
2. Pooled Cross Sections and Panels

2.1 Pooled Cross Sections versus Panel Data

Pooled Cross Sections are obtained by col-

lecting random samples from a large polula-

tion independently of each other at different

points in time. The fact that the random

samples are collected independently of each

other implies that they need not be of equal

size and will usually contain different statis-

tical units at different points in time.

Consequently, serial correlation of residuals

is not an issue, when regression analysis is

applied. The data can be pretty much an-

alyzed like ordinary cross-sectional data, ex-

cept that we must use dummies in order to

account for shifts in the distribution between

different points in time.
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Panel Data or longitudinal data consists of

time series for each statistical unit in the

cross section. In other words, we randomly

select our cross section only once, and once

that is done, we follow each statistical unit

within this cross section over time. Thus all

cross sections are equally large and consist of

the same statistical units.

For panel data we cannot assume that the

observations are independently distributed

across time and serial correlation of regres-

sion residuals becomes an issue. We must

be prepared that unobserved factors, while

acting differently on different cross-sectional

units, may have a lasting effect upon the

same statistical unit when followed through

time. This makes the statistical analysis of

panel data more difficult.
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2.2 Independent Pooled Cross Sections

Example 1: Women’s fertility over time.

Regressing the number of children born per

woman upon year dummies and controls such

as education, age etc. yields information about

the development of fertility unexplained by

the controls. (Base year 1972)

Dependent Variable: KIDS
Method: Least Squares
Date: 11/23/12   Time: 08:21
Sample: 1 1129
Included observations: 1129

Variable Coefficient Std. Error t-Statistic Prob.  

C -7.742457 3.051767 -2.537040 0.0113
EDUC -0.128427 0.018349 -6.999272 0.0000
AGE 0.532135 0.138386 3.845283 0.0001

AGESQ -0.005804 0.001564 -3.710324 0.0002
BLACK 1.075658 0.173536 6.198484 0.0000
EAST 0.217324 0.132788 1.636626 0.1020

NORTHCEN 0.363114 0.120897 3.003501 0.0027
WEST 0.197603 0.166913 1.183867 0.2367
FARM -0.052557 0.147190 -0.357072 0.7211

OTHRURAL -0.162854 0.175442 -0.928248 0.3535
TOWN 0.084353 0.124531 0.677367 0.4983

SMCITY 0.211879 0.160296 1.321799 0.1865
Y74 0.268183 0.172716 1.552737 0.1208
Y76 -0.097379 0.179046 -0.543881 0.5866
Y78 -0.068666 0.181684 -0.377945 0.7055
Y80 -0.071305 0.182771 -0.390136 0.6965
Y82 -0.522484 0.172436 -3.030016 0.0025
Y84 -0.545166 0.174516 -3.123871 0.0018

R-squared 0.129512     Mean dependent var 2.743136
Adjusted R-squared 0.116192     S.D. dependent var 1.653899
S.E. of regression 1.554847     Akaike info criterion 3.736447
Sum squared resid 2685.898     Schwarz criterion 3.816627
Log likelihood -2091.224     Hannan-Quinn criter. 3.766741
F-statistic 9.723282     Durbin-Watson stat 2.010694
Prob(F-statistic) 0.000000
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We can also interact a time dummy with key

explanatory variables to see if the effect of

that variable has changed over time.

Example 2:

Changes in the return to education and the

gender wage gap between 1978 and 1985.

Dependent Variable: LWAGE
Method: Least Squares
Date: 11/27/12   Time: 17:25
Sample: 1 1084
Included observations: 1084

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.458933 0.093449 4.911078 0.0000
EXPER 0.029584 0.003567 8.293165 0.0000

EXPER^2 -0.000399 7.75E-05 -5.151307 0.0000
UNION 0.202132 0.030294 6.672233 0.0000
EDUC 0.074721 0.006676 11.19174 0.0000

FEMALE -0.316709 0.036621 -8.648173 0.0000
Y85 0.117806 0.123782 0.951725 0.3415

Y85*EDUC 0.018461 0.009354 1.973509 0.0487
Y85*FEMALE 0.085052 0.051309 1.657644 0.0977

R-squared 0.426186     Mean dependent var 1.867301
Adjusted R-squared 0.421915     S.D. dependent var 0.542804
S.E. of regression 0.412704     Akaike info criterion 1.076097
Sum squared resid 183.0991     Schwarz criterion 1.117513
Log likelihood -574.2443     Hannan-Quinn criter. 1.091776
F-statistic 99.80353     Durbin-Watson stat 1.918367
Prob(F-statistic) 0.000000

The return to education has risen by about

1.85% and the gender wage gap narrowed by

about 8.5% between 1978 and 1985, other

factors being equal.
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Policy Analysis with Pooled Cross Sections

Example 3: How does a garbage incinerator’s location
affect housing prices? (Kiel and McClain 1995).
We use data on housing prices from 1978, before any
planning of an incinarator and from 1981, when con-
struction work began. Naively, one might be tempted
to use only 1981 data and to estimate a model like

(1) rprice = γ0 + γ1nearinc + u,

where rprice is the housing price in 1978 dollars and
nearinc is a dummy variable equal to one if the house
is near the incinerator. Estimation yields

r̂price =101 307.5− 30 688.27 nearinc,(2)

(t=32.75) (t=−5.266)

consistent with the notion that a location near a
garbage incinerator depresses housing prices. How-
ever, another possible interpretation is that incinera-
tors are built in areas with low housing prices. Indeed,
estimating (1) on 1978 data yields

r̂price =82 517.23− 18 824.37 nearinc.(3)

(t=31.09) (t=−3.968)

To find the price impact of the incinerator, calculate
the so called difference-in-differences estimator

δ̂1 = −30 688.27− (−18 824.37) = −11 863.9.

So in this sample, vincinity of an incinerator depresses

housing prices by almost $12 000 on average, but we

don’t know yet whether the effect is statistically sig-

nificant.
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The previous example is called a natural ex-
periment (or a quasi-experiment). It occurs
when some external event (often a policy
change) affects some group, called the treat-
ment group, but leaves another group, called
the control group, unaffected. It differs from
a true experiment in that these groups are
not randomly and explicitely chosen.

Let DT be a dummy variable indicating whether
an observation is from the treatment group
and Dafter be a dummy variable indicating
whether the observation is from after the ex-
ogeneous event. Then the impact of the ex-
ternal event on y is given by δ1 in the model

y =β0 + δ0Dafter + β1DT + δ1Dafter ·DT(4)

(+other factors).

If no other factors are included, δ̂1 will be
the difference-in-differences estimator

(5) δ̂1 = (ȳafter,T − ȳbef.,T )− (ȳafter,C − ȳbef.,C),

where T and C denote the treatment and
control group, respectively.
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Example 3: (continued.)

Estimating (4) yields

r̂price = 82 517 + 18 790 y81 −18 824 nearinc− 11 863 y81 · nearinc
(t=30.26) (t=4.64) (t=−3.86) (t=−1.59)

The p-value on the interaction term is 0.1126, so it
is not yet significant. This changes however, once
additional controls enter (4):

Dependent Variable: RPRICE
Method: Least Squares
Date: 11/29/12   Time: 08:28
Sample: 1 321
Included observations: 321

Variable Coefficient Std. Error t-Statistic Prob.  

C 13807.67 11166.59 1.236515 0.2172
Y81 13928.48 2798.747 4.976683 0.0000

NEARINC 3780.337 4453.415 0.848862 0.3966
Y81*NEARINC -14177.93 4987.267 -2.842827 0.0048

AGE -739.4510 131.1272 -5.639189 0.0000
AGE^2 3.452740 0.812821 4.247845 0.0000
INTST -0.538635 0.196336 -2.743437 0.0064
LAND 0.141420 0.031078 4.550529 0.0000
AREA 18.08621 2.306064 7.842891 0.0000

ROOMS 3304.227 1661.248 1.989003 0.0476
BATHS 6977.317 2581.321 2.703002 0.0073

R-squared 0.660048    Mean dependent var 83721.36
Adjusted R-squared 0.649082    S.D. dependent var 33118.79
S.E. of regression 19619.02    Akaike info criterion 22.64005
Sum squared resid 1.19E+11    Schwarz criterion 22.76929
Log likelihood -3622.729    Hannan-Quinn criter. 22.69166
F-statistic 60.18938    Durbin-Watson stat 1.677080
Prob(F-statistic) 0.000000

We conclude that vincinity of a garbage incinerator

depresses housing prices by about $14,178 (at 1978

value), when controlling for other valuation-relevant

properties of the house (p = 0.0048).
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2.3 First-Difference Estimation in Panels

Recall from Econometrics 1 that omitting

important variables in the model may induce

severe bias to all parameter estimates. This

was called the omitted variable bias. Panel

data allows to mitigate, if not eliminate, this

problem.

Example 4.
Crime and unemployment rates for 46 cities in 1982
and 1987. Regressing the crimerate (crimes per 1 000
people) crmte upon the unemployment rate unem (in
percent) yields for the 1987 cross section

ĉrmrte = 128.38 − 4.16unem.

(t=6.18) (t=−1.22)

Even though unemployment is nonsignificant (p=0.23),

a causal interpretation would imply that an increase

in unemployment lowers the crime rate, which is hard

to believe. The model probably suffers from omitted

variable bias.
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With panel data we view the unobserved fac-
tors affecting the dependent variable as con-
sisting of two types: those that are constant
and those that vary over time. Letting i de-
note the cross-sectional unit and t time:

(6) yit = β0 + δ0D2,t + β1xit + ai + uit. t=1,2

The dummy variable D2,t is zero for t = 1

and one for t = 2. It models the time-varying

part of the unobserved factors. The variable

ai captures all unobserved, time-constant fac-

tors that affect yit. ai is generally called an

unobserved or fixed effect. uit is called the

idiosyncratic error. A model of the form (6)

is called an unobserved effects model or fixed

effects model.

Example 4 (continued). A fixed effects model
for city crime rates in 1982 and 1987 is

(7) crmrteit = β0 + δ0D87,t + β1unemit + ai + uit,

where D87 is dummy variable for 1987.
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Naively, we might go and estimate a fixed

effects model by pooled OLS. That is, we

write (6) in the form

(8) yit = β0 + δ0D2,t + β1xit + νit, t=1,2,

and apply OLS, where νit = ai + uit is called

the composite error.

Such an approach is problematic for two rea-

sons. As a minor complication it turns out

that Cov(νi1, νi2) = V (ai) even though ai and

uit are pairwise uncorrelated, such that the

composite errors become positively correlated

over time. This problem is minor because it

can be solved by using standard errors which

are robust to serial correlation in the residu-

als (HAC (Newey-West) resp. White period

robust standard errors in EViews).
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The main problem with applying pooled OLS

is that we did very little to solve the omitted

variable bias problem. Only the time-varying

part (assumed to be common for all cross-

sesctional units) has been taken out by in-

troducing the time dummy. The fixed effect

ai, however, is still there; it has just been hid-

den in the composite error νit, and is there-

fore not modeled. That is, the parameter

estimates are still biased, unless ai is uncor-

related with xit.

Example 4 (continued).

Pooled OLS on the crime rate data yields

(9) ĉrmrte = 93.42 + 7.94D87 + 0.427unem.

The (wrong) p-value using OLS standard er-

rors is 0.721, and applying Newey and West

(1987) HAC standard errors p = 0.693. Thus,

while the unemployment rate has now the ex-

pected sign, it is still deemed nonsignificant.
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The main reason for collecting panel data

is to allow for ai to be correlated with the

explanatory variables. This can be achieved

by first writing down (6) explicitely for both

time points:

yi1 = β0 + β1xi1 + ai + ui1 (t=1)

yi2 = (β0 + δ0) + β1xi2 + ai + ui2 (t=2).

Subtract the first equation from the second:

(yi2 − yi1) = δ0 + β1(xi2 − xi1) + (ui2 − ui1),

or

(10) ∆yi = δ0 + β1∆xi +∆ui.

This is called the first differenced equation.

Note that ai has been “differenced away”,

which implies that estimation of (10) does

not in any way depend upon whether ai is

correlated with xit or not. When we obtain

the OLS estimator of β1 from (10), we call it

the first-difference estimator (FD for short).
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The parameters of (10) can be consistently
estimated by OLS when the classical assump-
tions for regression analysis hold.

In particular, ∆ui must be uncorrelated with
∆xi, which holds if uit is uncorrelated with
xit in both time periods. That is, we need
strict exogeneity. In particular, this rules out
including lagged dependent variables such as
yi,t−1 as explanatory variables. Lagged in-
dependent variables such as xi,t−1 may be
included without problems.

Another crucial assumption is that there must
be variation in ∆xi. This rules out indepen-
dent variables which do not change over time
or change by the same amount for all cross-
sectional units.

Example 4 (continued).

Estimation of (10) yields

∆ĉrmrte = 15.40 + 2.22∆unem,

(t=3.28) (t=2.52)

which now gives a positive, statistically significant

relationship (p = 0.015) between unemployment and

crime rates.
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Policy Analysis with Two-Period Panel Data

Let yit denote an outcome variable and let
progit be a program participation dummy vari-
able. A simple unobserved effects model is

(11) yit = β0 + δ0D2,t + β1progit + ai + uit.

Differencing yields

(12) ∆yi = δ0 + β1∆progi +∆ui.

In the special case that program partici-
pation occured only in the second period,
∆progi = progi2, and the OLS estimator of
β1 has the simple interpretation

(13) β̂1 = ∆yTreatment −∆yControl,
which is the panel data version of the difference-
in-differences estimator (5) in pooled cross
sections.

The advantage of using panel data as op-
posed to pooled cross sections is that there
is no need to include further variables to con-
trol for unit specific characteristics, since by
using the same units at both times, these are
automatically controlled for.
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Example 5.
Job training program on worker productivity.

Let scrapit denote the scrap rate of firm i
during year t, and let grantit be a dummy
equal to one if firm i received a job training
grant in year t. Pooled OLS yields using data
from the years 1987 and 1988

log(scrapit) = 0.5974 − 0.1889D88 + 0.0566grant,

(p=0.005) (p=0.566) (p=0.896)

suggesting that grants increase scrap rates.
The preceding model suffers most likely from
omitted variables bias. Estimating the first
differenced equation (12) instead yields

∆ ̂log(scrap) = − 0.057 − 0.317∆grant.

(p=0.557) (p=0.059)

Having a job training grant is estimated to
lower the scrap rate by about 27.2%, since
exp(−0.317)− 1 ≈ −0.272. The effect is sig-
nificant at 10% but not at 5%. The large
difference between β̂1 obtained from pooled
OLS and applying the first differenced esti-
mator suggests that grants were mainly placed
to firms which produce poorer quality.
No further variables (controls) with possible
impact upon scrap rates need to be included
in the model.
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Differencing with More Than 2 Periods

The fixed effects model in the general case
with k regressors and T time periods is

yit =δ1 + δ2D2,t + · · ·+ δTDT,t(14)

+
k∑

j=1

βjxtij + ai + uit,

The key assumption is that the idiosyncratic
errors are uncorrelated with the explanatory
variables at all times (strict exogeneity):

(15) Cov(xitj, uis) = 0 for all t, s and j,

which rules out using lagged dependent vari-
ables as regressors. Differencing(14) yields

∆yit =δ2∆D2,t + · · ·+ δT∆DT,t(16)

+
k∑

j=1

βj∆xtij +∆uit

for t = 2, . . . , T . Note that both the intercept δ1 and

the unobservable effect ai have disappeared. This im-

plies that while possible correlations between ai and

any of the explanatory variables causes omitted vari-

ables bias in (14), it causes no problem in estimating

the first differenced equation (16).
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Example 6.
Enterprise Zones and Unemployment Claims

Unemployment claims uclms in 22 cities from 1980 to
1988 as a function of whether the city has an enter-
prise zone (ez = 1) or not:

log(uclmsit) = θt + β1ezit + ai + uit,

where θt shifts the intercept with appropriate year
dummies. FD estimation output:

Dependent Variable: D(LUCLMS)
Method: Panel Least Squares
Date: 11/29/12   Time: 16:45
Sample (adjusted): 1981 1988
Periods included: 8
Cross-sections included: 22
Total panel (balanced) observations: 176

Variable Coefficient Std. Error t-Statistic Prob.  

D81 -0.321632 0.046064 -6.982279 0.0000
D82 0.457128 0.046064 9.923744 0.0000
D83 -0.354751 0.046064 -7.701262 0.0000
D84 -0.338770 0.050760 -6.673948 0.0000
D85 0.001449 0.048208 0.030058 0.9761
D86 -0.029478 0.046064 -0.639934 0.5231
D87 -0.267684 0.046064 -5.811126 0.0000
D88 -0.338684 0.046064 -7.352471 0.0000

D(EZ) -0.181878 0.078186 -2.326211 0.0212

R-squared 0.622997     Mean dependent var -0.159387
Adjusted R-squared 0.604937     S.D. dependent var 0.343748
S.E. of regression 0.216059     Akaike info criterion -0.176744
Sum squared resid 7.795839     Schwarz criterion -0.014617
Log likelihood 24.55348     Hannan-Quinn criter. -0.110986
Durbin-Watson stat 2.441511

The presence of an enterprise zone appears to reduce

unemployment claims by about 18% (p = 0.0212).

Note that we have replaced the change in year dummies ∆D in

(16) with the year dummies themselves. This can be shown to

have no effect on the other parameter estimates (here D(EZ)).
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2.4 Dummy Variable Regression in Panels

Another way to eliminate possible correla-
tions with the unobservable factors ai in (14)
is to model them explicitly as dummy vari-
ables, where each cross-sectional unit gets
its own dummy. This may be written as

(17) y = Xβ + Zµ+ u, where

for N cross sections and T time periods:
y is a (NT ×1) vector of observations on yit,
X is a (NT × k) matrix of regressors xitj,
β is a (k × 1) vector of slope parameters βj,
Z is a (NT ×N) matrix of dummies,
µ is a (N×1) vector of unobservables ai, and
u is a (NT × 1) vector of error terms uit.

It is customs to stack y,X,Z and u such that
the slower index is over cross sections i, and
the faster index is over time points t, e.g.

y′ = (y11, . . . , y1T , . . . , yN1, . . . , yNT ).

Note that there is no constant in (17) in or-
der to avoid exact multicollinearity (dummy
variable trap). If you wish to include a con-
stant, use only N−1 dummy variables for the
N cross-sectional units.
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Example 6. (continued)
Regressing log(uclms) on the year dummies,
22 dummies for the cities in sample and the
enterprise zone dummy ez yields

Dependent Variable: LUCLMS
Method: Panel Least Squares
Date: 12/04/12   Time: 10:39
Sample: 1980 1988
Periods included: 9
Cross-sections included: 22
Total panel (balanced) observations: 198

Variable Coefficient Std. Error t-Statistic Prob.  

D81 -0.321632 0.060457 -5.319980 0.0000
D82 0.135496 0.060457 2.241179 0.0263
D83 -0.219255 0.060457 -3.626613 0.0004
D84 -0.579152 0.062318 -9.293490 0.0000
D85 -0.591787 0.065495 -9.035540 0.0000
D86 -0.621265 0.065495 -9.485616 0.0000
D87 -0.888949 0.065495 -13.57268 0.0000
D88 -1.227633 0.065495 -18.74379 0.0000
C1 11.67615 0.080079 145.8073 0.0000
C2 11.48266 0.079105 145.1574 0.0000
C3 11.29721 0.079105 142.8131 0.0000
C4 11.13498 0.079105 140.7621 0.0000
C5 11.68718 0.078930 148.0695 0.0000
C6 12.23073 0.080079 152.7326 0.0000
C7 12.42622 0.080079 155.1738 0.0000
C8 11.61739 0.078930 147.1852 0.0000
C9 12.02958 0.078930 152.4074 0.0000

C10 13.32116 0.079105 168.3987 0.0000
C11 11.54584 0.079105 145.9560 0.0000
C12 11.64117 0.079105 147.1612 0.0000
C13 10.84358 0.079105 137.0784 0.0000
C14 10.80252 0.078930 136.8613 0.0000
C15 11.44073 0.079105 144.6273 0.0000
C16 12.11190 0.079105 153.1118 0.0000
C17 11.23093 0.080079 140.2475 0.0000
C18 11.63326 0.079105 147.0611 0.0000
C19 11.76956 0.079105 148.7842 0.0000
C20 11.32518 0.080079 141.4244 0.0000
C21 12.13394 0.080079 151.5240 0.0000
C22 11.89479 0.079105 150.3673 0.0000
EZ -0.104415 0.055419 -1.884091 0.0613

R-squared 0.933188    Mean dependent var 11.19078
Adjusted R-squared 0.921185    S.D. dependent var 0.714236
S.E. of regression 0.200514    Akaike info criterion -0.233004
Sum squared resid 6.714401    Schwarz criterion 0.281826
Log likelihood 54.06741    Hannan-Quinn criter. -0.024618
Durbin-Watson stat 1.306450

(marginally significant decrease by 10%.)
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2.5 Fixed Effects (FE) Estimation in Panels

Dummy variable regressions become imprac-

tical when the number of cross-sections gets

large. An alternative method, which turns

out to yield identical results, is called the

fixed effects method.

As an example consider the simple model

(18) yit = β1xit + ai + uit,

i = 1, . . . , N , t = 1, . . . , T .

Thus there are altogether N × T observations.

Define means over the T time periods

(19) ȳi =
1

T

T∑
t=1

yit, x̄i =
1

T

T∑
t=1

xit, ūi =
1

T

T∑
t=1

uit.

Then averaging over T yields

(20) ȳi = β1x̄i + ai + ūi,

since

1

T

T∑
t=1

ai =
1

T
Tai = ai.
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Thus, subtracting (20) from (18) eliminates
ai and gives

(21) yit − ȳi = β1(xit − x̄i) + (uit − ūi)

or

(22) ẏit = β1ẋit + u̇it,

where e.g., ẏit = yit − ȳi is the time demeaned
data on y.

This transformation is also called the within
transformation and resulting (OLS) estima-
tors of the regression parameters applied to
(22) are called fixed effect estimators or within
estimators. It generalizes to k regressors as

(23) ẏit = β1ẋit1 + . . .+ βkẋitk + u̇it.

Remark. The slope coefficient β1 estimated
from (20) (including a constant) is called the
between estimator. vi = ai + ūi is the error
term. This estimator is biased, however, if
the unobserved component ai is correlated
with x.
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Example 6. (continued)
Regressing the differences of log(uclms) from
their means upon the differences of the year
dummies from their means and the differ-
ences of the enterprize zone dummy ez from
its means yields

Dependent Variable: LUCLMS-MLUCLMS
Method: Panel Least Squares
Date: 12/04/12   Time: 13:09
Sample: 1980 1988
Periods included: 9
Cross-sections included: 22
Total panel (balanced) observations: 198

Variable Coefficient Std. Error t-Statistic Prob.  

D81-MD81 -0.321632 0.056830 -5.659560 0.0000
D82-MD82 0.135496 0.056830 2.384236 0.0181
D83-MD83 -0.219255 0.056830 -3.858104 0.0002
D84-MD84 -0.579152 0.058579 -9.886703 0.0000
D85-MD85 -0.591787 0.061566 -9.612288 0.0000
D86-MD86 -0.621265 0.061566 -10.09109 0.0000
D87-MD87 -0.888949 0.061566 -14.43903 0.0000
D88-MD88 -1.227633 0.061566 -19.94022 0.0000
EZ-MEZ -0.104415 0.052094 -2.004355 0.0465

R-squared 0.841596    Mean dependent var -1.27E-16
Adjusted R-squared 0.834892    S.D. dependent var 0.463861
S.E. of regression 0.188483    Akaike info criterion -0.455226
Sum squared resid 6.714401    Schwarz criterion -0.305760
Log likelihood 54.06741    Hannan-Quinn criter. -0.394727
Durbin-Watson stat 1.306450

We recover the parameter estimates of the
dummy variable regression, however not the
standard errors. For example, the within esti-
mator for the enterprise zone is -0.1044, the
same as previously, but its standard error has
decreased from 0.0554 to 0.0521 with a cor-
responding decrease in p-values from 0.0613
to 0.0465 now.
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In order to understand the discrepancy in
standard errors recall from STAT1010 (see
also equations (18) and (22) of chapter 1)
that the standard error of a slope coefficient
is inverse proportional to the square root of
the number of observations minus the num-
ber of regressors (including the constant).

In the dummy variable regression there are
NT observations and k +N regressors (k orig-
inal regressors and N cross-sectional dum-
mies). The degrees of freedom are therefore

df = NT − (k +N) = N(T − 1)− k.
The demeaned regression sees only k regres-
sors on the same NT observations, and there-
fore calculates the degrees of freedom (incor-
rectly, for our purpose) as dfdemeaned =NT−k.

In order to correct for this, multiply the wrong
standard errors of the demeaned regression
by the square root of NT − k and divide this
with the square root of N(T−1)− k:

(24) SE =

√
NT − k

N(T−1)− k
SEdemeaned.
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Example 6. (continued)

We have N = 22 cross-sectional units and
T = 9 time periods for a total of NT = 198
observations. There is one dummy for the
enterprize zone and eight year dummies for
a total of k = 9 regressors. The correction
factor for the standard errors is therefore√

NT − k
N(T−1)− k

=

√
22 · 9− 9

22 · 8− 9
=

√
189

167
≈ 1.063831.

For example, multiplying the demeaned stan-

dard error of 0.052094 for the enterprise zone

dummy with the correction factor yields

1.063831 · 0.052094 = 0.055419,

which is the correct standard error that we

found from the dummy regression earlier.

Taken together with its coefficient estimate

of -0.1044 it will hence correctly reproduce

the t-statistic of -1.884 with p-value 0.0613,

however without the need to define 22 dummy

variables!
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EViews can do the degrees of freedom ad-

justment automatically, if you tell it that you

have got panel data. In order to do that,

choose

Structure/Resize Current Page. . .

from the Proc Menue. In the Workfile Struc-

ture Window, choose ’Dated Panel’ and pro-

vide two identifyers: one for the cross section

and one for time.

This will provide you with a ’Panel Options’

tab in the estimation window. In order to ap-

ply the fixed effects estimator, (which, as we

discussed, is equivalent to a dummy variable

regression), change the effects specification

for the cross-section into ’Fixed’.

Note that EViews reports a constant C, even

though the demeaned regression shouldn’t

have any. C is to be interpreted as the aver-

age unobservable effect āi, or cross-sectional

average intercept.
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Example 6. (continued)

Applying the Fixed Effects option in Eviews

yields

Dependent Variable: LUCLMS
Method: Panel Least Squares
Date: 12/05/12   Time: 11:47
Sample: 1980 1988
Periods included: 9
Cross-sections included: 22
Total panel (balanced) observations: 198

Variable Coefficient Std. Error t-Statistic Prob.  

C 11.69439 0.042750 273.5544 0.0000
D81 -0.321632 0.060457 -5.319980 0.0000
D82 0.135496 0.060457 2.241179 0.0263
D83 -0.219255 0.060457 -3.626613 0.0004
D84 -0.579152 0.062318 -9.293490 0.0000
D85 -0.591787 0.065495 -9.035540 0.0000
D86 -0.621265 0.065495 -9.485616 0.0000
D87 -0.888949 0.065495 -13.57268 0.0000
D88 -1.227633 0.065495 -18.74379 0.0000
EZ -0.104415 0.055419 -1.884091 0.0613

Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.933188    Mean dependent var 11.19078
Adjusted R-squared 0.921185    S.D. dependent var 0.714236
S.E. of regression 0.200514    Akaike info criterion -0.233004
Sum squared resid 6.714401    Schwarz criterion 0.281826
Log likelihood 54.06741    Hannan-Quinn criter. -0.024618
F-statistic 77.75116    Durbin-Watson stat 1.306450
Prob(F-statistic) 0.000000

The output coincides with that obtained from

the dummy variable regression. C is the av-

erage of the cross-sectional city dummies C1

to C22.
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R2 in Fixed Effects Estimation

Note from the preceding example that while

both the dummy regression and the fixed ef-

fects estimation yield an identical coefficient

of determination of R2 = 0.933188, it dif-

fers from R2 = 0.841596, which we obtained

when calculating the FE estimator by hand.

Both ways of calculating R2 are used.

The lower R2 obtained from estimating (23)

has the more intuitive interpretation as the

amount of variation in yit explained by the

time variation in the explanatory variables.

The higher R2 obtained in fixed effects esti-

mation and dummy variable regressions should

be used in F-tests when for example test-

ing for joint significance of the unobservables

ai, that is the cross-sectional dummies in

dummy variable regression.
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Limitations

As with first differencing, the fact that we

eliminated the unobservables ai in estimation

of (23) implies that any explanatory variable

that is constant over time gets swept away by

the fixed effects transformation. Therefore

we cannot include dummies such as gender

or race.

If we furthermore include a full set of time

dummies, then, in order to avoid exact mul-

ticollinearity, we may neither include variables

which change by a constant amount through

time, such as working experience. Their ef-

fect will be absorbed by the year dummies in

the same way as the effect of time-constant

cross-sectional dummies is absorbed by the

unobservables.
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Example 7

Data set wagepan.xls (Wooldridge): n = 545, T = 8.

Is there a wage premium in belonging to labor union?

log(wageit) = β0 + β1educit + β3exprit + β4expr
2
it

+β5marriedit + β6unionit + ai + uit

Year (d81 to d87) and race dummies (black and hisp)
are also included. Pooled OLS with νit = ai+uit yields

Dependent Variable: LWAGE
Method: Panel Least Squares
Date: 12/11/12   Time: 12:32
Sample: 1980 1987
Periods included: 8
Cross-sections included: 545
Total panel (balanced) observations: 4360
White period standard errors & covariance (d.f. corrected)

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.092056 0.160807 0.572460 0.5670
EDUC 0.091350 0.011073 8.249575 0.0000
BLACK -0.139234 0.050483 -2.758032 0.0058
HISP 0.016020 0.039047 0.410265 0.6816

EXPER 0.067234 0.019580 3.433820 0.0006
EXPERSQ -0.002412 0.001024 -2.354312 0.0186
MARRIED 0.108253 0.026013 4.161480 0.0000

UNION 0.182461 0.027421 6.653964 0.0000
D81 0.058320 0.028205 2.067692 0.0387
D82 0.062774 0.036944 1.699189 0.0894
D83 0.062012 0.046211 1.341930 0.1797
D84 0.090467 0.057941 1.561356 0.1185
D85 0.109246 0.066794 1.635577 0.1020
D86 0.141960 0.076174 1.863633 0.0624
D87 0.173833 0.085137 2.041805 0.0412

R-squared 0.189278    Mean dependent var 1.649147
Adjusted R-squared 0.186666    S.D. dependent var 0.532609
S.E. of regression 0.480334    Akaike info criterion 1.374764
Sum squared resid 1002.481    Schwarz criterion 1.396714
Log likelihood -2981.986    Hannan-Quinn criter. 1.382511
F-statistic 72.45876    Durbin-Watson stat 0.864696
Prob(F-statistic) 0.000000

The serial correlation in the residuals has been ac-

counted for by using White period standard errors.

But the parameter estimates are biased if ai is corre-

lated with any of the explanatory variables.
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Example 7 (continued.)

Fixed Effects estimation yields

Dependent Variable: LWAGE
Method: Panel Least Squares
Date: 11/26/12   Time: 12:31
Sample: 1980 1987
Periods included: 8
Cross-sections included: 545
Total panel (balanced) observations: 4360

Variable Coefficient Std. Error t-Statistic Prob.  

C 1.426019 0.018341 77.74835 0.0000
EXPERSQ -0.005185 0.000704 -7.361196 0.0000
MARRIED 0.046680 0.018310 2.549385 0.0108

UNION 0.080002 0.019310 4.142962 0.0000
D81 0.151191 0.021949 6.888319 0.0000
D82 0.252971 0.024418 10.35982 0.0000
D83 0.354444 0.029242 12.12111 0.0000
D84 0.490115 0.036227 13.52914 0.0000
D85 0.617482 0.045244 13.64797 0.0000
D86 0.765497 0.056128 13.63847 0.0000
D87 0.925025 0.068773 13.45039 0.0000

Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.620912    Mean dependent var 1.649147
Adjusted R-squared 0.565718    S.D. dependent var 0.532609
S.E. of regression 0.350990    Akaike info criterion 0.862313
Sum squared resid 468.7531    Schwarz criterion 1.674475
Log likelihood -1324.843    Hannan-Quinn criter. 1.148946
F-statistic 11.24956    Durbin-Watson stat 1.821184
Prob(F-statistic) 0.000000

Note that we could not include the years of education

and the race dummies, because they remain constant

through time for each cross section. Likewise we could

not include years of working experience, because they

change by the same amount for all cross sections, and

we included already a full set of year dummies.

The large changes in the premium estimates for mar-

riage and union membership suggests that ai is corre-

lated with some of the explanatory variables.
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Fixed effects or first differencing?

If the number of periods is 2 (T = 2) FE and

FD give identical results.

When T ≥ 3 the FE and FD are not the same.

Both are unbiased as well as consistent for

fixed T as N →∞ under the assumptions FE.1-

FE.4 below:

Assumptions:

FE.1: For each i, the model is

yit = β1xit1 + · · ·+ βkxitk + ai + uit, t = 1, . . . T .

FE.2: We have a random sample.

FE.3: All explanatory variables change over

time, and they are not perfectly collinear.

FE.4: E[uit|Xi, ai] = 0 for all time periods

(Xi stands for all explanatory variables).
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If we add the following two assumptions, FE

is the best linear unbiased estimator:

FE.5: Var[uit|Xi, ai] = σ2
u for all t = 1, . . . , T .

FE.6: Cov[uit, uis|Xi, ai] = 0 for all t 6= s.

In that case FD is worse than FE because

FD is linear and unbiased under FE.1–FE.4.

While this looks like a clear case for FE, it is

not, because often FE.6 is violated. If uit is

(highly) serially correlated, ∆uit may be less

serially correlated, which may favor FD over

FE. However, typically T is rather small, such

that serial correlation is difficult to observe.

Usually it is best to check both FE and FD.

If we add as a last assumption

FE.7: uit|Xi, ai ∼ NID(0, σ2
u),

then we may use exact t and F-statistics.

Otherwise they hold only asymptotically for

large N and T .
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Balanced and unbalanced panels

A data set is called a balanced panel if the
same number of time series observations are
available for each cross section units. That
is T is the same for all individuals. The total
number of observations in a balanced panel
is NT .

All the above examples are balanced panel
data sets.

If some cross section units have missing ob-
servations, which implies that for an individ-
ual i there are available Ti time period obser-
vations i = 1, . . . , N , Ti 6= Tj for some i and
j, we call the data set an unbalanced panel.
The total number of observations in an un-
balanced panel is T1 + · · ·+ TN .

In most cases unbalanced panels do not cause
major problems to fixed effect estimation.

Modern software packages make appropriate
adjustments to estimation results.
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2.6 Random effects models

Consider the simple unobserved effects model

(25) yit = β0 + β1xit + ai + uit,

i = 1, . . . , n, t = 1, . . . , T .

Typically also time dummies are included in

(25).

Using FD or FE eliminates the unobserved

component ai. As discussed earlier, the idea

is to avoid omitted variable bias which arises

necessarily as soon as ai is correlated with

xit.

However, if ai is uncorrelated with xit, then

using a transformation to eliminate ai results

in inefficient estimators. So called random

effect (RE) estimators are more efficient in

that case.
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Generally, we call the model in equation (25)

the random effects model if ai is uncorre-

lated with all explanatory variables, i.e.,

(26) Cov[xit, ai] = 0, t = 1, . . . , T .

How to estimate β1 efficiently?

If (26) holds, β1 can be estimated consis-

tently from a single cross section. So in prin-

ciple, there is no need for panel data at all.

But using a single cross section obviously dis-

cards a lot lot of useful information.
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If the data set is simply pooled and the error

term is denoted as vit = ai + uit, we have the

regression

(27) yit = β0 + β1xit + vit.

Then E[v2
it] = σ2

a + σ2
u and E[vitvis] = σ2

a for

t 6= s, such that

(28) Corr[vit, vis] =
σ2
a

σ2
a + σ2

u

for t 6= s, where σ2
a = Var[ai] and σ2

u = Var[uit].

That is, the error terms vit are (positively)

autocorrelated, which biases the standard er-

rors of the OLS β̂1.
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If σ2
a and σ2

u were known, optimal estimators
(BLUE) would be obtained by generalized
least squares (GLS), which in this case would
reduce to estimating the regression slope co-
efficients from the quasi demeaned equation
(29)
yit−λȳt = β0(1−λ) + β1(xit−λx̄i) + (vit−λv̄i),

where

(30) λ = 1−
(

σ2
u

σ2
u + Tσ2

a

)1
2

.

In practice σ2
u and σ2

a are unknown, but they
can be estimated for example as follows:

Estimate (27) from the pooled data set and
use the OLS residuals v̂it to estimate σ2

a from
the average covariance of v̂it and v̂is for t 6= s.

In the second step, estimate σ2
u from the vari-

ance of the OLS residuals v̂it as σ̂2
u = σ̂2

ν − σ̂2
a .

Finally plug these estimates of σ2
a and σ2

u into
equation (30). Regression packages do this
automatically.
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The resulting GLS estimators for the regres-

sion slope coefficients are called random

effects estimators (RE estimators). Other

estimators of σ2
a and σ2

u (and therefore λ)

are available. The particular version we dis-

cussed is the Swamy-Arora estimator.

Under the random effects assumptions∗ the

estimators are consistent, but not unbiased.

They are also asymptotically normal as N →∞
for fixed T .

However, for small N and large T the proper-

ties of the RE estimator are largely unknown.

∗The ideal random effects assumptions include FE.1,
FE.2, FE.4–FE.6.

FE.3 is replaced with
RE.3: There are no perfect linear relationships
among the explanatory variables.
RE.4: In addition of FE.4, E[ai|Xi] = 0.
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Note that λ = 0 in (29) corresponds to pooled

regression and λ = 1 to FE, such that for

σ2
u � σ2

a (λ ≈ 1) RE estimates will be sim-

iliar to FE estimates, whereas for σ2
u � σ2

a

(λ ≈ 0) RE estimates will resemble pooled

OLS estimates.

Example 7 (continued.)

Note that the constant dummies black and

hisp and the variable with constant change

exper, which dropped out with the FE method,

can be estimated with RE.

λ̂ = 1−
(

0.3512

0.3512 + 8 · 0.32462

)1/2

= 0.643,

such that the RE estimates lie closer to the

FE estimates than to the pooled OLS esti-

mates.

Applying RE is probably not appropriate in

this case, because, as discussed earlier, the

unobservable ai is probably correlated with

some of the explanatory variables.
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EViews output for RE estimation:

Dependent Variable: LWAGE
Method: Panel EGLS (Cross-section random effects)
Date: 11/26/12   Time: 12:26
Sample: 1980 1987
Periods included: 8
Cross-sections included: 545
Total panel (balanced) observations: 4360
Swamy and Arora estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.023586 0.150265 0.156965 0.8753
EDUC 0.091876 0.010631 8.642166 0.0000
BLACK -0.139377 0.047595 -2.928388 0.0034
HISP 0.021732 0.042492 0.511429 0.6091

EXPER 0.105755 0.015326 6.900482 0.0000
EXPERSQ -0.004724 0.000688 -6.869682 0.0000
MARRIED 0.063986 0.016729 3.824781 0.0001

UNION 0.106134 0.017806 5.960582 0.0000
D81 0.040462 0.024628 1.642894 0.1005
D82 0.030921 0.032255 0.958646 0.3378
D83 0.020281 0.041471 0.489036 0.6248
D84 0.043119 0.051179 0.842509 0.3995
D85 0.057815 0.061068 0.946733 0.3438
D86 0.091948 0.071039 1.294334 0.1956
D87 0.134929 0.081096 1.663821 0.0962

Effects Specification
S.D.  Rho  

Cross-section random 0.324603 0.4610
Idiosyncratic random 0.350990 0.5390

Weighted Statistics

R-squared 0.180618    Mean dependent var 0.588893
Adjusted R-squared 0.177977    S.D. dependent var 0.388166
S.E. of regression 0.351932    Sum squared resid 538.1558
F-statistic 68.41243    Durbin-Watson stat 1.589754
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.182847    Mean dependent var 1.649147
Sum squared resid 1010.433    Durbin-Watson stat 0.846702
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Random effects or fixed effects?

FE is widely considered preferable because it

allows correlation between ai and x variables.

Given that the common effects, aggregated

to ai is not correlated with x variables, an

obvious advantage of the RE is that it allows

also estimation of the effects of factors that

do not change in time (like education in the

above example).

Typically the condition that common effects

ai is not correlated with the regressors (x-

variables) should be considered more like an

exception than a rule, which favors FE.

Whether this condition is met, can be tested

with the Hausman test to be discussed in the

following.
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Hausman specification test

Hausman (1978) devised a test for the or-
thogonality of the common effects (ai) and
the regressors.

The basic idea of the test relies on the fact
that under the null hypothesis of orthogonal-
ity both OLS and GLS are consistent, while
under the alternative hypothesis GLS is not
consistent. Thus, under the null hypothe-
sis OLS and GLS estimates should not differ
much from each other.

The Hausman test statistic is a transforma-
tion of the differences between the parame-
ter estimates obtained from RE and FE es-
timation, which becomes asymptotically χ2-
distributed under the null hypothesis (26)

H0 : Cov[xit, ai] = 0, t = 1, . . . , T.

The degrees of freedom are the number of re-
gressors, where only those regressors may be
included which are estimable with FE, that
is, time-constant variables must be dropped
(also constant time changes, if year dummies
are included).
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In order to perform the Hausman test in EViews,

first estimate the model with RE including

only those regressors, which are estimable

with FE as well. Then select

View/ Fixed/Random Effects Testing/

Correlated Random Effects - Hausman Test.

The first part of the output is the Hausman

test statistic with degrees of freedom and p-

value. The second part lists the parameter

estimates for both FE and RE estimation.

The final third part is more detailed FE esti-

mation output.

Example 7 (continued.)

As expected, the Hausman test strongly re-

jects the null hypothesis, that ai would be

uncorrelated with all explanatory variables.

Therefore, RE is inappropriate and we must

use FE parameter estimates instead.
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Correlated Random Effects - Hausman Test
Equation: HAUSMAN
Test cross-section random effects

Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob. 

Cross-section random 35.992523 10 0.0001

Cross-section random effects test comparisons:

Variable Fixed  Random Var(Diff.) Prob. 

EXPERSQ -0.005185 -0.003139 0.000000 0.0001
MARRIED 0.046680 0.078034 0.000054 0.0000

UNION 0.080002 0.103974 0.000051 0.0008
D81 0.151191 0.133626 0.000016 0.0000
D82 0.252971 0.214562 0.000081 0.0000
D83 0.354444 0.290904 0.000228 0.0000
D84 0.490115 0.398106 0.000491 0.0000
D85 0.617482 0.494105 0.000915 0.0000
D86 0.765497 0.606478 0.001553 0.0001
D87 0.925025 0.724616 0.002467 0.0001

Cross-section random effects test equation:
Dependent Variable: LWAGE
Method: Panel Least Squares
Date: 12/12/12   Time: 11:41
Sample: 1980 1987
Periods included: 8
Cross-sections included: 545
Total panel (balanced) observations: 4360

Variable Coefficient Std. Error t-Statistic Prob.  

C 1.426019 0.018341 77.74835 0.0000
EXPERSQ -0.005185 0.000704 -7.361196 0.0000
MARRIED 0.046680 0.018310 2.549385 0.0108

UNION 0.080002 0.019310 4.142962 0.0000
D81 0.151191 0.021949 6.888319 0.0000
D82 0.252971 0.024418 10.35982 0.0000
D83 0.354444 0.029242 12.12111 0.0000
D84 0.490115 0.036227 13.52914 0.0000
D85 0.617482 0.045244 13.64797 0.0000
D86 0.765497 0.056128 13.63847 0.0000
D87 0.925025 0.068773 13.45039 0.0000

Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.620912    Mean dependent var 1.649147
Adjusted R-squared 0.565718    S.D. dependent var 0.532609
S.E. of regression 0.350990    Akaike info criterion 0.862313
Sum squared resid 468.7531    Schwarz criterion 1.674475
Log likelihood -1324.843    Hannan-Quinn criter. 1.148946
F-statistic 11.24956    Durbin-Watson stat 1.821184
Prob(F-statistic) 0.000000
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