
4. Multivariate Time Series Models

Consider the crude oil spot and near futures prices
from 24 June 1996 to 26 February 1999 below.
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If we wish to forecast a stationary series not only

based upon its own past realizations, but addition-

ally taking realizations of other stationary series into

account, then we can model the series as a vector

autoregressive process (VAR, for short), provided the

corresponding price series are not cointegrated. We

shall define cointegration later.
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4.1 Vector Autoregressions

Vector autoregressions extend simple autore-

gressive processes by adding the history of

other series to the series’ own history. For

example, a vector autoregression of order 1

(VAR(1)) on a bivariate system is:

y1t = φ01 + φ11y1,t−1 + φ12y2,t−1 + ε1t,(1)

y2t = φ02 + φ21y1,t−1 + φ22y2,t−1 + ε2t.(2)

The error terms εit are assumed to be white

noise processes, which may be contempora-

neously correlated, but are uncorrelated with

any past or future disturbances.

This may be compiled in matrix form as

(3)

yt(2×1) = Φ0(2×1) + Φ1(2×2)yt−1(2×1) + εt(2×1)

and is easily extended to contain more than

2 time series and more than one lag as shown

on the following slide.
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Suppose we have m time series yit, i=1,. . .,m,

and t = 1, . . . , T (common length of the time

series). Then a vector autoregression model

of order p, VAR(p), is defined as

 y1t
y2t
...
ymt

 =

 φ(0)
1

φ(0)
2...
φ(0)
m

+

 φ(1)
11 φ(1)

12 · · · φ(1)
1m

φ(1)
21 φ(1)

22 · · · φ(1)
2m...

... . . . ...
φ(1)
m1 φ(1)

m2 · · · φ(1)
mm


 y1,t−1

y2,t−1
...
ym,t−1

+

· · ·+

 φ(p)
11 φ(p)

12 · · · φ(p)
1m

φ(p)
21 φ(p)

22 · · · φ(p)
2m...

... . . . ...
φ(p)
m1 φ(1)

m2 · · · φ(p)
mm


 y1,t−p

y2,t−p
...
ym,t−p



+

 ε1t
ε2t
...
εmt

 .

In matrix notations

(4) yt = Φ0 + Φ1yt−1 + · · ·+ Φpyt−p + εt,

where yt, Φ0, and εt are (m× 1) vectors and

Φ1, . . . ,Φp are (m × m) coefficient matrices

introducing cross-dependencies between the

series. It is common practice to work with

centralized series, such that Φ0 = 0.
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The representation (4) can be further sim-
plified by adopting the matrix form of a lag
polynomial (I denoting the identity matrix)

(5) Φ(L) = I−Φ1L− . . .−ΦpL
p.

Thus finally we get for centralized series in
analogy to the univariate case

(6) Φ(L)yt = εt,

which is now a matrix equation containing
cross-dependencies between the series.

A basic assumption in the above model is
that the residual vector follow a multivariate
white noise, i.e.

E(εt) = 0

E(εtε′s) =

{
Σε if t = s
0 if t 6= s

,

which allows for estimation by OLS, because
each individual residual series is assumed to
be serially uncorrelated with constant vari-
ance. Note that Σε is not required to be di-
agonal, that is, while shocks must be serially
uncorrelated, simultaneous correlation of the
shocks between different series is allowed.
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Example.

Fitting a VAR(1) model to the spot and fu-
ture returns from the introductory section in
EViews (Quick/Estimate VAR) yields

 Vector Autoregression Estimates

 Vector Autoregression Estimates
 Date: 01/31/13   Time: 13:35
 Sample: 6/24/1996 2/26/1999
 Included observations: 671
 Standard errors in ( ) & t-statistics in [ ]

RS RF

RS(-1)  0.197536  0.716341
 (0.06586)  (0.05159)
[ 2.99917] [ 13.8849]

RF(-1) -0.253450 -0.536303
 (0.07409)  (0.05804)
[-3.42068] [-9.24057]

C -0.000769 -0.000584
 (0.00091)  (0.00072)
[-0.84181] [-0.81610]

 R-squared  0.017418  0.234962
 Adj. R-squared  0.014476  0.232671
 Sum sq. resids  0.373856  0.229385
 S.E. equation  0.023657  0.018531
 F-statistic  5.920711  102.5796
 Log likelihood  1561.677  1725.558
 Akaike AIC -4.645834 -5.134302
 Schwarz SC -4.625676 -5.114143
 Mean dependent -0.000725 -0.000708
 S.D. dependent  0.023830  0.021155

 Determinant resid covariance (dof adj.)  4.23E-08
 Determinant resid covariance  4.19E-08
 Log likelihood  3795.402
 Akaike information criterion -11.29479
 Schwarz criterion -11.25447

implying
(7)

Φ̂0 =

(
−0.000796
−0.000584

)
, Φ̂1 =

(
0.197536 −0.253450
0.716341 −0.536303

)
.
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The same coefficient estimates may be ob-
tained by estimating the scalar equations (1)
and (2) seperately for both the spot and the
futures return series with OLS.

The fact that all entries in the coefficient
matrix Φ1 are significant implies that past
spot and future returns have an impact upon
both current spot and future returns. We say
that the series Granger cause each other. A
more precise definition of Granger causality
will be given later.

If the off-diagonal elements in Φ1 had been
insignificant it would have implied, that the
return series are only influenced by their own
history, but not the history of the other se-
ries, implying that there is no Granger causal-
ity.

We may also find that one off-diagonal ele-
ment is significant while the other one is not.
In that case there is Granger causality from
the series corresponding to the column of the
significant entry to the series corresponding
to the row of the significant entry, but not
the other way round.
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Analogous to the univariate case, in order

for the VAR model to be stationary the co-

efficient matrices must satisfy the following

constraint. It is required that the roots of

the determinant equation

(8) |I−Φ1z −Φ2z
2 − · · · −Φpz

p| = 0

lie outside the unit circle.

Example: (continued.)

|I−Φ1z| =
∣∣∣∣∣1− 0.197536z 0.253450z
−0.716341z 1 + 0.536303z

∣∣∣∣∣
= 1 + 0.338767z + 0.0756175z2 = 0

is solved by z = −2.24± 2.86i

with modulus |z| = 3.64 > 1.

Hence, if the VAR(1) model is correctly spec-

ified, then possible differences in sample cor-

relations over different subperiods should be

attributed to sampling error alone, because

the model is covariance stationary.
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4.2 Defining the order of a VAR-model

Example. Consider the following monthly ob-

servations on FTA All Share index, the asso-

ciated dividend index and the series of 20 year

UK gilts and 91 day Treasury bills from Jan-

uary 1965 to December 1995 (372 months)
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The correlograms for the above (log) series
look as follows. All the series prove to be
I(1).

Sample: 1965:01 1995:12 
Included observations: 372 

FTA       

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       .|********           .|******** 1 0.992 0.992 368.98 0.000
       .|********        .|.      | 2 0.983 -0.041 732.51 0.000
       .|*******|        .|.      | 3 0.975 0.021 1090.9 0.000
       .|*******|        .|.      | 4 0.966 -0.025 1444.0 0.000
       .|*******|        .|.      | 5 0.957 -0.024 1791.5 0.000
       .|*******|        .|.      | 6 0.949 0.008 2133.6 0.000
       .|*******|        .|.      | 7 0.940 0.005 2470.5 0.000
       .|*******|        .|.      | 8 0.931 -0.007 2802.1 0.000
       .|*******|        .|.      | 9 0.923 0.023 3128.8 0.000
       .|*******|        .|.      | 10 0.915 -0.011 3450.6 0.000

Dividends 

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       .|********           .|******** 1 0.994 0.994 370.59 0.000
       .|********        .|.      | 2 0.988 -0.003 737.78 0.000
       .|********        .|.      | 3 0.982 0.002 1101.6 0.000
       .|********        .|.      | 4 0.976 -0.004 1462.1 0.000
       .|*******|        .|.      | 5 0.971 -0.008 1819.2 0.000
       .|*******|        .|.      | 6 0.965 -0.006 2172.9 0.000
       .|*******|        .|.      | 7 0.959 -0.007 2523.1 0.000
       .|*******|        .|.      | 8 0.953 -0.004 2869.9 0.000
       .|*******|        .|.      | 9 0.947 -0.006 3213.3 0.000
       .|*******|        .|.      | 10 0.940 -0.006 3553.2 0.000

T-Bill 

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       .|********           .|******** 1 0.980 0.980 360.26 0.000
       .|*******|      **|.      | 2 0.949 -0.301 698.79 0.000
       .|*******|        .|.      | 3 0.916 0.020 1014.9 0.000
       .|*******|        .|.      | 4 0.883 -0.005 1309.5 0.000
       .|*******|        .|.      | 5 0.849 -0.041 1583.0 0.000
       .|****** |       *|.      | 6 0.811 -0.141 1833.1 0.000
       .|****** |        .|.      | 7 0.770 -0.018 2059.2 0.000
       .|****** |        .|.      | 8 0.730 0.019 2263.1 0.000
       .|*****  |        .|.      | 9 0.694 0.058 2447.6 0.000
       .|*****  |        .|.      | 10 0.660 -0.013 2615.0 0.000

Gilts 

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       .|********           .|******** 1 0.984 0.984 362.91 0.000
       .|*******|       *|.      | 2 0.962 -0.182 710.80 0.000
       .|*******|        .|.      | 3 0.941 0.050 1044.6 0.000
       .|*******|        .|.      | 4 0.921 0.015 1365.5 0.000
       .|*******|        .|.      | 5 0.903 0.031 1674.8 0.000
       .|*******|        .|.      | 6 0.885 -0.038 1972.4 0.000
       .|*******|        .|.      | 7 0.866 -0.001 2258.4 0.000
       .|*******|        .|.      | 8 0.848 0.019 2533.6 0.000
       .|****** |        .|.      | 9 0.832 0.005 2798.6 0.000
       .|****** |        .|.      | 10 0.815 -0.014 3053.6 0.000
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Formally, as is seen below, the Dickey-Fuller
(DF) unit root tests indicate that the series
indeed all are I(1). The test is based on the
augmented DF-regression

∆yt = ρyt−1 + α+ δt+
4∑
i=1

φi∆yt−i + εt,

and the hypothesis to be tested is

H0 : ρ = 0 vs H1 : ρ < 0.

Test results:

Series ρ̂ t-Stat p-value
FTA -0.029 -2.474 0.341
DIV -0.059 -2.555 0.302
R20 -0.013 -1.779 0.713
T-BILL -0.024 -2.399 0.380
∆FTA -1.001 -9.013 0.000
∆DIV -2.600 -12.18 0.000
∆R20 -0.786 -8.147 0.000
∆T-BILL -0.620 -7.028 0.000

ADF critical values

Level No trend Trend
1% -3.448 -3.983
5% -2.869 -3.422

10% -2.571 -3.134
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VAR(2) estimation output on percentual logreturns:
 Vector Autoregression Estimates

 Vector Autoregression Estimates
 Date: 02/07/13   Time: 13:14
 Sample (adjusted): 1965M04 1995M12
 Included observations: 369 after adjustments
 Standard errors in ( ) & t-statistics in [ ]

DFTA DDIV DR20 DTBILL

DFTA(-1)  0.020769 -0.676248 -0.057670 -0.040784
 (0.13045)  (0.12977)  (0.06832)  (0.12673)
[ 0.15921] [-5.21126] [-0.84416] [-0.32181]

DFTA(-2)  0.024780 -0.128730 -0.026210  0.038316
 (0.13211)  (0.13141)  (0.06918)  (0.12834)
[ 0.18757] [-0.97958] [-0.37885] [ 0.29855]

DDIV(-1)  0.054781 -0.140806 -0.039136 -0.001885
 (0.12618)  (0.12552)  (0.06608)  (0.12259)
[ 0.43415] [-1.12178] [-0.59225] [-0.01538]

DDIV(-2) -0.129923 -0.168589 -0.001959  0.013840
 (0.05558)  (0.05529)  (0.02911)  (0.05400)
[-2.33744] [-3.04905] [-0.06732] [ 0.25629]

DR20(-1) -0.425101 -0.469488  0.291443  0.378387
 (0.11868)  (0.11806)  (0.06215)  (0.11530)
[-3.58202] [-3.97685] [ 4.68935] [ 3.28190]

DR20(-2)  0.204949  0.163345 -0.138976 -0.076893
 (0.12205)  (0.12141)  (0.06391)  (0.11857)
[ 1.67927] [ 1.34543] [-2.17439] [-0.64850]

DTBILL(-1)  0.065007  0.106466 -0.024714  0.244177
 (0.06114)  (0.06082)  (0.03202)  (0.05940)
[ 1.06321] [ 1.75046] [-0.77185] [ 4.11071]

DTBILL(-2) -0.057654 -0.037304  0.037882 -0.012430
 (0.06029)  (0.05997)  (0.03157)  (0.05857)
[-0.95627] [-0.62200] [ 1.19981] [-0.21222]

C  0.797370  1.522351  0.137442 -0.036121
 (0.33567)  (0.33391)  (0.17579)  (0.32610)
[ 2.37547] [ 4.55917] [ 0.78187] [-0.11077]

 R-squared  0.072595  0.432941  0.123435  0.143822
 Adj. R-squared  0.051986  0.420340  0.103956  0.124796
 Sum sq. resids  13604.34  13462.22  3731.042  12840.15
 S.E. equation  6.147343  6.115151  3.219318  5.972192
 F-statistic  3.522471  34.35688  6.336766  7.559173
 Log likelihood -1189.144 -1187.206 -950.4561 -1178.478
 Akaike AIC  6.494005  6.483504  5.200304  6.436193
 Schwarz SC  6.589390  6.578889  5.295689  6.531578
 Mean dependent  0.770651  0.681399  0.052983 -0.013968
 S.D. dependent  6.313643  8.031942  3.400942  6.383798

 Determinant resid covariance (dof adj.)  62164.98
 Determinant resid covariance  56318.40
 Log likelihood -4112.558
 Akaike information criterion  22.48541
 Schwarz criterion  22.86695
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By default, EViews always suggests a VAR

model of order p= 2. In order to determine

the most appropriate order of the model, mul-

tivariate extensions of criterion functions like

SC and AIC can be utilized in the same man-

ner as in the univariate case. These are given

in the lower part of the estimation output and

calculated as

AIC = −2l/T + 2n/T,(9)

SC = −2l/T + n logT/T,(10)

where

(11) l = −
T

2

[
m(1 + log 2π) + log |Σ̂ε|

]
is the log likelihood value of a multivariate

normal distribution, T is the number of time

points, m is the number of equations, |Σ̂ε|
is the determinant of the estimated variance

matrix of residuals, and n = m(1+pm) is the

total number of paramters to be estimated.
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The likelihood ratio (LR) test can also be
used in determining the order of a VAR. The
test is generally of the form

(12) LR = T (log |Σ̂p| − log |Σ̂q|)

where Σ̂p denotes the maximum likelihood
estimate of the residual covariance matrix
of VAR(p) and Σ̂q the estimate of VAR(q)
(q>p) residual covariance matrix. If VAR(p)
(the shorter model) is the true one, then

LR ∼ χ2
df ,

where the degrees of freedom, df , equals the
difference in the number of estimated param-
eters between the two models.

In a m variate VAR(p)-model each series has
q − p lags less than those in VAR(q). Thus
the difference in each equation is m(q − p),
so that in total df = m2(q − p).

Note that often, when T small a modified LR

(13) LR∗ = (T −mq)(log |Σ̂p| − log |Σ̂q|)

is used to correct for small sample bias.
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Example: (continued.)

Both the LR-test and the information criteria
are obtained from EViews under ’View/Lag
Structure/Lag Length Criteria’ after estimat-
ing a VAR of arbitrary order. For our data:

VAR Lag Order Selection Criteria
Endogenous variables: DFTA DDIV DR20 DTBILL 
Exogenous variables: C 
Date: 02/08/13   Time: 11:48
Sample: 1965M01 1995M12
Included observations: 363

 Lag LogL LR FPE AIC SC HQ

0 -4415.547 NA  441799.9  24.35012  24.39303  24.36718
1 -4066.698  688.0881  70596.77  22.51624   22.73081*   22.60153*
2 -4050.003   32.56117*   70329.52*   22.51241*  22.89864  22.66594
3 -4040.595  18.14318  72936.57  22.54873  23.10661  22.77048
4 -4032.265  15.87856  76096.65  22.59099  23.32052  22.88098
5 -4023.542  16.43737  79228.74  22.63109  23.53227  22.98930
6 -4019.160  8.161322  84495.96  22.69509  23.76793  23.12154
7 -4006.563  23.18114  86137.49  22.71384  23.95834  23.20852
8 -3996.916  17.54005  89263.79  22.74885  24.16499  23.31176

 * indicates lag order selected by the criterion
 LR: sequential modified LR test statistic (each test at 5% level)
 FPE: Final prediction error
 AIC: Akaike information criterion
 SC: Schwarz information criterion
 HQ: Hannan-Quinn information criterion

The Schwarz criterion selects VAR(1), whereas
AIC and the LR-test suggest VAR(2).

These are only preliminary suggestions for
the order of the model. For the chosen model
it is crucial that the residuals fulfill the as-
sumption of multivariate white noise.
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4.3 Model Diagnostics

To investigate whether the VAR residuals are

white noise, the hypothesis to be tested is

(14) H0 : Υ1 = · · · = Υh = 0,

where Υk = (γij(k)) denotes the matrix of

the k’th cross autocovariances of the residu-

als series εi and εj:

(15) γij(k) = E(εi,t−k · εj,t),

whose diagonal elements reduce to the usual

autocovariances γk. Note, however, that cross-

autocovariances, unlike univariate autocovari-

ances, are not symmetric in k, that is γi,j(k) 6=
γi,j(−k), because the covariance between resid-

ual series i and residual series j k steps ahead

is in general not the same as the covariance

between residual series i and the residual se-

ries j k steps before. Stationarity ensures,

however, that Υk = Υ′−k (exercise).
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In order to test H0 : Υ1 = · · · = Υh = 0, we

may use the (Portmanteau) Q-statistics††

(16) Qh = T
h∑

k=1

tr(Υ̂′kΥ̂−1
0 Υ̂kΥ̂−1

0 )

where

Υ̂k = (γ̂ij(k)) with γ̂ij(k) =
1

T − k

T∑
t−k

ε̂t−k,iε̂t,j

are the estimated (residual)cross autocovari-

ances and Υ̂0 the contemporaneous covari-

ances of the residuals. Alternatively (espe-

cially in small samples) a modified statistic is

used

(17)

Q∗h = T2
h∑

k=1

(T − k)−1tr(Υ̂′kΥ̂−1
0 Υ̂kΥ̂−1

0 ).

The statistics are asymptotically χ2 distributed

with m2(h − p) degrees of freedom. Note

that in computer printouts h is running from

1,2, . . . h∗ with h∗ specified by the user.

††See e.g. Lütkepohl, Helmut (1993). Introduction to
Multiple Time Series, 2nd Ed., Ch. 4.4
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The Q-statistics of the VAR(1) residuals avail-
able from EViews under ’View/Residual Tests/
Portmanteau Autocorrelation Test’ imply that
the residuals don’t pass the white noise test:∗

VAR Residual Portmanteau Tests for Autocorrelations
Null Hypothesis: no residual autocorrelations up to lag h
Date: 02/08/13   Time: 13:56
Sample: 1965M01 1995M12
Included observations: 370

Lags Q-Stat Prob. Adj Q-Stat Prob. df

1  13.88141 NA*  13.91903 NA* NA*
2  34.35804  0.0049  34.50695  0.0046  16
3  43.98856  0.0771  44.21618  0.0738  32

*The test is valid only for lags larger than the VAR lag order.
df is degrees of freedom for (approximate) chi-square distribution

The residuals of the VAR(2) model, however,
may be regarded as multivariate white noise:

VAR Residual Portmanteau Tests for Autocorrelations
Null Hypothesis: no residual autocorrelations up to lag h
Date: 02/08/13   Time: 13:48
Sample: 1965M01 1995M12
Included observations: 369

Lags Q-Stat Prob. Adj Q-Stat Prob. df

1  0.561311 NA*  0.562836 NA* NA*
2  11.82149 NA*  11.88438 NA* NA*
3  18.76786  0.2809  18.88769  0.2745  16

*The test is valid only for lags larger than the VAR lag order.
df is degrees of freedom for (approximate) chi-square distribution

We therefore adopt the VAR(2) model.
∗Some versions of EViews use the wrong degrees of
freedom! Check that df = m2(h− p)!
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4.4 Vector ARMA (VARMA)

Similarly as is done in the univariate case

one can extend the VAR model to the vector

ARMA model

(18) yt = Φ0 +
p∑

i=1

Φiyt−i + εt +
q∑

j=1

Θjεt−j

or

(19) Φ(L)yt = Φ0 + Θ(L)εt,

where yt, Φ0, and εt are m × 1 vectors, and

Φi’s and Θj’s are m×m matrices, and

(20)
Φ(L) = I−Φ1L− . . .−ΦpLp

Θ(L) = I + Θ1L+ . . .+ ΘqLq.

Provided that Θ(L) is invertible, we always

can write the VARMA(p, q)-model as a VAR(∞)

model with Π(L) = Θ−1(L)Φ(L). The pres-

ence of a vector MA component, however,

implies that we can no longer find parameter

estimates by ordinary least squares. We do

not pursue our analysis to this direction.
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4.5 Exogeneity and Causality

Suppose you got two time series xt and yt as
in the introductory crude oil spot and futures
returns example. We say x Granger causes y
if
(21)
E(yt|yt−1, yt−2, . . .) 6= E(yt|yt−1, yt−2, . . . , xt−1, xt−2, . . .),

that is, if we can improve the forecast for
yt based upon its own history by additionally
considering the history of xt. In the other
case
(22)
E(yt|yt−1, yt−2, . . .) = E(yt|yt−1, yt−2, . . . , xt−1, xt−2, . . .),

where adding history of xt does not improve
the forecast for yt, we say that x does not
Granger cause y, or x is exogeneous to y.

Note that Granger causality is not the same as causal-

ity in the philosophical sense. Granger causality does

not claim that x is the reason for y in the sense like, for

example, y moves because x moves. It just says that

x is helpful in forecasting y, which might happen for

other reasons than direct causality. There might be,

for example, a third series z which has a fast causal

impact upon x and a slower causal impact upon y.

Then we can use the reaction of x in order to forecast

the reaction in y, such that x Granger causes y.
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Testing for Exogeneity: The bivariate case

Consider a bivariate VAR(p) model written
out in scalar form as

xt = φ1 +
p∑

i=1

φ(i)
11xi,t−i +

p∑
i=1

φ(i)
12yi,t−i + ε1t,(23)

yt = φ2 +
p∑

i=1

φ(i)
21xi,t−i +

p∑
i=1

φ(i)
22yi,t−i + ε2t.(24)

Then the test for Granger causality from x

to y is an F -test for the joint significance of

φ
(1)
21 , . . . , φ

(p)
21 in the OLS regression (24).

Similarly, the test for Granger causality from

y to x is an F -test for the joint significance

of φ(1)
12 , . . . , φ

(p)
12 in the OLS regression (23).
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Recall from STAT1010 and Econometrics 1
(see also the section about the F -test for
general linear restrictions in chapter 1) that
the F -test for testing

(25) H0 : βk−q+1 = βk−q+2 = · · · = βk = 0

against

(26) H1 : some βk−i 6= 0, i = 0,1, . . . , q−1

in the model

(27) y = β0 + β1x1 + . . .+ βkxk + u

is

(28) F =
(SSEr − SSEur)/q

SSEur/(n− k − 1)
,

where SSEr is the residual sum of squares
from the restricted model under H0 and SSEu
is the residual sum of squares for the unre-
stricted model (27).

Under the null hypothesis the test statistic
(28) is F -distributed with q = dfr − dfur and
n− k − 1 degrees of freedom, where dfr is the
degrees of freedom of SSEr and dfur is the
degrees of freedom of SSEur.
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In our case of considering Granger causality

in a bivariate VAR(p) model we are consid-

ering to drop q = p variables in a model with

n = T observations and k = 2p variables be-

yond the constant. Hence,

(29)

F =
(SSEr − SSEur)/p

SSEur/(T − 2p− 1))
∼ F (p, T − 2p− 1))

under H0 : y is exogeneous to x in (23), and

under H0 : x is exogeneous to y in (24).

Example:

(Oil Spot and Futures Returns continued.)

Consider fitting a VAR(2) model to the crude

oil spot and futures returns discussed earlier.

The EViews output can be found on the next

slide.
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 Vector Autoregression Estimates

 Vector Autoregression Estimates
 Date: 01/31/13   Time: 12:55
 Sample: 6/24/1996 2/26/1999
 Included observations: 671
 Standard errors in ( ) & t-statistics in [ ]

RS RF

RS(-1)  0.274978  0.959797
 (0.08238)  (0.06259)
[ 3.33796] [ 15.3356]

RS(-2)  0.203046  0.479233
 (0.08964)  (0.06810)
[ 2.26519] [ 7.03710]

RF(-1) -0.381912 -0.912483
 (0.10492)  (0.07971)
[-3.63993] [-11.4470]

RF(-2) -0.222814 -0.381616
 (0.08333)  (0.06331)
[-2.67394] [-6.02798]

C -0.000831 -0.000627
 (0.00091)  (0.00069)
[-0.91219] [-0.90549]

 R-squared  0.027856  0.287949
 Adj. R-squared  0.022017  0.283673
 Sum sq. resids  0.369885  0.213498
 S.E. equation  0.023567  0.017904
 F-statistic  4.770877  67.33160
 Log likelihood  1565.260  1749.639
 Akaike AIC -4.650553 -5.200117
 Schwarz SC -4.616955 -5.166519
 Mean dependent -0.000725 -0.000708
 S.D. dependent  0.023830  0.021155

 Determinant resid covariance (dof adj.)  3.51E-08
 Determinant resid covariance  3.46E-08
 Log likelihood  3859.801
 Akaike information criterion -11.47482
 Schwarz criterion -11.40762

Denoting the spot series with x and the futures returns

with y, SSRur is 0.3699 in (23) and 0.2135 in (24).

The same sum of squared residuals are obtained by

running the corresponding univariate regressions.
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The restricted sum of squared residuals drop-

ping the futures returns in (23) and drop-

ping the spot returns in (24) are 0.3780 and

0.2900, respectively. The F -statistics are

(30)

F =
0.3780− 0.3699

0.3699
·

671− 4− 1

2
= 7.29

for Granger causality from futures to spot

returns and

(31)

F =
0.2900− 0.2135

0.2135
·

671− 4− 1

2
= 119.3

for Granger causality from spot to futures.

Past spot returns are thus decisively more

helpful in explaining current futures returns

than past futures returns are in explaining

current spot returns, but there is Granger

causality in both directions, as both F -statistics

exceed the 0.1% critical value of 6.98, which

can be obtained e.g. from Excel with the

command FINV(0.001;2;666). EViews does

this test under ’View/ Coefficient Diagnos-

tics/ Wald-Test - Coefficient Restrictions’.
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Recall from Econometrics 1 that the F -tests
above are strictly valid only in the case of
strictly exogeneous regressors and normally
distributed error terms. In our case, however,
we have included lagged dependent variables
into the regression, such that the regressors
are only contemporaneously exogeneous and
the F -tests are only asymptotically valid for
large sample sizes.

Since the F -test are only asymptotically valid,
we may just as well use the Wald, Lagrange
Multiplier, or Likelihood Ratio tests which we
got acquainted to in section 8 of chapter 1.
These are in our case:

(32) W =
SSER − SSEU

SSEU/(T − 2p− 1)
,

(33) LM =
SSER − SSEU

SSER/(T − p− 1)
,

(34) LR = T (logSSER − logSSEU),

all of which are asymptotically χ2-distributed
with df = p under the null hypothesis that
the other time series is exogeneous.
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Example: (Oil spot and futures continued.)
Consider now as an illustration only Granger
causality from spot to futures returns.

The Wald statistic (32) is

W = (671− 5) ·
0.2900− 0.2135

0.2135
= 238.63.

The Lagrange Multiplier statistic (33) is

LM = (671− 3) ·
0.2900− 0.2135

0.2135
= 239.35.

The Likelihood Ratio test statistic (34) is

LR = 671·(log 0.2900−log 0.2135) = 205.51.

All of these exceed by far the 0.1% critical
value for a χ2(2) distribution of 13.8 and
are therefore highly significant, implying that
spot returns Granger cause futures returns.

EViews displays the Wald test (32) under
’View/ Lag Structure/ Granger Causality/
Block Exogeneity Tests’.
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4.6 Testing for Exogeneity: The general case

Consider the g = m + k dimensional vector
z′t = (y′t,x

′
t), which is assumed to follow a

VAR(p) model

(35) zt =
p∑

i=1

Πizt−i + νt

where

(36)
E(νt) = 0

E(νtν′s) =

{
Σν, t = s
0, t 6= s.

We wish to investigate Granger causality be-
tween the (m × 1) vector yt and the (k × 1)
vector xt, that is, whether the time series
contained in xt improve the forcasts of the
time series contained in yt beyond using y’s
own history, and vice versa.

If x does not Granger cause y, then we say in
this context that x is block-exogeneous to y

in order to stress that the vectors contain
more than a single time series.
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For that purpose, partition the VAR of z as
(37)
yt =

∑p
i=1 C2ixt−i +

∑p
i=1 D2iyt−i + ν1t

xt =
∑p
i=1 E2ixt−i +

∑p
i=1 F2iyt−i + ν2t

where ν′t = (ν′1t, ν
′
2t) and Σν are correspond-

ingly partitioned as

(38) Σν =

(
Σ11 Σ12
Σ21 Σ22

)
with E(νitν

′
jt) = Σij, i, j = 1,2.

Now x does not Granger-cause y if and only if
C2i ≡ 0, or equivalently, if and only if |Σ11| =
|Σ1|, where Σ1 = E(η1tη

′
1t) with η1t from the

regression

(39) yt =
p∑

i=1

C1iyt−i + η1t.

Changing the roles of the variables we get
the necessary and sufficient condition of y
not Granger-causing x.

Testing for the Granger-causality of x on y
reduces then to testing the hypothesis

H0 : C2i = 0 against H1 : C2i 6= 0.
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This can be done with the likelihood ratio

test by estimating with OLS the restricted ∗

and non-restricted † regressions, and calcu-

lating the respective residual covariance ma-

trices:

Unrestricted:

(40) Σ̂11 =
1

T − p

T∑
t=p+1

ν̂1tν̂
′
1t

Restricted:

(41) Σ̂1 =
1

T − p

T∑
t=p+1

η̂1tη̂
′
1t.

The LR test is then

(42)

LR = (T − p)
(
ln |Σ̂1| − ln |Σ̂11|

)
∼ χ2

mkp,

if H0 is true.

∗Perform OLS regressions of each of the elements in
y on a constant, p lags of the elements of x and p
lags of the elements of y.
†Perform OLS regressions of each of the elements in
y on a constant and p lags of the elements of y.
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Example:
(UK stock and bond time series continued.)
Let us investigate whether the stock indices
Granger cause the interest rate series.

 Vector Autoregression Estimates

 Vector Autoregression Estimates
 Date: 02/13/13   Time: 13:47
 Sample: 1965M04 1995M12
 Included observations: 369
 Standard errors in ( ) & t-statistics in [ ]

DR20 DTBILL

DR20(-1)  0.338822  0.384765
 (0.05885)  (0.10772)
[ 5.75756] [ 3.57201]

DR20(-2) -0.121348 -0.090376
 (0.05981)  (0.10948)
[-2.02889] [-0.82552]

DTBILL(-1) -0.022618  0.246859
 (0.03228)  (0.05909)
[-0.70069] [ 4.17797]

DTBILL(-2)  0.030179 -0.016474
 (0.03164)  (0.05792)
[ 0.95368] [-0.28441]

C  0.041421 -0.029794
 (0.16938)  (0.31003)
[ 0.24455] [-0.09610]

 R-squared  0.095495  0.139897
 Adj. R-squared  0.085556  0.130445
 Sum sq. resids  3849.967  12899.01
 S.E. equation  3.252204  5.952886
 F-statistic  9.607556  14.80129
 Log likelihood -956.2451 -1179.322
 Akaike AIC  5.210000  6.419087
 Schwarz SC  5.262992  6.472079
 Mean dependent  0.052983 -0.013968
 S.D. dependent  3.400942  6.383798

 Determinant resid covariance (dof adj.)  294.3394
 Determinant resid covariance  286.4167
 Log likelihood -2090.976
 Akaike information criterion  11.38740
 Schwarz criterion  11.49339

So |Σ̂1| = 286.4167 in the restricted model.
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 Vector Autoregression Estimates

 Vector Autoregression Estimates
 Date: 02/13/13   Time: 10:33
 Sample (adjusted): 1965M04 1995M12
 Included observations: 369 after adjustments
 Standard errors in ( ) & t-statistics in [ ]

DR20 DTBILL

DR20(-1)  0.291443  0.378387
 (0.06215)  (0.11530)
[ 4.68935] [ 3.28190]

DR20(-2) -0.138976 -0.076893
 (0.06391)  (0.11857)
[-2.17439] [-0.64850]

DTBILL(-1) -0.024714  0.244177
 (0.03202)  (0.05940)
[-0.77185] [ 4.11071]

DTBILL(-2)  0.037882 -0.012430
 (0.03157)  (0.05857)
[ 1.19981] [-0.21222]

C  0.137442 -0.036121
 (0.17579)  (0.32610)
[ 0.78187] [-0.11077]

DFTA(-1) -0.057670 -0.040784
 (0.06832)  (0.12673)
[-0.84416] [-0.32181]

DFTA(-2) -0.026210  0.038316
 (0.06918)  (0.12834)
[-0.37885] [ 0.29855]

DDIV(-1) -0.039136 -0.001885
 (0.06608)  (0.12259)
[-0.59225] [-0.01538]

DDIV(-2) -0.001959  0.013840
 (0.02911)  (0.05400)
[-0.06732] [ 0.25629]

 R-squared  0.123435  0.143822
 Adj. R-squared  0.103956  0.124796
 Sum sq. resids  3731.042  12840.15
 S.E. equation  3.219318  5.972192
 F-statistic  6.336766  7.559173
 Log likelihood -950.4561 -1178.478
 Akaike AIC  5.200304  6.436193
 Schwarz SC  5.295689  6.531578
 Mean dependent  0.052983 -0.013968
 S.D. dependent  3.400942  6.383798

 Determinant resid covariance (dof adj.)  290.0625
 Determinant resid covariance  276.0856
 Log likelihood -2084.198
 Akaike information criterion  11.39403
 Schwarz criterion  11.58480 31



From the previous EViews output we find

that |Σ̂11| = 276.0856 in the unrestricted

VAR model of order p = 2.

The LR test statistics (42) is therefore

LR=(369−2)(ln 286.4167−ln 276.0856)=13.48.

The LR test statistics without small sam-

ple correction (dropping -2) is 13.556, which

may be also obtained directly from the EViews

Log likelihood output as

LR = −2(−2090.976−(−2084.198)) = 13.556.

The 10% and 5% critical values for the χ2(8)

distribution are 13.36 and 15.51, respectively.

Hence, while there is some indication that

current stock returns might be helpful in ex-

plaining future bond returns, the effect is not

yet statistically significant at α = 5%.
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Geweke’s∗ measures of Linear Dependence

Above we tested Granger-causality, but there

are several other interesting relations that are

worth investigating.

Geweke has suggested a measure for linear

feedback from x to y based on the matrices

Σ1 and Σ11 as

(43) Fx→y = ln(|Σ1|/|Σ11|),

so that the statement that ”x does not (Granger)

cause y” is equivalent to Fx→y = 0. Similarly

the measure of linear feedback from y to x

is defined by

(44) Fy→x = ln(|Σ2|/|Σ22|).

∗Geweke (1982) Journal of the American Statistical
Association, 79, 304–324.
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It may also be interesting to investigate the

instantaneous causality between the variables.

For that purpose, premultiplying the earlier

VAR system of y and x by(
Im −Σ12Σ−1

22
Σ21Σ−1

11 Ik

)
gives a new system of equations, where the

first m equations become (exercise)

(45) yt =
p∑

i=0

C3ixt−i +
p∑

i=1

D3iyt−i + ω1t,

with the error ω1t = ν1t −Σ12Σ−1
22 ν2t that is

uncorrelated with ν2t
∗ and consequently with

xt (important!). That is, we may describe

the same structural relationship between yt
and xt with contemporenously uncorrelated

error terms for the price of including the cur-

rent value xt as additional explanatory vari-

able.

∗Cov(ω1t, ν2t) = Cov(ν1t − Σ12Σ−1
22 ν2t, ν2t) =

Cov(ν1t, ν2t)−Σ12Σ−1
22 Cov(ν2t, ν2t) = Σ12 −Σ12 = 0
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Similarly, the last k equations can be written

as

(46) xt =
p∑

i=1

E3ixt−i +
p∑

i=0

F3iyt−i + ω2t.

Denoting Σωi = E(ωitω
′
it), i = 1,2, there is

instantaneous causality between y and x if

and only if C30 6= 0 and F30 6= 0 or, equiva-

lently, |Σ11| > |Σω1| and |Σ22| > |Σω2|. Anal-

ogously to the linear feedback we can define

instantaneous linear feedback

(47)

Fx·y = ln(|Σ11|/|Σω1|) = ln(|Σ22|/|Σω2|).

A concept closely related to the idea of lin-

ear feedback is that of linear dependence, a

measure of which is given by

(48) Fx,y = Fx→y + Fy→x + Fx·y.

Consequently the linear dependence can be

decomposed additively into three forms of

feedback. Absence of a particular causal or-

dering is then equivalent to one of these feed-

back measures being zero.
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Using the method of least squares we get

estimates for the various matrices above as

(49) Σ̂i = (T − p)−1
T∑

t=p+1

η̂itη̂
′
it,

(50) Σ̂ii = (T − p)−1
T∑

t=p+1

ν̂itν̂
′
it,

(51) Σ̂ωi = (T − p)−1
T∑

t=p+1

ω̂itω̂
′
it,

for i = 1,2. For example, returning to the

UK stock and bond returns:

F̂x→y = ln(|Σ̂1|/|Σ̂11|)
= ln(286.4167/276.0856)

= 0.036737

Note that in each case (T − p)F̂ is the LR-

statistic:

LR = (369−2) · 0.036737 = 13.48,

the same result as we found earlier.
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With these estimates one can test the par-

ticular dependencies,

No Granger-causality: x→ y H01 : Fx→y = 0

(52) (T − p)F̂x→y ∼ χ2
mkp.

No Granger-causality: y→ x H02 : Fy→x = 0

(53) (T − p)F̂y→x ∼ χ2
mkp.

No instantaneous feedback: H03 : Fx·y = 0

(54) (T − p)F̂x·y ∼ χ2
mk.

No linear dependence: H04 : Fx,y = 0

(55) (T − p)F̂x,y ∼ χ2
mk(2p+1).

This last is due to the asymptotic indepen-

dence of the measures Fx→y, Fy→x and Fx·y.

There are also so called Wald and Lagrange

Multiplier (LM) tests for these hypotheses

that are asymptotically equivalent to the LR

test.
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Example: (UK returns continued.)

Running the appropriate regressions yields

|Σ̂ω2| = 203.9899, |Σ̂22| = 232.2855, |Σ̂2| = 245.4944,

and |Σ̂ω1| = 242.4533, such that

F̂y→x = 0.05531, F̂x·y = 0.1299,

and recalling that F̂x→y = 0.03674:

F̂x,y = 0.03674+0.05531+0.1299 = 0.22195.

The LR-statistics of the above measures and

the associated p values for the equity-bond

data are reported in the following table:

[x′ = (∆ log FTAt,∆ log DIVt) and y′ = (∆ log Tbillt,∆ log r20t)]

==================================
LR DF P-VALUE

----------------------------------
x-->y 13.48 8 0.0963
y-->x 20.30 8 0.0093
x.y 47.67 4 0.0000
x,y 81.46 20 0.0000
==================================

There is thus linear dependence between bond and

stock returns mainly due to instantaneous feedback

but also due to Granger-causality from bonds to stocks.
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4.7 Variance decomposition and innovation

accounting

Consider the VAR(p) model

(56) Φ(L)yt = εt,

where

(57) Φ(L) = Im −Φ1L−Φ2L
2 − · · · −ΦpL

p

is the lag polynomial of order p with m ×m
coefficient matrices Φi, i = 1, . . . p.

Provided that the stationarity condition holds

we may obtain a vector MA representation of

yt by left multiplication with Φ−1(L) as

(58) yt = Φ−1(L)εt = Ψ(L)εt

where

(59)

Φ−1(L) = Ψ(L) = Im + Ψ1L+ Ψ2L
2 + · · · .
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The m × m coefficient matrices Ψ1,Ψ2, . . .
may be obtained from the identity
(60)

Φ(L)Ψ(L) = (Im−
p∑

i=1

ΦiL
i)(Im+

∞∑
i=1

ΨiL
i) = Im

as

(61) Ψj =
j∑

i=1

Ψj−iΦi

with Ψ0 = Im and Φi = 0 when i > p, by
multiplying out and setting the resulting co-
efficient matrix for each power of L equal to
zero. For example, start with L1

1 = L1:

−Φ1L1 + Ψ1L1 = (Ψ1 −Φ1)L1 ≡ 0

⇒ Ψ1 = Φ1 = Ψ0Φ1 =
1∑
i=1

Ψ1−iΦi

Consider next L2
1:

Ψ2L
2
1 −Ψ1Φ1L

2
1 −Φ2L

2
1 ≡ 0

⇒ Ψ2 = Ψ1Φ1 + Φ2 =
2∑
i=1

Ψ2−iΦi

The result generalizes to any power Lj1, which
yields the transformation formula given above.
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Now, since

(62) yt+s = Ψ(L)εt+s = εt+s +
∞∑
i=1

Ψiεt+s−i

we have that the effect of a unit change in

εt on yt+s is

(63)
∂yt+s

∂εt
= Ψs.

Now the εt’s represent shocks in the sys-

tem. Therefore the Ψi matrices represent

the model’s response to a unit shock (or in-

novation) at time point t in each of the vari-

ables i periods ahead. Economists call such

parameters dynamic multipliers.

The response of yi to a unit shock in yj is

therefore given by the sequence below, known

as the impulse response function,

(64) ψij,1, ψij,2, ψij,3, . . . ,

where ψij,k is the ijth element of the matrix

Ψk (i, j = 1, . . . ,m).
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For example if we were told that the first el-

ement in εt changes by δ1 at the same time

that the second element changed by δ2, . . . ,

and the mth element by δm, then the com-

bined effect of these changes on the value of

the vector yt+s would be given by

(65)

∆yt+s =
∂yt+s

∂ε1t
δ1 + · · ·+

∂yt+s

∂εmt
δm = Ψsδ,

where δ′ = (δ1, . . . , δm).

Generally an impulse response function traces

the effect of a one-time shock to one of the

innovations on current and future values of

the endogenous variables.
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Example: Exogeneity in MA representation

Suppose we have a bivariate VAR system

such that xt does not Granger cause yt. Then

(66)(
yt
xt

)
=

 φ
(1)
11 0

φ
(1)
21 φ

(1)
22

( yt−1
xt−1

)
+ · · ·

+

 φ
(p)
11 0

φ
(p)
21 φ

(p)
22

( yt−p
xt−p

)
+

(
ε1,t
ε2,t

)
.

The coefficient matrices Ψj =
∑j
i=1 Ψj−iΦi

in the corresponding MA representation are

lower triangular as well (exercise):

(67)(
yt
xt

)
=

(
ε1,t
ε2,t

)
+
∞∑
i=1

ψ(i)
11 0

ψ
(i)
21 ψ

(i)
22

(ε1,t−i
ε2,t−i

)

Hence, we see that variable y does not react

to a shock in x. Similarly, if there are exoge-

neous variables in a m-variate VAR, then the

implied zero restrictions in the Ψj matrices

ensure that the endogeneous variables do not

react to shocks in the exogeneous variables.
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Ambiguity of impulse response functions

Consider a bivariate VAR model in vector MA

representation, that is,

(68) yt = Ψ(L)εt with E(εtε
′
t) = Σε,

where Ψ(L) gives the response of yt = (yt1, yt2)′

to both elements of εt, that is, εt1 and εt2.

Just as well we might be interested in evalu-

ating responses of yt to linear combinations

of εt1 and εt2, for example to unit move-

ments in εt1 and εt2 + 0.5εt1. This may be

done by defining new shocks νt1 = εt1 and

νt2 = εt2 + 0.5εt1, or in matrix notation

(69) νt = Qεt with Q =

(
1 0

0.5 1

)
.
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The vector MA representation of our VAR in

terms of the new shocks becomes then

(70)

yt = Ψ(L)εt = Ψ(L)Q−1Qεt =: Ψ∗(L)νt

with

(71) Ψ∗(L) = Ψ(L)Q−1.

Note that both representations are observa-

tionally equivalent (they produce the same

yt), but yield different impulse response func-

tions. In particular,

(72) ψ∗0 = ψ0 ·Q−1 = I ·Q−1 = Q−1,

which implies that single component shocks

may now have contemporaneous effects on

more than one component of yt. Also the co-

variance matrix of residuals will change, since

E(νtν
′
t) = E(Qεtε

′
tQ
′) 6= Σε unless Q = I.

But the fact that both representations are

observationally equivalent implies that we must

make a choice which linear combination of

the εti’s we find most useful to look at in the

response analysis!
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Orthogonalized impulse response functions

Usually the components of εt are contempo-
raneously correlated, meaning that they have
overlapping information to some extend. For
example in our VAR(2) model of the equity-
bond data the contemporaneous residual cor-
relations are

=================================
FTA DIV R20 TBILL

---------------------------------
FTA 1
DIV 0.910 1
R20 -0.307 -0.211 1
TBILL -0.150 0.099 0.464 1
=================================

In impulse response analysis, however, we wish
to describe the effects of shocks to a single
series only, such that we are able to discrim-
inate between the effects of shocks applied
to different series. It is therefore desirable
to express the VAR in such a way that the
shocks become orthogonal, (that is, the εti’s
are uncorrelated). Additionally it is conve-
nient to rescale the shocks such that they
have unit variance.
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So we want to pick a Q such that E(νtν′t) = I.

This may be accomplished by coosing Q such

that

(73) Q−1Q−1′ = Σε

since then

(74) E(νtν
′
t) = E(Qεtε

′
tQ
′) = E(QΣεQ

′) = I.

Unfortunately there are many different Q’s,

whose inverse S = Q−1 act as ”square roots”

for Σε, that is, SS′ = Σε.

This may be seen as follows. Choose any

orthogonal matrix R (that is, RR′ = I) and

set S∗ = SR. We have then

(75) S∗S∗′ = SRR′S′ = SS′ = Σε.

Which of the many possible S’s, respectively

Q’s, should we choose?
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Before turning to a clever choice of Q (resp. S),

let us briefly restate our results obtained so

far in terms of S = Q−1.

If we find a matrix S such that SS′ = Σε, and

transform our VAR residuals such that

(76) νt = S−1εt,

then we obtain an observationally equivalent

VAR where the shocks are orthogonal (i.e.

uncorrelated with a unit variance), that is,

(77)

E(νtν
′
t) = S−1E(εtε

′
t)S
′−1

= S−1ΣεS
′−1

= I.

The new vector MA representation becomes

(78) yt = Ψ∗(L)νt =
∞∑
i=0

ψ∗i νt−i,

where ψ∗i = ψiS (m × m matrices) so that

ψ∗0 = S 6= Im. The impulse response function

of yi to a unit shock in yj is then given by the

orthogonalised impulse response function

(79) ψ∗ij,0, ψ
∗
ij,1, ψ

∗
ij,2, . . . .
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Choleski Decomposition & Ordering of Variables

Note that every orthogonalization of corre-
lated shocks in the original VAR leads to con-
temporaneous effects of single component
shocks νti to more than one component of
yt, since ψ0 = S will not be diagonal unless
Σε was diagonal already.

One generally used method is to choose S to
be a lower triangular matrix. This is called
the Cholesky decomposition which results in
a lower triangular matrix with positive main
diagonal elements for Ψ∗0 = ImS = S, e.g.
(80)(
y1,t
y2,t

)
=

ψ∗(0)
11 0

ψ
∗(0)
21 ψ

∗(0)
22

(ν1,t
ν2,t

)
+Ψ∗(1)νt−1+. . .

Hence Cholesky decomposition of Σε implies
that the second shock ν2,t does not affect
the first variable y1,t contemporaneously, but
both shocks can have a contemporaneous ef-
fect on y2,t (and all following variables, if we
had choosen an example with more than two
components). Hence the ordering of vari-
ables is important!
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Example: (Oil spot and futures continued.)
O. IRF’s ψ∗ij,k when spots are the first series:
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O. IRF’s ψ∗ij,k with futures as first series:
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Generalized Impulse Response Function

The preceding approach is somewhat unsat-
isfactory as its results may be heavily influ-
enced by the ordering of variables, which is a
choice made by the researcher rather than a
characteristic of the series.

In order to avoid this, the generalized impulse
response function at horizon s to a shock δj
in series j is defined as‡‡

(81) GI(s, δj) = Et[yt+s|εjt = δj]− Et[yt+s].

That is the difference in conditional expec-
tations of yt+s at time t whether a shock
occurs in series j or not.

Comparing this with (80) we find that this
coincides with the orthogonalized response
function using the j’s series as the first series
in the Cholesky decomposition. The other
components of the generalized and orthogo-
nalized response functions coincide only if the
residual covariance matrix Σε is diagonal.
‡‡Pesaran, M. Hashem and Yongcheol Shin (1998).

Impulse Response Analysis in Linear Multivariate
Models, Economics Letters, 58, 17-29.

51



Example: (Oil spot and futures continued.)

EViews output for the generalized impulse
response functions is given below:
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The generalized impulse responses to the spot
returns equal the orthogonalized impulse re-
sponses using spot returns as the first Cholesky
component, whereas the generalized impulse
responses to the futures returns equal the or-
thogonalized impulse responses using futures
returns as the first Cholesky component.
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Variance decomposition

Variance decomposition refers to the break-

down of the forecast error variance into com-

ponents due to shocks in the series. Basi-

cally, variance decomposition can tell a re-

searcher the percentage of the fluctuation in

a time series attributable to other variables

at selected time horizons.

More precisely, the uncorrelatedness of the

orthogonalized shocks νt’s allows us to de-

compose the error variance of the s step-

ahead forecast of yit into components ac-

counted for by these shocks, or innovations

(this is why this technique is usually called

innovation accounting). Because the inno-

vations have unit variances (besides the un-

correlatedness), the components of this error

variance accounted for by innovations to yj

is given by
∑s−1
l=0 ψ

∗(l)
ij

2
, as we shall see below.
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Consider an orthogonalized VAR with m com-

ponents in vector MA representation,

(82) yt =
∞∑
l=0

ψ∗(l)νt−l.

The s step-ahead forecast for yt is then

(83) Et(yt+s) =
∞∑
l=s

ψ∗(l)νt+s−l.

Defining the s step-ahead forecast error as

(84) et+s = yt+s − Et(yt+s)

we get

(85) et+s =
s−1∑
l=0

ψ∗(l)νt+s−l.

It’s i’th component is given by

(86)

ei,t+s=
s−1∑
l=0

m∑
j=1

ψ
∗(l)
ij νj,t+s−l =

m∑
j=1

s−1∑
l=0

ψ
∗(l)
ij νj,t+s−l.
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Now, because the shocks are both serially
and contemporaneously uncorrelated, we get
for the error variance

V(ei,t+s) =
m∑
j=1

s−1∑
l=0

V(ψ∗(l)ij νj,t+s−l)

=
m∑
j=1

s−1∑
l=0

ψ
∗(l)
ij

2
V(νj,t+s−l).(87)

Now, recalling that all shock components have
unit variance, this implies that

(88) V(ei,t+s) =
m∑
j=1

s−1∑
l=0

ψ
∗(l)
ij

2
 ,

where
∑s−1
l=0 ψ

∗(l)
ij

2
accounts for the error vari-

ance generatd by innovations to yj, as claimed.

Comparing this to the sum of innovation re-
sponses we get a relative measure how im-
portant variable js innovations are in the ex-
plaining the variation in variable i at different
step-ahead forecasts, i.e.,

(89) R2
ij,s = 100

∑s−1
l=0 ψ

∗(l)
ij

2

∑m
k=1

∑s−1
l=0 ψ

∗(l)
ik

2.
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Example: (Oil spot and futures continued.)

Spot returns as first Cholesky component:
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Variance Decomposition

Futures returns as first Cholesky component:
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On the ordering of variables

Here we see very clearly that when the resid-

uals are contemporaneously correlated, i.e.,

cov(εt) = Σε 6= I, the orthogonalized impulse

response coefficients and hence the variance

decompositions are not unique. There are no

statistical methods to define the ordering. It

must be done by the analyst!

Various orderings should be tried to check for

consistency of the resulting interpretations.

The principle is that the first variable should

be selected such that it is the only one with

potential immediate impact on all other vari-

ables. The second variable may have an im-

mediate impact on the last m−2 components

of yt, but not on y1t, the first component,

and so on. Of course this is usually a diffi-

cult task in practice.
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Variance Decomposition using

Generalized Impulse Responses

In an attempt to eliminate the dependence

on the ordering of the variables, Pesaran et al

suggest to calculate the percentage of fore-

cast error variance in series i caused by series

j as

(90) R
g
ij,s

2 = 100

∑s−1
l=0 ψ

g(l)
ij

2

∑m
k=1

∑s−1
l=0 ψ

∗(l)
ik

2,

that is, by replacing the orthogonal impulse

response functions ψ∗(l)ij with the correspond-

ing generalized impulse response functions

ψ
g(l)
ij in the numerator of (89). A problem

with this approach is that a proper split-up of

the forecast variance really requires orthogo-

nal components, i.e. the percentages above

do not sum up to 100%.
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Some authors attempt to tackle this problem

by renormalizing the R
g
ij,l

2 in (90) as

(91) R
g′
ij,s

2
= 100

∑s−1
l=0 ψ

g(l)
ij

2

∑m
k=1

∑s−1
l=0 ψ

g(l)
ik

2,

such that they sum up to 100%, but that

only masks the problem, because with non-

orthogonal shocks, we always have compo-

nents of the variance of which we don’t know

to which series they belong.

For that reason EViews does not have an

option to calculate variance decompositions

based upon generalized impulse responses.

On the other hand, generalized variance de-

composition is still useful for analyzing how

important shocks in certain series are relative

to shocks in other series, in a way that is not

influenced by the subjective ordering of the

series by the researcher.
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Calculating R
g
ij,s

2 and R
g′
ij,s

2
with EViews

Recall that the generalized impulse response

function ψ
g
ij coincides with the orthogonal

impulse response function ψ∗ij using series j

as the first series in the Cholesky decompo-

sition.

This allows us to calculate R
g
ij,s

2 generated

by series j by simply asking EViews to per-

form a variance decomposition using series

j as the first Cholesky component and only

considering that first Cholesky component.

In order to obtain R
g′
ij,s

2
, do this for all m

series and divide each R
g
ij,s

2 calculated above

by their sum
m∑
j=1

R
g
ij,s

2. Then multiply this

with 100, to get a percentage.
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Example: (Oil spot and futures continued.)

As an example consider EViews variance de-

composition output s = 9 periods after the

shock (period 10 in EViews). The variance

component due to a shock in the spot se-

ries using spots as the first Cholesky com-

ponent are 98.2644% for the spot series and

74.0526% for the futures series. The vari-

ance component due to a shock in the fu-

tures series using futures as the first Cholesky

component are 78.8621% for the spot series

and 76.1674% for the futures series. Hence

denoting spots with 1 and futures with 2:

R
g
ij,9

2
j = 1 j = 2

i = 1 98.2644 78.8621
i = 2 74.0526 76.1674
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Example: (continued.)

The renormalized variance components are

R
g′
11,9

2
= 100 ·

98.2644

98.2644 + 78.8621
= 55.477,

R
g′
12,9

2
= 100 ·

78.8621

98.2644 + 78.8621
= 44.523,

R
g′
21,9

2
= 100 ·

74.0526

74.0526 + 76.1674
= 49.296,

R
g′
22,9

2
= 100 ·

76.1674

74.0526 + 76.1674
= 50.704.

Hence, at this time horizon, shocks to the

time series themselves have only a slightly

larger impact upon the forecast variance than

shocks to the other series, the difference be-

ing slightly more pronounced for the spot

than for the futures series.
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On estimation of the impulse response coefficients

Consider the VAR(p) model

Φ(L)yt = εt,

with Φ(L) = Im −Φ1L −Φ2L
2 − · · · −ΦpLp.

Then under stationarity the vector MA rep-

resentation is

y = ε+ Ψ1εt−1 + Ψ2εt−2 + · · ·

When we have estimates of the AR-matrices

Φi denoted by Φ̂i, i = 1, . . . , p; the next prob-

lem is to construct estimates Ψ̂j for the MA

matrices Ψj. Recall that

Ψj =
j∑

i=1

Ψj−iΦi

with Ψ0 = Im, and Φj = 0 when i > p. The

estimates Ψ̂j can be obtained by replacing

the Φi’s by their corresponding estimates Φ̂i.
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Next we have to obtain the orthogonalized

impulse response coefficients. This can be

done easily, for letting S be the Cholesky de-

composition of Σε such that

Σε = SS′,

we can write

yt =
∑∞
i=0 Ψiεt−i

=
∑∞
i=0 ΨiSS

−1εt−i

=
∑∞
i=0 Ψ∗i νt−i,

where

Ψ∗i = ΨiS

and νt = S−1εt. Then

Cov(νt) = S−1ΣεS
′−1

= I.

The estimates for Ψ∗i are obtained by re-

placing Ψt with their estimates Ψ̂t and using

Cholesky decomposition of Σ̂ε.
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4.8 Cointegration

Motivation and Definition

Consider the unbiased forward rate hypoth-
esis, according to which the futures price of
an underlying should equal today’s expecta-
tion of the underlyings spot price one period
ahead, that is,

ft = Et(st+1),

where ft and st denote the logarithm of the
futures and the spot prices, respectively. Now,
as discussed earlier, rational expectations re-
quire that the forecasting errors

εt := st+1 − Et(st+1) = st+1 − ft
are serially uncorrelated with zero mean, in
particular εt should be stationary. This ap-
pears to be quite a special relationship, be-
cause both ft and st are I(1) variables, and
for most cases, linear combinations of I(1)
variables are I(1) variables themselves.

Whenever we can find a linear combination of
two I(1) variables, which is stationary, then
we say that the variables are cointegrated.
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Formally, consider two I(1) series xt and yt.

In general ut = yt − βxt ∼ I(1) for any β.

However, if there exist a β 6= 0 such that

yt − βxt ∼ I(0), then yt and xt are said to be

cointegrated.

If xt and yt are cointegrated then β in yt − βxt
is unique.

β is called the cointegration parameter and

(1, β) is called the cointgration vector (ci-

vector).
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Cointegrated series do not depart ”far away” from

each other. This will later allow us to set up so called

error correction models which can be used to forecast

each series based upon the value of the other series,

even though none of the series is stationary.

Example: Cointegrated series xt and yt with ci-vector

(1,−1), such that ut = yt − xt is stationary.
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Remark: If yt − βxt ∼ I(0), then xt − γyt ∼ I(0),

where γ = 1/β.

Note also that for any a 6= 0, ayt − aβxt ∼ I(0),

which implies that the cointegration param-

eter β is unique when a is fixed to unity.

Remark: If xt ∼ I(0) and yt ∼ I(0) then for

any a, b ∈ R, axt + byt ∼ I(0)

If xt ∼ I(1) and yt ∼ I(0) then for any a, b ∈ R,

a 6= 0, axt + byt ∼ I(1).
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The general definition of cointegration with
n series x1t, . . . , xnt compiled in a vector xt is:

The components of xt = (x1t, . . . , xnt)
′ are

said to be cointegrated of order d, b, denoted
by xt ∼ CI(d, b), if

1. all components of xt are integrated of the
same order d,

2. there exists a vector β = (β1, . . . , βn) 6= 0
such that βxt ∼ I(d− b), where b > 0.

Note: The most common case is xt ∼ CI(1,1).

Example: unbiased forward rate hypothesis
xt := (st+1, ft)

′ is cointegrated of order 1,1
with cointegrating vector β = (1,−1) since:

1. st+1, ft ∼ I(1), and
2. (1,−1)(st+1, ft)

′ = εt ∼ I(0).

Note: When arguing for cointegration between
futures and spot prices we assumed both ra-
tional expectations and forward rate unbi-
asedness. Whether that holds true, is really
an empirical matter which needs to be tested.
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Testing for cointegration

(a) Known ci-relation

If the ci-vector (1,−β) is known (i.e., β is

known, e.g. β = 1), testing for cointegration

means testing for stationarity of

(92) ut = yt − βxt.

Testing can be worked out with the ADF

testing.

Note that in ADF testing the null hypothesis

is that the series is I(1).

When applied to ci-testing (with known ci-vector) an
ADF test indicates cointegration when the ADF null
hypothesis

(93) H0 : ut ∼ I(1)

is rejected, where ut = yt − βxt.
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Example: (Oil spot and futures continued.)
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Both the spot and the future prices look in-

tegrated, whereas their difference is clearly

mean-reverting. Indeed, the ADF-test below

confirms that the spot and future prices are

cointegrated with cointegrating vector β =

(1,−1), since (1,−1)(ft, st)′ ∼ I(0):

Augmented Dickey-Fuller Unit Root Test on SPREAD

Null Hypothesis: SPREAD has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=19)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -23.37333  0.0000
Test critical values: 1% level -3.439881

5% level -2.865637
10% level -2.569009

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(SPREAD)
Method: Least Squares
Date: 03/04/13   Time: 11:37
Sample (adjusted): 6/25/1996 2/26/1999
Included observations: 670 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

SPREAD(-1) -0.900534 0.038528 -23.37333 0.0000
C -0.002982 0.007077 -0.421379 0.6736

R-squared 0.449895    Mean dependent var 0.000381
Adjusted R-squared 0.449071    S.D. dependent var 0.246763
S.E. of regression 0.183158    Akaike info criterion -0.553949
Sum squared resid 22.40941    Schwarz criterion -0.540495
Log likelihood 187.5730    Hannan-Quinn criter. -0.548738
F-statistic 546.3127    Durbin-Watson stat 2.008427
Prob(F-statistic) 0.000000
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(b) Unknown ci-relation (Engle-Granger method)

When the ci-parameter β is unknown, then
cointegration testing can be done by running
the ci-regression

(94) yt = β0 + β1xt + ut

where β0 and β1 are estimated from the data.
If ut is stationary, then xt and yt are cointe-
grated with ci-parameter β1.

Example: (Oil spot and futures continued.)

Dependent Variable: FUTURE
Method: Least Squares
Date: 03/04/13   Time: 13:10
Sample: 6/24/1996 2/26/1999
Included observations: 671

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.066100 0.032051 2.062342 0.0396
SPOT 0.996215 0.001701 585.5426 0.0000

R-squared 0.998053    Mean dependent var 18.37030
Adjusted R-squared 0.998050    S.D. dependent var 4.149906
S.E. of regression 0.183271    Akaike info criterion -0.552725
Sum squared resid 22.47055    Schwarz criterion -0.539286
Log likelihood 187.4393    Hannan-Quinn criter. -0.547520
F-statistic 342860.2    Durbin-Watson stat 1.801523
Prob(F-statistic) 0.000000

β1 ≈ 1 and the residuals are stationary (not shown),

implying cointegration with ci-vector (1,-0.9962).
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Cointegration and Error Correction

Consider two I(1) variables x1 and x2, for
which the equilibrium relationship x1 = βx2

holds. Now suppose that the equilibrium is
currently disturbed, x1,t > βx2,t, say. In that
case there are three possibilities to restore
equilibium:

1. a decrease in x1 and/or an increase in x2,
2. an increase in x1 but a larger increase in x2,
3. a decrease in x2 but a larger decrease in x1.

Such a dynamic may be modelled in an error correction

model as follows:

∆x1,t = − α1(x1,t−1 − βx2,t−1) + ε1,t, α1 > 0

∆x2,t = α2(x1,t−1 − βx2,t−1) + ε2,t, α2 > 0

where ε1,t and ε2,t are (possibly correlated)
white noise processes and α1 and α2 may be
interpreted as speed of adjustment param-
eters to the equilibium. Note that validity
of the error correction model above requires
x1, x2 ∼ CI(1,1) with cointegrating vector
(1,−β), since both ∆xi,t and εi,t are assumed
to be stationary!
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Nothing about this cointegration requirement changes
if we introduce lagged changes into the model:

∆x1,t = a10 − α1(x1,t−1 − βx2,t−1)

+
p∑

i=1

a11(i)∆x1,t−i +
p∑

i=1

a12(i)∆x2,t−i + ε1,t,

∆x2,t = a20 + α2(x1,t−1 − βx2,t−1)

+
p∑

i=1

a21(i)∆x1,t−i +
p∑

i=1

a22(i)∆x2,t−i + ε2,t.

This is because εi,t and all terms involving ∆x1,t and
∆x2,t are stationary.

The result, that an error-correction representation im-

plies cointegrated variables, may be generalized to n

variables as follows. Formally the I(1) vector xt =

(x1t, . . . , xnt)′ is said to have an error-correction repre-

sentation if it may be expressed as

∆xt = π0 + πxt−1 +
p∑

i=1

πi∆xt−i + εt

where π0 is a (n × 1) vector of intercept terms, π

is a (n × n) matrix not equal to zero, πi are (n × n)

coefficient matrices and εt is a (n×1) vector of possibly

correlated white noise.
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Then the stationarity of ∆xt−i, i = 0,1, . . . , p

and εt implies that

πxt−1 = ∆xt − π0 −
p∑

i=1

πi∆xt−i − εt

is stationary with the rows of π as cointe-

grating vectors!

It can also be shown that any cointegration

relationship implies the existence of an error-

correction model. The equivalence of coin-

tegration and error-correction is summarized

in Granger’s representation theorem:

Let xt be a difference stationary vector pro-

cess. Then xt ∼ C(1,1) if and only if there

exists an error-correction representation of

xt:

∆xt = π0 + πxt−1 +
p∑

i=1

πi∆xt−i + εt, π 6= 0

such that πxt ∼ I(0).
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Note that the (n × n) matrix π in the error-

correction representation may be decomposed

into two (n× r) matrices α and β as π = αβ′,
where β′ contains the cointegrating (row) vec-

tors, α contains the (column) vectors of speed

of adjustment parameters to the respective

equilibria, and r ≤ n is the rank of π.

Example: For our two-component error cor-
rection model we had

∆xt =

(
∆x1,t

∆x2,t

)
=

(
−α1 α1β
α2 −α2β

)(
x1,t−1

x2,t−1

)
+

(
ε1,t

ε2,t

)
= πxt−1 + εt

with π =

(
−α1 α1β
α2 −α2β

)
=

(
−α1

α2

)(
1 −β

)
and rank(π) = 1, since the second row is −α2

α1
times the first row and the second column is

−β times the first column, so there is only 1

linearly independent vector involved.
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Error Correction and VAR

Consider again a multivariate difference sta-

tionary series yt = (y1t, . . . , ynt)
′. It has been

mentioned earlier, that modelling ∆yt in a

vector autoregression model is inappropriate

if yt is cointegrated. In order to see this

important point, assume that yt follows a

VAR(p) in levels:

yt = µ+
p∑

i=1

Φiyt−i + εt, εt ∼ NID(0,Σ).

We shall now show that it is always possible

to rewrite the VAR in levels as a vector error

correction model for the first differences. For

that purpose, introduce π :=
∑p
i=1 Φi − Im,

such that

∆yt = µ+ πyt−1 +
p∑

i=1

Φi(yt−i − yt−1) + εt.
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Now, note that

yt−1−yt−i = (yt−1−yt−2) + (yt−2−yt−3) + . . .+ (yt−i+1−yt−i)

=
i−1∑
j=1

∆yt−j

such that
p∑

i=1

Φi(yt−i−yt−1)=−
p∑

i=1

Φi(yt−1−yt−i) =−
p∑

i=1

Φi

i−1∑
j=1

∆yt−j

=−Φ2∆yt−1 −Φ3(∆yt−1 + ∆yt−2)− . . .−Φp

p−1∑
j=1

∆yt−j

=
p−1∑
i=1

Γi∆yt−i where Γi = −
p∑

j=i+1

Φj.

Therefore,

∆yt = µ+ πyt−1 +
p−1∑
i=1

Γi∆yt−i + εt.

Comparing this with an ordinary VAR in differences,

∆yt = µ+
p−1∑
i=1

Γi∆yt−i + εt

we notice that such a VAR in differences is misspec-

ified (by leaving out the explanatory variable yt−1)

whenever π 6= 0, which is exactly what is required

for yt being cointegrated. Intuitively, for cointegrated

series, the term πyt−1 is needed in order to model how

far the system is out of equilibrium.
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Cointegration and Rank

For notational convenience, consider the sim-
ple error correction model

∆yt = πyt−1 + εt, εt ∼ NID(0,Σ)

where yt = (y1t, . . . , ynt)
′ as before.

We shall show in the following that we can
use the rank of π in order to determine whether
yt is cointegrated. More precisely, the num-
ber of cointegrating relationships, or cointe-
grating vectors, is given by the rank of π.
There are 3 cases.

1. rank(π) = 0 which implies π = 0.
Therefore the model reduces to ∆yt = εt,
that is all yit ∼ I(1) since ∆yt = εt ∼ I(0),
and there is no linear combination of the
yti’s which is stationary because all vec-
tors β with the property βyt ∼ I(0) have
zero entries everywhere. So all compo-
nents of yt are unit root processes and yt
is not cointegrated.
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2. rank(π) = r with 1 ≤ r < n.
Consider first the case rank(π) = 1, that is, there
is only one linearly independent row in π, which
implies that all rows of π can be written as scalar
multiples of the first. Thus, each of the {∆yit}
sequences can be written as

∆yit =
πij

π1j
(π11y1,t−1+π12y2,t−1+. . .+π1nyn,t−1)+εit.

Hence, the linear combination

(π11y1,t−1+π12y2,t−1+. . .+π1nyn,t−1) =
π1j

πij
(∆yit−εit)

is stationary, since both ∆yit and εit are stationary.
So each row of π may be regarded as cointegrat-
ing vector of the same cointegrating relationship.

Similarly, if rank(π) = r, each row may be written
as a linear combination of r linearly independent
combinations of the {yit} sequences that are sta-
tionary. That is, there are r cointegrating rela-
tionships (cointegrating vectors).

3. rank(π) = n ⇒ the inverse matrix π−1 exists.
Premultiplying the error correction model with
π−1 yields then

π−1∆yt = yt−1 + π−1εt

such that all components of yt are stationary,
since both π−1∆yt and π−1εt are stationary. In
particular, yt is not cointegrated.
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Johansen’s Cointegration tests

Recall from introductory courses in matrix
algebra that the rank of a matrix equals the
number of its nonzero eigenvalues, also called
characteristic roots. Johansen’s (1988) test
procedure exploits this relationship for iden-
tifying the number of cointegrating relations
between non-stationary variables by testing
for the number of significantly nonzero eigen-
values of the (m×m) matrix π in

∆xt = π0 + πxt−1 +
p∑

i=1

πi∆xt−i + εt.

Specifically, the Johansen cointegration test
statistics are

1. λtrace(r) = −T
m∑
i=1

log(1− λ̂i), and

2. λmax(r, r + 1) = −T log(1− λ̂r+1),

referred to as trace statistics and maximum
eigenvalue statistics, where T is the number
of usable observations and λ̂i are the esti-
mated characteristic roots obtained from the
estimated π matrix in decreasing order.
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The first test statistic

λtrace(r) = −T
m∑

i=r+1

log(1− λ̂i)

tests the null hypothesis of less or equal to

r distinct cointegrating vectors against the

alternative of m cointegrating relations, that

is a stationary VAR in levels. Note that λtrace

equals zero when all λi = 0. The further the

estimated characteristic roots are from zero,

the more negative is log(1−λ̂i) and the larger

is λtrace.

The second test statistic

λmax(r, r + 1) = −T log(1− λ̂r+1)

= λtrace(r)− λtrace(r + 1)

tests the null of r cointegrating vectors against

the alternative of r+1 cointegrating vectors.

Again λmax will be small if λ̂r+1 is small.

Critical values of both the λtrace and λmax

statistics are obtained numerically via Monte

Carlo simulations.
83



Johansens cointegration tests in EViews

Johansens cointegration tests have, contrary

to the cointegration tests discussed earlier,

the advantage that they are able to identify

more than just a single cointegration rela-

tionship, which may happen when more than

just two series are involved.

In order to perform Johansens cointegration

tests in EViews, first set up a VAR in levels

for the series you suspect to be cointegrated,

and choose then View/Cointegration Test. . .

You may add exogenous variables which you

believe should be subtracted before the linear

combination of series becomes stationary.

You should include one lag less then the num-

ber of lags you’ve chosen in setting up your

VAR in levels, because the ’Lag Intervals’

field in the cointegration test procedure of

EViews refers to differences rather than lev-

els.
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Given that xt ∼ I(1) and yt ∼ I(1),

then in the testing procedure there are six
different options:

1) No intercept or trend in CE or VAR series:

xt = lags(xt, yt) + ext, ext ∼ I(0)

yt = lags(xt, yt) + eyt, eyt ∼ I(0)

yt = βxt + ut

Use this only of you are sure that there is no trend
and all series have zero mean.

2) Intercept in CE – no intercept in VAR:

xt = lags(xt, yt) + ext, ext ∼ I(0)

yt = lags(xt, yt) + eyt, eyt ∼ I(0)

yt = β0 + βxt + ut

Use this only of you are sure that there is no trend
in any of the series.

3) Intercept in CE and in VAR

xt = µx + lags(xt, yt) + ext, ext ∼ I(0)

yt = µy + lags(xt, yt) + eyt, eyt ∼ I(0)

yt = β0 + βxt + ut

This is the most common option in empirical work

and the default choice in EViews. It allows for both

stochastic and deterministic trends in the series.
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4) Intercept and trend in CE–only intercept in VAR

xt = µx + lags(xt, yt) + ext, ext ∼ I(0)

yt = µy + lags(xt, yt) + eyt, eyt ∼ I(0)

yt = β0 + δt+ βxt + ut

5) Intercept and trend in both CE and VAR

xt = µx + δxt+ lags(xt, yt) + ext, ext ∼ I(0)

yt = µy + δyt+ lags(xt, yt) + eyt, eyt ∼ I(0)

yt = β0 + δt+ βxt + ut

Both options 4 and 5 extend our discussion

of cointegration to the situation that a deter-

ministic trend must be subtracted from the

linear combination of the xt and yt series be-

fore it becomes stationary. We shall not dis-

cuss them further in this course.

EViews has also an option 6, which is just

a summary overview of the 5 trend assump-

tions above, which may be used for an assess-

ment how robust your findings are to differ-

ent trend assumptions.
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Example: (Oil spot and futures continued.)

We consider now logarithmic spot and future

prices, such that their differences become log

returns, and our results become comparable

to those we had earlier when setting up a

VAR in logreturns.

We choose a VAR(3) model because 3 lags

are suggested by the lag length criteria and

its residuals reasonably pass the Portmanteau

autocorrelation tests (not shown).

Applying the cointegration tests in EViews

using option 3 (both series obviously have a

trend) including 2 lags in differences we get

the output on the next slide, from which we

infer:

1. There is one cointegrating relationship.

2. β̂ = (1, −1.000724).

3. α̂ =

(
0.070491
0.738774

)
.
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Johansen Cointegration Test

Date: 03/05/13   Time: 10:11
Sample: 6/24/1996 2/26/1999
Included observations: 671
Trend assumption: Linear deterministic trend
Series: LOG(SPOT) LOG(FUTURE) 
Lags interval (in first differences): 1 to 2

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None *  0.199867  150.0553  15.49471  0.0001
At most 1  0.000651  0.437196  3.841466  0.5085

 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level
 * denotes rejection of the hypothesis at the 0.05 level
 **MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None *  0.199867  149.6181  14.26460  0.0001
At most 1  0.000651  0.437196  3.841466  0.5085

 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level
 * denotes rejection of the hypothesis at the 0.05 level
 **MacKinnon-Haug-Michelis (1999) p-values

 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I): 

LOG(SPOT) LOG(FUTURE)
-195.2418  195.3831
-4.542973  8.831278

 Unrestricted Adjustment Coefficients (alpha): 

D(LOG(SPOT)) -0.000361 -0.000599
D(LOG(FUTUR -0.003784 -0.000401

1 Cointegrating Equation(s): Log likelihood  3934.610

Normalized cointegrating coefficients (standard error in parentheses)
LOG(SPOT) LOG(FUTURE)
 1.000000 -1.000724

 (0.00170)

Adjustment coefficients (standard error in parentheses)
D(LOG(SPOT)) 0.070491

 (0.17774)
D(LOG(FUTUR  0.738774

 (0.13198)

88



Estimating the VAR again, changing the VAR
type from Unrestricted VAR into Vector Er-
ror Correction, yields the output on the fol-
lowing slide, from which we infer the error
correction model below:

rs,t = 0.0705(0.002 + st−1 − 1.0007ft−1)

+ 0.2231rs,t−1 + 0.1811rs,t−2

− 0.3395rf,t−1 − 0.2108rf,t−2 − 0.00084,

rf,t = 0.7388(0.002 + st−1 − 1.0007ft−1)

+ 0.4165rs,t−1 + 0.2493rs,t−2

− 0.4683rf,t−1 − 0.2552rf,t−2 − 0.00077,

where s, f, rs and rf denote the log prices and
log returns in the spot and futures market,
respectively.

This implies that our earlier VAR(2) model
for spot and future returns was misspecified
by omitting the cointegration terms, which
also invalidates our earlier analysis on Granger
causality and linear dependence on that model.
Hence always test for cointegration be-
tween integrated series before trying to
fit a VAR in differences!
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 Vector Error Correction Estimates

 Vector Error Correction Estimates
 Date: 03/05/13   Time: 10:58
 Sample: 6/24/1996 2/26/1999
 Included observations: 671
 Standard errors in ( ) & t-statistics in [ ]

Cointegrating Eq: CointEq1

LOG(SPOT(-1))  1.000000

LOG(FUTURE(-1)) -1.000724
 (0.00170)
[-587.831]

C  0.002015

Error Correction: D(LOG(SPOT) D(LOG(FUTU

CointEq1  0.070491  0.738774
 (0.17774)  (0.13198)
[ 0.39660] [ 5.59773]

D(LOG(SPOT(-1)))  0.223140  0.416518
 (0.15453)  (0.11474)
[ 1.44401] [ 3.63003]

D(LOG(SPOT(-2)))  0.181110  0.249335
 (0.10538)  (0.07825)
[ 1.71869] [ 3.18654]

D(LOG(FUTURE(-1))) -0.339529 -0.468297
 (0.14981)  (0.11124)
[-2.26641] [-4.20984]

D(LOG(FUTURE(-2))) -0.210752 -0.255195
 (0.08875)  (0.06590)
[-2.37453] [-3.87225]

C -0.000844 -0.000766
 (0.00091)  (0.00068)
[-0.92553] [-1.13025]

 R-squared  0.028086  0.319991
 Adj. R-squared  0.020778  0.314878
 Sum sq. resids  0.369797  0.203891
 S.E. equation  0.023581  0.017510
 F-statistic  3.843330  62.58562
 Log likelihood  1565.340  1765.087
 Akaike AIC -4.647808 -5.243179
 Schwarz SC -4.607492 -5.202862
 Mean dependent -0.000725 -0.000708
 S.D. dependent  0.023830  0.021155

 Determinant resid covariance (dof adj.)  2.82E-08
 Determinant resid covariance  2.77E-08
 Log likelihood  3934.610
 Akaike information criterion -11.68587
 Schwarz criterion -11.59180
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Testing Hypotheses

Recalling the cointegration vector estimate

β̂ = (1, −1.000724) and the speed of adjust-

ment coefficients α̂1 = 0.070491 and α̂2 =

0.738774 it appears that the true cointegra-

tion vector might well be β = (1, −1) and

the speed of adjustment parameter for the

spot return α1 = 0.

These hypotheses can be tested. To do so,

enter the following VEC Coefficient Restric-

tions in the ’VEC Restrictions’ tab of the

Cointegration Test View:

A(1,1)=0, B(1,1)=1, B(1,2)=-1.

This extends the cointegration test output by

the LR-test presented on the next slide, from

which we infer, that this set of restrictions

cannot be rejected (p = 0.85), and a new

estimate for the speed of adjustment param-

eter for the future return of α̂2 = 0.689698.
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Johansen Cointegration Test

Date: 03/18/13   Time: 08:34
Sample: 6/24/1996 2/26/1999
Included observations: 671
Trend assumption: Linear deterministic trend
Series: LOG(SPOT) LOG(FUTURE) 
Lags interval (in first differences): 1 to 2

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None *  0.199867  150.0553  15.49471  0.0001
At most 1  0.000651  0.437196  3.841466  0.5085

 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level
 * denotes rejection of the hypothesis at the 0.05 level
 **MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None *  0.199867  149.6181  14.26460  0.0001
At most 1  0.000651  0.437196  3.841466  0.5085

 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level
 * denotes rejection of the hypothesis at the 0.05 level
 **MacKinnon-Haug-Michelis (1999) p-values

Restrictions: 

A(1,1)=0, B(1,1)=1, B(1,2)=-1

Tests of cointegration restrictions:

Hypothesized Restricted LR Degrees of
No. of CE(s) Log-likehood Statistic Freedom Probability

1  3934.449  0.322756 2  0.850970

1 Cointegrating Equation(s): Convergence achieved after 1 iterations.

Restricted cointegrating coefficients (standard error in parentheses)
LOG(SPOT) LOG(FUTURE)
 1.000000 -1.000000
 (0.00000)  (0.00000)

Adjustment coefficients (standard error in parentheses)
D(LOG(SPOT)) 0.000000

 (0.00000)
D(LOG(FUTUR  0.689698

 (0.05357)
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Estimating the Vector Error Correction model

under these restrictions yields the output on

the following slide, from which we infer:

rs,t =− 0.00084

+ 0.2261rs,t−1 + 0.1824rs,t−2

− 0.3420rf,t−1 − 0.2115rf,t−2,

rf,t =− 0.00077 + 0.6897(st−1 − ft−1)

+ 0.4197rs,t−1 + 0.2509rs,t−2

− 0.4713rf,t−1 − 0.2505rf,t−2,

where we have rounded the constant 7 ·10−5

in the cointegration equation down to zero.

Comparing this with the output for the unre-

stricted VAR we note that due to the restric-

tion α1 = 0 the spot return does not react

in any way to disturbances in the equilibrium

between spot and future prices.

When that happens to a variable, then we

say that this variable (here the spot return)

is weakly exogeneous with respect to the β

parameters.
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 Vector Error Correction Estimates

 Vector Error Correction Estimates
 Date: 03/18/13   Time: 08:39
 Sample: 6/24/1996 2/26/1999
 Included observations: 671
 Standard errors in ( ) & t-statistics in [ ]

Cointegration Restrictions: 
      A(1,1)=0, B(1,1)=1, B(1,2)=-1
Convergence achieved after 1 iterations.
Restrictions identify all cointegrating vectors
LR test for binding restrictions (rank = 1): 
Chi-square(2)  0.322756
Probability  0.850970

Cointegrating Eq: CointEq1

LOG(SPOT(-1))  1.000000

LOG(FUTURE(-1)) -1.000000

C -7.26E-05

Error Correction: D(LOG(SPOT) D(LOG(FUTU

CointEq1  0.000000  0.689698
 (0.00000)  (0.05357)

[ NA] [ 12.8743]

D(LOG(SPOT(-1)))  0.226088  0.419683
 (0.15433)  (0.11462)
[ 1.46496] [ 3.66164]

D(LOG(SPOT(-2)))  0.182374  0.250855
 (0.10530)  (0.07821)
[ 1.73189] [ 3.20766]

D(LOG(FUTURE(-1))) -0.341978 -0.471318
 (0.14960)  (0.11110)
[-2.28596] [-4.24219]

D(LOG(FUTURE(-2))) -0.211485 -0.256462
 (0.08869)  (0.06587)
[-2.38445] [-3.89347]

C -0.000843 -0.000765
 (0.00091)  (0.00068)
[-0.92474] [-1.12973]

 R-squared  0.028061  0.319733
 Adj. R-squared  0.020753  0.314618
 Sum sq. resids  0.369807  0.203968
 S.E. equation  0.023582  0.017513
 F-statistic  3.839858  62.51153
 Log likelihood  1565.331  1764.960
 Akaike AIC -4.647783 -5.242800
 Schwarz SC -4.607466 -5.202484
 Mean dependent -0.000725 -0.000708
 S.D. dependent  0.023830  0.021155

 Determinant resid covariance (dof adj.)  2.82E-08
 Determinant resid covariance  2.77E-08
 Log likelihood  3934.449
 Akaike information criterion -11.68539
 Schwarz criterion -11.59132
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Exogeneity in possibly cointegrated systems

We mentioned earlier that our original re-
sults concerning Granger causality in the oil
spot and futures market are void because
the series are cointegrated. EViews has an
option for testing Granger causality in error
correction models, but its results are flawed
because it takes only the lagged differencs
(i.e. returns) into account but not the all im-
portant lagged levels (i.e. prices).

In order to test for exogeneity in integrated
systems, no matter whether cointegrated or
not, Toda and Yamamoto (1995) suggest
the following simple procedure:

1. Fit a VAR model in levels of order p+ 1,
where p is the minimum order required to
render the residuals white noise.

2. Perform a Wald or LR-test in the usual
way, however considering only the first p
lags of the series/block being tested for
exogeneity.
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Example: (Oil spot and futures continued.)

In estimating a VAR model for the spot and

future rates themselves (so not the returns)

all information criteria and the LR-test sug-

gest a model of order p = 3, and the residuals

of such a VAR turn out to be white noise.

Hence, following Toda and Yamamoto (1995),

we regress spot (futures) rates upon a con-

stant and the first four lags of the the se-

ries itself and the other series. In testing for

exogeneity of futures (spots), we perform a

Wald test, by restricting the first three lags of

the future (spot) rates to zero. Both tests

reject exogeneity of the other series with a

p-value< 1%, so there is strong evidence of

Granger causality in both directions.

Note: In cointegrated systems there must

be Granger causality in at least one di-

rection because otherwise there would be no

mechanism to restore equilibrium.
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