
2.3 Exogeneity and Causality

Consider the following extension of the VAR-

model (multivariate dynamic regression model)

yt = C+
p3
i=1

AIiyt−i+
p3
i=0

BIixt−i+ 6t,

where p + 1 ≤ t ≤ T , yIt = (y1t, . . . , ymt), C

is an m × 1 vector of constants, A1, . . . ,Ap
are m ×m matrices of lag coe±cients, xIt =
(x1t, . . . , xkt) is a k×1 vector of (possibly sto-
chastic) regressors, B0,B1, . . . ,Bp are k ×m
coe±cient matrices, and 6t is an m×1 vector
of errors having the properties

E(6t) = E{E(6t|Yt−1,xt)}= 0

and

E(6t6
I
s) = E{E(6t6Is|Yt−1,xt)}=

l
§6 t = s
0 t W= s,

where

Yt−1 = (yt−1,yt−2, . . . ,y1).
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We can compile this in matrix form (exercise)

Y = XB+U,

where

Y =

⎛⎜⎝y
I
p+1
...
yIT

⎞⎟⎠ , X=

⎛⎜⎝X
I
p+1
...
XIT

⎞⎟⎠ , U=

⎛⎜⎝6
I
p+1
...
6IT

⎞⎟⎠
with

Xt = (1,yIt−1, . . . ,yIt−p,xIt, . . . ,xIt−p)

and

B= (C,AI1, . . . ,AIp,BI0, . . . ,BIp)I.

The estimation theory for this model is ba-

sically the same as for the univariate linear

regression. For example the LS and (approx-

imate) ML estimator of B is

B̂= (XIX)−1XIY,

and the ML estimator of §6 is

§̂6 =
1

T
ÛIÛ, Û = Y −XIB̂.
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Above we have made the crucial assumption

that xt is weakly exogenous for the parame-

ters of interest, B, and §6
∗. That is, the

likelihood function of x contains no informa-

tion that is relevant for the estimation of the

parameters of interest. Otherwise we could

not estimate them without taking the sto-

chastic structure of xt into account.

If furthermore xt|Yt−1,xt−1, . . . ,x1 is statisti-
cally independent of Yt−1, such that

f(xt|Yt−1,xt−1, . . . ,x1) = f(xt|xt−1, . . . ,x1)
(there is no feedback from Yt−1 to xt), then
we may forecast xt seperately from yt and

treat it as given when attempting to forecast

future observations of yt. In that case xt is

said to be strongly exogenous to yt. We shall

turn to that issue below.

∗For a thorough discussion of Exogeneity see Engle,
R.F., D.F. Hendry and J.F. Richard (1985). Exo-
geneity. Econometrica, 51, 277{304.
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Granger-causality and measures of feedback

One of the key questions that can be ad-

dressed with VAR-models is how useful some

variables are in forecasting others.

If the history of y does not help to predict

the future values of x, we say that y does

not Granger-cause x. ∗ Usually the pre-

diction ability is measured in terms of the

MSE (Mean Square Error). Hence, y fails to

Granger-cause x, if for all s > 0

MSE(x̂t+s|xt, xt−1, . . .)
= MSE(x̂t+s|xt, xt−1, . . . , yt, yt−1, . . .),

where (e.g.)

MSE(x̂t+s|xt, xt−1, . . .)
= E

p
(xt+s − x̂t+s)2|xt, xt−1, . . .

Q
.

It is then also said that x is block-exogenous

with respect to y.

∗Granger, C.W. (1969). Econometrica 37, 424{438.
Sims, C.A. (1972). American Economic Review, 62,
540{552.
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Note: This is equivalent to strong exogeneity

of x, provided that x is weakly exogenous for

the parameters of interests (weak exogeneity

+ block exogeneity = strong exogeneity).

In terms of VAR models this can be expressed

as follows:

Consider the g = m + k dimensional vector

zIt = (yIt,xIt), which is assumed to follow a

VAR(p) model

zt =
p3
i=1

¦izt−i+ νt

where

E(νt) = 0

E(νtν
I
s) =

l
§ν, t = s
0, t W= s.
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Partition the VAR of z as

yt =
�p
i=1C2ixt−i+

�p
i=1D2iyt−i+ ν1t

xt =
�p
i=1E2ixt−i+

�p
i=1F2iyt−i+ ν2t

where νIt = (νI1t, νI2t) and §ν are correspond-

ingly partitioned as

§ν =

X
§11 §12
§21 §22

~
with E(νitν

I
jt) = §ij, i, j = 1,2.

Now x does not Granger-cause y if and only if

C2i ≡ 0, or equivalently, if and only if |§11| =
|§1|, where §1 = E(η1tη

I
1t) with η1t from the

regression

yt =
p3
i=1

C1iyt−i+ η1t.

Changing the roles of the variables we get

the necessary and su±cient condition of y

not Granger-causing x.
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Testing for the Granger-causality of x on y

reduces to testing for the hypothesis

H0 : C2i = 0.

This can be done with the likelihood ratio

test by estimating with OLS the restricted ∗
and non-restricted † regressions, and calcu-

lating the respective residual covariance ma-

trices:

Unrestricted:

§̂11 =
1

T − p
T3

t=p+1

ν̂1tν̂
I
1t

Restricted:

§̂1 =
1

T − p
T3

t=p+1

η̂1tη̂
I
1t.

∗Perform OLS regressions of each of the elements in
y on a constant, p lags of the elements of x and p
lags of the elements of y.
†Perform OLS regressions of each of the elements in
y on a constant and p lags of the elements of y.
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The LR test is then

LR = (T − p)
p
ln |§̂1|− ln |§̂11|

Q
∼ χ2mkp,

if H0 is true.

Example. Granger causality between pairwise

equity-bond market series
Pairwise Granger Causality Tests
Sample: 1965:01 1995:12
Lags: 12
================================================================

Null Hypothesis: Obs F-Statistic Probability
================================================================
DFTA does not Granger Cause DDIV 365 0.71820 0.63517
DDIV does not Granger Cause DFTA 1.43909 0.19870

DR20 does not Granger Cause DDIV 365 0.60655 0.72511
DDIV does not Granger Cause DR20 0.55961 0.76240

DTBILL does not Granger Cause DDIV 365 0.83829 0.54094
DDIV does not Granger Cause DTBILL 0.74939 0.61025

DR20 does not Granger Cause DFTA 365 1.79163 0.09986
DFTA does not Granger Cause DR20 3.85932 0.00096

DTBILL does not Granger Cause DFTA 365 0.20955 0.97370
DFTA does not Granger Cause DTBILL 1.25578 0.27728

DTBILL does not Granger Cause DR20 365 0.33469 0.91843
DR20 does not Granger Cause DTBILL 2.46704 0.02377
==============================================================

The p-values indicate that FTA index returns

Granger cause 20 year Gilts, and Gilts lead
Treasury bill.
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Let us next examine the block exogeneity

between the bond and equity markets (two

lags). Test results are in the table below.

===================================================================
Direction LoglU LoglR 2(LU-LR) df p-value
--------------------------------------------------------------------
(Tbill, R20) --> (FTA, Div) -1837.01 -1840.22 6.412 8 0.601
(FTA,Div) --> (Tbill, R20) -2085.96 -2096.01 20.108 8 0.010
===================================================================

The test results indicate that the equity mar-

kets are Granger-causing bond markets. That

is to some extend previous changes in stock

markets can be used to predict bond markets.
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2.4 Geweke's∗ measures of Linear Dependence

Above we tested Granger-causality, but there

are several other interesting relations that are

worth investigating.

Geweke has suggested a measure for linear

feedback from x to y based on the matrices

§1 and §11 as

Fx→y = ln(|§1|/|§11|),
so that the statement that "x does not (Granger)

cause y" is equivalent to Fx→y = 0. Similarly

the measure of linear feedback from y to x

is de¯ned by

Fy→x = ln(|§2|/|§22|).

∗Geweke (1982) Journal of the American Statistical
Association, 79, 304{324.
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It may also be interesting to investigate the

instantaneous causality between the variables.

For the purpose, premultiplying the earlier

VAR system of y and x byX
Im −§12§−122

§21§
−1
11 Ik

~
gives a new system of equations, where the

¯rst m equations become (exercise)

yt =
p3
i=0

C3ixt−i+
p3
i=1

D3iyt−i+ ω1t,

with the error ω1t = ν1t −§12§−122 ν2t that is
uncorrelated with ν2t

∗ and consequently with
xt (important!). That is, we may describe

the same structural relationship between yt
and xt with contemporenously uncorrelated

error terms for the price of including the cur-

rent value xt as additional explanatory vari-

able.

∗Cov(ω1t, ν2t) = Cov(ν1t − §12§
−1
22 ν2t, ν2t) =

Cov(ν1t, ν2t)−§12§
−1
22Cov(ν2t, ν2t) = §12 −§12 = 0

73



Similarly, the last k equations can be written

as

xt =
p3
i=1

E3ixt−i+
p3
i=0

F3iyt−i+ ω2t.

Denoting §ωi = E(ωitω
I
it), i = 1,2, there is

instantaneous causality between y and x if

and only if C30 W= 0 and F30 W= 0 or, equiva-

lently, |§11| > |§ω1| and |§22| > |§ω2|. Anal-
ogously to the linear feedback we can de¯ne

instantaneous linear feedback

Fx·y = ln(|§11|/|§ω1|) = ln(|§22|/|§ω2|).
A concept closely related to the idea of lin-

ear feedback is that of linear dependence, a

measure of which is given by

Fx,y = Fx→y+ Fy→x+ Fx·y.

Consequently the linear dependence can be

decomposed additively into three forms of

feedback. Absence of a particular causal or-

dering is then equivalent to one of these feed-

back measures being zero.
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Using the method of least squares we get

estimates for the various matrices above as

§̂i = (T − p)−1
T3

t=p+1

η̂itη̂
I
it,

§̂ii = (T − p)−1
T3

t=p+1

ν̂itν̂
I
it,

§̂ωi = (T − p)−1
T3

t=p+1

ω̂itω̂
I
it,

for i = 1,2. For example

F̂x→y = ln(|§̂1|/|§̂11|).
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With these estimates one can test the par-

ticular dependencies,

No Granger-causality: x→ y H01 : Fx→y = 0

(T − p)F̂x→y ∼ χ2mkp.

No Granger-causality: y→ x H02 : Fy→x = 0

(T − p)F̂y→x ∼ χ2mkp.

No instantaneous feedback: H03 : Fx·y = 0

(T − p)F̂x·y ∼ χ2mk.

No linear dependence: H04 : Fx,y = 0

(T − p)F̂x,y ∼ χ2mk(2p+1).

This last is due to the asymptotic indepen-

dence of the measures Fx→y, Fy→x and Fx·y.

There are also so called Wald and Lagrange

Multiplier (LM) tests for these hypotheses

that are asymptotically equivalent to the LR

test.
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Note that in each case (T − p)F̂ is the LR-

statistic.

Example. The LR-statistics of the above

measures and the associated χ2 values for

the equity-bond data are reported in the fol-

lowing table with p= 2.

[y = (¢logFTAt,¢logDIVt) and xI = (¢ logTbillt,¢log r20t)]

==================================
LR DF P-VALUE

----------------------------------
x-->y 6.41 8 0.60118
y-->x 20.11 8 0.00994
x.y 23.31 4 0.00011
x,y 49.83 20 0.00023
==================================

Note. The results lead to the same inference as in Mills (1999),

p. 251, although numerical values are di®erent [in Mills VAR(6)

is analyzed and here VAR(2)].
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