- 1. Let $P: \Omega \to \mathbb{R}$ be a probability measure and $A, B \subset \Omega$.
 - a) Show that P(A^C) = 1 − P(A). Hint: Note that the sample space may be written as the union of any set with its complement, that is Ω = A ∪ A^C, and use the fact that the intersection of any set with its complement is the empty set, that is A ∩ A^C = Ø, such that you may apply (P3).
 - b) Show that $P(\emptyset) = 0$. Hint: Note that $\Omega^C = \emptyset$ and apply a).
 - c) Show that P(A∪B) = P(A) + P(B) P(A ∩ B). *Hint:* Note that A∪B and B may be written as unions of non-intersecting sets as shown below and apply (P3):

$$A \cup B = A \cup (A^C \cap B), \qquad B = (A \cap B) \cup (A^C \cap B).$$

2. Let $\mathcal{F} = \{F_1, \ldots, F_n\}$ be any algebra.

- a) Show that the empty set \emptyset is always contained in this algebra. *Hint: Note that* $\emptyset = \Omega^C$ and use (A2).
- b) Show that for any F_i and F_j contained in \mathcal{F} (that is, $F_i, F_j \in \mathcal{F}$), the intersection of F_i and F_j will be contained in \mathcal{F} as well (that is, $F_i \cap F_j \in \mathcal{F}$). *Hint: Note that* $(F_i \cap F_j)^C = F_i^C \cup F_j^C$ and apply (A2),(A3).
- 3. A stock price process $S = \{S(t) : t = 0, 1, 2\}$ starts with $S_0 = 30$ \$. After that, the stock price is equally likely to appreciate by 30\$, depreciate by 30\$, or stay constant. A stock price of 0\$ is equally likely to appreciate by 30\$ or stay constant.
 - a) Draw the corresponding information tree containing all possible stock prices S_t and transition probabililities $P(S_t|S_{t-1})$ for t = 0, 1, 2.
 - b) Find the algebras \mathcal{F}_t and their generating partitions \mathcal{P}_t reflecting the maximum information available at t = 0, 1, 2. *Hint: It's easiest to first find the generating partitions* \mathcal{P}_t and to construct the corresponding algebras \mathcal{F}_t afterwards. \mathcal{F}_2 is pretty long. You don't have to write it down explicitly, just indicate how you would construct it.

- c) Use the law of total probability in order to find the probability densities and unconditional expectations of both S_1 and S_2 .
- d) Calculate the conditional expectations $E(S_2|\mathcal{F}_t)$ for t = 0, 1, 2.
- e) Verify that $E(S_2|\mathcal{F}_0) = E(E(S_2|\mathcal{F}_1)|\mathcal{F}_0).$
- f) Is S any of the following: a martingale, a supermartingale, or a submartingale? Why so?