
1.3 Regime switching models

A potentially useful approach to model non-

linearities in time series is to assume di®erent

behavior (structural break) in one subsample

(or regime) to another. If the dates of the

regimes switches are known, modeling can be

worked out with dummy variables. For exam-

ple, consider the following regression model

yt = xt
IβSt+ ut, t = 1, . . . , T ,

where

ut ∼ NID(0,σ2St),

βSt = β0(1− St) + β1St,

σ2St = σ20(1− St) + σ21St,

and

St = 0 or 1, (Regime 0 or 1).

Thus under regime 1(0), the coe±cient para-

meter vector is β1(0) and error variance σ
2
1(0)

.
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For the sake of simplicity consider an AR(1)

model. Usually it is assumed that the possi-

ble di®erence between the regimes is a mean

and volatility shift, but no autoregressive change.

That is

yt = µSt+ φ(yt−1 − µst−1) + ut, ut ∼ NID(0,σ2St),
where µSt = µ0(1 − St) + µ1St, and σ2St as

de¯ned above. If St, t = 1, . . . , T is known a

priori, then the problem is just a usual dummy

variable autoregression problem.

In practice, however, the prevailing regime is

not usually directly observable. Denote then

P (St = j|St−1 = i) = pij, (i, j = 0,1),

called transition probabilities, with pi0+pi1 =

1, i = 0,1. This kind of process, where

the current state depends only on the state

before, is called a Markov process, and the

model a Markov switching model in the mean

and the variance.
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The probabilities in a Markov process can be

conveniently presented in matrix form:X
P (St = 0)
P (St = 1)

~
=

X
p00 p10
p01 p11

~X
P(St−1 = 0)
P(St−1 = 1)

~

Estimation of the transition probabilities pij
is usually done (numerically) by maximum

likelihood as follows.

The conditional probability density function

for the observations yt given the state vari-

ables St, St−1 and the previous observations
Ft−1 = {yt−1, yt−2, . . .} is
f(yt|St, St−1,Ft−1) =

1�
2πσ2St

exp

l
−[yt−µSt−φ(yt−1−µSt−1)]

2

2σ2St

M
,

because

ut = yt − µSt − φ(yt−1 − µSt−1)) ∼ NID(0,σ2St).
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The chain rule for conditional probabilities∗∗
yields then for the joint probability density
function for the variables yt, St, St−1 given
past information Ft−1
f(yt, St, St−1|Ft−1) = f(yt|St, St−1,Ft−1)P(St, St−1|Ft−1),

such that the log-likelihood function to be

maximized with respect to the unknown pa-

rameters becomes (exercise)

f(θ) =
T3
t=1

ft(θ),

where

ft(θ) = log

⎡⎣ 13
St=0

13
St−1=0

f(yt|St, St−1,Ft−1)P (St, St−1|Ft−1)
⎤⎦,

θ = (p, q,φ, µ0, µ1,σ
2
0,σ

2
1) and the transition

probabilities p := P(St = 0|St−1 = 0), and

q := P(St = 1|St−1 = 1).

∗∗Chain Rule for conditional probabilities:

P(A ∩B|C) = P (A|B ∩ C) · P(B|C)
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In order to ¯nd the conditional joint probabil-

ities P(St, St−1|Ft−1) we use again the chain
rule for conditional probabilities:

P(St, St−1|Ft−1) = P (St|St−1,Ft−1)P (St−1|Ft−1)
= P (St|St−1) · P (St−1|Ft−1),

where we have used the Markov property

P(St|St−1,Ft−1) = P (St|St−1).

We note that the problem reduces to esti-

mating the time dependent state probabili-

ties P(St−1|Ft−1), and weighting them with

the transition probabilities P (St|St−1) to ob-
tain the joint probabilities P(St, St−1|Ft−1).

This can be achieved as follows:

First, let P (S0 = 1|F0) = P(S0 = 1) = π be

given (such that P(S0 = 0) = 1 − π). Then

the probabilities P(St−1|Ft−1) and the joint

probabilities P (St, St−1|Ft−1) are obtained us-
ing the following two steps algorithm
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1. Given P(St−1 = i|Ft−1), i = 0,1, at the
beginning of time t (the t'th iteration),

P(St = j, St−1 = i|Ft−1) = P(St = j|St−1 = i)P(St−1 = i|Ft−1).

2. Once yt is observed, we update the in-
formation set Ft = {Ft−1, yt} and the proba-
bilities by backwards application of the chain
rule and using the law of total probability:

P(St = j, St−1 = i|Ft) = P (St = j, St−1 = i|Ft−1, yt)
=

f(St=i,St−1=j,yt|Ft−1)
f(yt|Ft−1)

=
f(yt|St=j,St−1=i,Ft−1)P [St=j,St−1=i|Ft−1]�1

st,st−1=0
f(yt|st,st−1,Ft−1)P [St=st,St−1=st−1|Ft−1]

We may then return to step 1 by applying again the
law of total probability:

P (St = st|Ft) =
13

st−1=0

P(St = st, St−1 = st−1|Ft).

Once we have the joint probability for the

time point t, we can calculate the likelihood

ft(θ). The maximum likelihood estimates for

θ is then obtained iteratively maximizing the

likelihood function by updating the likelihood

function at each iteration with the above al-

gorithm.
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Steady state probabilities

P(S0 = 1|F0) and P(S0 = 0|F0) are called
the steady state probabilities, and, given the

transition probabilities p and q, are obtained

as (exercise):

P (S0 = 1|F0) =
1− p

2− p− q,

P (S0 = 0|F0) =
1− q

2− p− q.

Smoothed probabilities

Recall that the state St is unobserved. How-

ever, once we have estimated the model, we

can make inferences on St using all the infor-

mation from the sample. This gives us

P(St = j|FT), j = 0,1,

which are called the smoothed probabilities.

Note. In the estimation procedure we de-

rived P(St = j|Ft) which are usually called

the ¯ltered probabilities.
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Expected duration

The expected length the system is going to

stay in state j can be calculated from the

transition probabilities. Let Dj denote the

number of periods the system is in state j.

Application of the chain rule and the Markov

property yield for the probability to stay k

periods in state j (exercise)

P (Dj = k) = pk−1jj (1− pjj),
which implies for the expected duration of

that state (exercise)

E(Dj) =
∞3
k=0

kP(Dj = k) =
1

1− pjj
.

Note that in our case p00 = p and p11 = q.
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Example. Are there long swings in the dol-

lar/sterling exchange rate?

Consider the following time series of the USD/GBP

exchange rate from 1972I to 1996IV:
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It appears that rather than being a simple

random walk, the time series consists of dis-

tinct time periods of both upwards and down-

wards trends. In that case it may be put in

a Markov switching framework as follows.
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Model changes ¢xt in the exchange rate as

¢xt = α0 + α1St+ 6t,

so that ¢x1 ∼ N(µ0,σ
2
0) when St = 0 and

¢xt ∼ N(µ1,σ
2
1), when St = 1, where µ0 =

α0 and µ1 = α0 + α1. Parameters µ0 and µ1
constitute two di®erent drifts (if α1 W= 0) in

the random walk model.

Estimating the model from quarterly with

sample period 1972I to 1996IV gives

Parameter Estimate Std err

µ0 2.605 0.964
µ1 -3.277 1.582

σ20 13.56 3.34

σ21 20.82 4.79
p (regime 1) 0.857 0.084
q (regime 0) 0.866 0.097

The expected length of stay in regime 0 is

given by 1/(1 − p) = 7.0 quarters, and in

regime 1 1/(1− q) = 7.5 quarters.
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Example. Suppose we are interested whether the mar-

ket risk of a share is dependent on the level of volatility

on the market. In the CAPM world the market risk of

a stock is measured by β.

World and Finnish Returns
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Consider for the sake of simplicity only the cases of

high and low volatility.
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The market model is

yt = αSt + βStxt+ 6t,

where αSt = α0(1− St) + α1St, βSt = β0(1− St) + β1St

and 6t ∼ N(0,σ2St) with σ2t = σ20(1− St) + σ21St.

Estimating the model yields

Parameter Estimate Std Err t-value p-value
α0 -0.0075 0.0186 -0.40 0.685
α0 0.0849 0.0499 1.70 0.089
β0 0.9724 0.0224 43.47 0.000
β1 1.8112 0.0666 27.19 0.000
σ20 0.7183 0.0150 48.01 0.000
σ21 1.3072 0.0267 48.89 0.000

State Prob

P(High|High) 0.96340
P(Low|High) 0.03660
P(High|Low) 0.01692
P(Low|Low) 0.98308
P(High) 0.68393
P(Low) 0.31607

Log-likelihood -3186.064

The empirical results give evidence that the stock's

market risk depends on the level of stock volatility.

The expected duration of high volatility is 1/(1 −
.9634) ≈ 27 days, and for low volatility 59 days.
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Market returns with high-low volatility probabilities

World Index
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