this hypothesis.

If we are interested in the mean effect only,
the analysis must be expanded to allow for
changing variances. A popular way to do this
is to estimate the cross-sectional variance of
the (standardized) cumulative abnormal re-
turns within the event window in order to
obtain for their cross-sectional averages

(35)

V̂ar
[
CAR(τ1, τ2)

]
=

1

N2

N∑
i=1

(
CARi(τ1, τ2)−CAR(τ1, τ2)

)2

and (Boehmer et al., 1991)∗

(36)

V̂ar
[
SCAR(τ1, τ2)

]
=

1

N2

N∑
i=1

(
SCARi(τ1, τ2)−SCAR(τ1, τ2)

)2
.

Exercise. Find a rationale for these variance estima-

tors. Discuss assumptions behind the validity of these

estimators
∗Boehmer E., Musumeci J. and Poulsen A. (1991).
Journal of Financial Economics 30, 253-272.
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Replacing ˆ̄σ2(τ1, τ2) with (35) in (30) and us-
ing the cross-sectional estimator (36) instead
of (33) in (34) yields the new test statistics
(37)

J ′1 =
N ·CAR(τ1, τ2)√∑N

i=1

(
CARi(τ1, τ2)−CAR(τ1, τ2)

)2

and
(38)

J ′2 =
N · SCAR(τ1, τ2)√∑N

i=1

(
SCARi(τ1, τ2)− SCAR(τ1, τ2)

)2
,

both of which are asymptotically standard
normally distributed under the null hypoth-
esis of no event effect upon the return level
(ignoring changes in variance).

J ′1 is easier to calculate than J ′2, because it
circumvents the calculation of V̂i, but it is
less powerful. Also the assumption of equal
variances in the cross section needed in the
derivation of (35) and (36) is more likely to
hold for the standardized CAR, which is why
J ′2 should be preferred over J ′1 in empirical
work.
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5.8 Inferences with Clustering

The basic assumption in the aggregation over
securities is that individual securities are un-
correlated in the cross section. This is the
case if the event windows over different se-
curities do not overlap in calendar time.

If they do, the correlation should be taken
into account.

The easiest way is to aggregate the individual
securities with overlapping event windows to
equal weighted portfolios and then apply the
above standard event study analysis. That
is, apply the t-test for the standardized CAR
defined in (21) or the equivalent F -test in a
dummy regression in order to test the null
hypothesis (14) on the portfolio, as if it was
a single security.

This approach, however, lacks power as com-
pared to an analysis without aggregation into
an artificial portfolio of abnormal returns, which
we shall turn to on the next slide.
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Correcting for Cross-Sectional Correlation∗

When the abnormal returns are correlated in

the cross-section, the variance of the average

standardized CAR (33) becomes

(39)

Var
[
SCAR(τ1, τ2)

]
=

L1 − 2

N(L1−4)
· (1+(N−1)ρ̄),

where ρ̄ denotes the average cross-sectional

correlation between the assets abnormal re-

turns.

This yields the modified Patell-statistics

(40)

J∗2 =SCAR(τ1, τ2)

/√
L1 − 2

N(L1−4)
·(1+(N−1)r̄)

with r̄ denoting the average cross-sectional

correlation coefficient of abnormal returns in

the estimation period. J∗2 is again asymp-

totically standard normally distributed under

the null hypothesis of neither a mean nor a

variance effect.
∗Kolari and Pynnönen (2010), Review of Financial Studies 23,
3996–4025
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If we wish to test for a mean effect only, also

the cross-sectional variance estimators (35)

and (36) need to be scaled with (1+(N−1)ρ̄).

Additionally, the variance-covariance matrix

of the average abnormal returns (24) be-

comes

(41) Var[ε̄∗] = V/(1− ρ̄),

such that the new test statistics for estab-

lishing a mean effect ignoring variance effects

becomes

(42) J ′∗2 = J ′2 ·
√

1− r̄
(1+(N−1)r̄)

with J ′2 defined in (38).

Again, this statistic is asymptotically stan-

dard normally distributed under the null hy-

pothesis of no event effect upon the return

level.
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5.9 Nonparametric Tests

The advantage of nonparametric approach is
that it is free of specific assumptions con-
serning the return distribution. Common non-
parametric tests are the sign test and the
rank test.

The Sign Test

The sign test is based on the sign of the
abnormal return.

Assumptions:
(1) Independence: abnormal returns are independent

accross securities,

(2) Symmetry: positive and negative returns are equally

likely under the null hypothesis of no event effect.

Let p = P (CARi ≥ 0), then if the research
hypothesis is that there is a positive return
effect of the event the statitical null and al-
ternative hypotheses are

(43) H0 : p ≤ 0.5 versus H1 : p > 0.5
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Let N be the total number of assets and let

N+ be the number of assets with positive cu-

mulative abnormal returns within the event

window. Then a statistic for testing the null

hypotesis H0 of no event effect can be for-

mulated as

(44) J3 =

[
N+

N
− 0.5

]
N

1
2

0.5
∼ AN(0,1).

Large absolute values of J3 imply rejection of

H0.

Exercise. Can you derive a small sample

test for the null hypothesis? Using the Cen-

tral Limit Theorem, try to justify the asymp-

totic distribution result of J3. Hint: De-

fine random variables Yi such that Yi = 1,

if the CARi > 0 and Yi = 0 otherwise. Then

N+ =
∑N
i=1 Yi.
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A Rank Test

A weakness of the the sign test is that it may

not be well defined if the (abnormal) return

distribution is skewed, i.e. if P [ε∗it ≥ 0|H0] 6=
P [ε∗it < 0|H0].

The ank test is a possible choice which allows

for nonsymmetry.

Consider only the case for testing the null

hypothesis that the event day abnormal re-

turn is zero, that is, the event window be-

comes our estimation period and we wish to

test whether the event had an impact on day

τ = 0.
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The rank test is as follows:

Consider a sample of L2 abnormal returns for

each of N securities. Order the returns from

smallest to largest, and let Ki,τ = rank(ε̂∗i,τ)

be the rank number (i.e. Ki,τ ranges from 1

to L2).

Under the null hypothesis of no event im-

pact the abnormal return should be an ar-

bitrary random value, and consequently ob-

tain an arbitrary rank position from 1 to L2.

That is each observation should take each

rank value equally likely, i.e., with probabil-

ity 1/L2. Consequently the expected value

of Ki,τ at each time point τ and for each

security i under the null hypothesis is

(45)

µK = E[Ki,τ ] =
L2∑
j=1

jP (Ki,τ = j) =
1

L1

L2∑
j=1

j =
1

2
(L2 + 1).
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and variance

(46) Var[Ki,τ ] =
L2∑
j=1

(j − µK)2P (Ki,τ = j).

A test statistic for testing the event day (τ =

0) effect, suggested by Corrado (1989)†, is

(47) J4 =
1
N

∑N
i=1

(
Ki,0 − L2+1

2

)
s(L2)

,

where

(48)

s(L2) =

√√√√ 1

L2

T2∑
τ=T1+1

(
1

N

N∑
i=1

(
Ki,τ −

L2 + 1

2

))2

Under the null hypothesis J4 ∼ AN(0,1).

Typically nonparametric tests are used in con-

juction with parametric tests.

†Corrado, C. (1989). A nonparametric test for abnor-
mal security price performance. Journal of Financial
Economics, 23, 385–395.
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5.10 Cross-Sectional Models

Here the interest is in the magnitude of as-
sociation between abnormal return and char-
acteristics specific to the observed event.

Let
y: N × 1 vector of CARs
X: N ×K matrix of K − 1 characteristics
(The first colum is a vector of ones for the
intercept term).

Then a cross-sectional (linear) model to ex-
plain the magnitudes of CARs is

(49) y = Xθ + η,

where β is a K×1 coefficient vector and η is
an N × 1 disturbance vector.

OLS estimators

(50) θ̂ = (X′X)−1X′y

which is consistent (i.e., plim θ̂ = θ) if E[X′η] =
0 (i.e., residual are not correlated with the
explanatory variables).
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(51) Var[θ̂] = (X′X)−1σ2
η

Replacing σ2
η by its consistent estimator

(52) σ̂2
η =

1

N −K
η̂′η̂

where η̂ = y−Xη̂, makes possible o calculate

standard errors of the regression coefficients

and construct t-test to make inference on θ-

coefficients.

In financial markets homoscedasticity is a ques-

tionable assumption. This is why it is usually

suggested to use White’s heteroscedasticity-

consistent standard errors of θ-estimates. These

are obtained as square roots from the main

diagonal of

(53)

V̂ar[θ̂] =
1

N
(X′X)−1

 N∑
i=1

xix
′
iη̂

2
i

 (X′X)−1

These are usually available in most econo-

metric packages (e.g. in EViews by choosing

an appropriate option).
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Newey and West (1987) have proposed a

more general estimator that is consistent of

both heteroscedasticity and autocorrelation.

Again this is an option e.g. in EViews and

many other (econometric) packages. Note,

however, that this may be used only for time

series regression. Not for cros-sectional re-

gression!

For discussion on studies applying cross-sectional

models in conjunction of event studies see

CLM p. 174.
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5.11 Power of Tests

The goodness of a statistical test is its ability

to detect false null hypothesis. This is called

the power of the test, and is technically mea-

sured by power function, which depends on

the parameter values under the H1 (in the

case of abnormal returns, δ)

(54) πα(δ) = Pδ[reject H0],

where α denotes the size of the test (i.e.,

the significance level which usually is 1% or

5%), and Pδ[·] denotes the probability as a

function of δ.

Thus the power function gives the probability

to reject H0 on different values of the tested

parameter (δ).
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Example. Consider the J1 test and test the event day abnormal
return (τ1 = −1 and τ2 = 0). Furthermore, assume for simplicity
that the market model parameters are known with σ2

A(τ1, τ2) =
0.0016. Then the power depends on the sample size N , the level
of significance δ and the magnitude of the (average) abnormal
return δ. Fix α = 0.05. The two-sided test, i.e.,

H0 : δ = 0 vs H1 : δ 6= 0

has the power function

π.05(δ) = Pδ[J1 < −z.025] + Pδ[J1 > z0.25].

The distribution of J1 depends on δ such that

E[J1] =
δ
√
N

σA(τ1, τ2)
≡ µδ.

Thus

J1 ∼ N(µδ,1).
Note that J1 − µδ ∼ N(0,1).

The power function is then

π.05(δ) = P [J1 < −z.025] + P [J1 > z.025]

= P [J1 − µδ < −z.025 − µδ] + P [J1 − µδ > z.025 − µδ]

= Φ(−z.025 − µδ) + (1−Φ(z.025 − µδ)),

where Φ(·) is the cumulative distribution function (CDF) of the

standardized normal distribution, N(0,1).

Below are graphs of the power function for sample sizes N =

10,20, and50
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Figure. Power function of the J1 test at the 5% significance

level for sample sizes 1, 10, 20 and 50.

We observe that the smaller the effect is the larger the sample

size must be in order for the test statistic to detect it. Especially

for N = 1 (individual stocks) the effect must be relatively high

before it can be statistically identified.

The important factor affecting the power is the parameter µδ =

δ
√
N/σA, which is a kind of signal-to-noise ratio, where δ is the

amount of signal and σA/
√
N is the noise component, which

decreases as a function of the sample size (number of events).
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5.12 Further Issues

Role of the Sampling Interval

The interval between adjacent observations

constitute the sampling interval (minutes, hour,

day, week, month). If the event time is known

accurately a shorter sampling interval is ex-

pected lead higher ability to identify the event

effect (power of the test increases).‡

Use of intraday data may involve some com-

plications due to thin trading, autocorrela-

tion, etc. So the benefits of very short inter-

val is unclear.

‡For an empirical analysis/example, see Morse D.
(1984). An econometric analysis of the choice of
daily versus monthly returns in tests of information
content. Journal of Accounting Research, 22, 605–
623.
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Inferences with Event-Date Uncertainty

Sometimes the exact event date may be diffi-

cult to identify. Usually the uncertainty is of

the whether the event information published

e.g. in newspapers was available to the mar-

kets already a day before.

A practical way to accommodate this uncer-

tainty is to expand the event window to two

days, the event day 0 and next day +1. This,

however, reduces the power of the test (extra

noise is incorporated to the testing).

Possible Biases

Nonsynchronous and thin trading: Actual time

between e.g. daily returns (based on closing

prices) is not exactly one day long but irreg-

ular, which is a potential source of bias to

the variance and correlation estimates.
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