
2. Chi2-tests for equality of proportions

Introduction: Two Samples

Consider comparing the sample proportions

p1 and p2 in independent random samples of

size n1 and n2 out of two populations which

have a certain characteristic with respective

probabilities π1 and π2.

We know from STAT.1030 that the relevant
test statistic for equality of proportions is:

z =
p1 − p2√

p(1− p)
(

1
n1

+ 1
n2

) ∼ N(0,1) under H0 : π1 = π2,

where p =
n1p1 + n2p2

n1 + n2
denotes the combined

proportion of both samples. Recall that this

z-statistic is based upon the normal approx-

imation of the binomial distribution and re-

quires therefore sufficiently large sample sizes

(n & 30).

The same test may be equivalently formu-

lated as a χ2 independence test as follows.

65



Consider the contingency table below:

success failure sum
pop.1 n1p1 n1(1− p1) n1 = f1•
pop.2 n2p2 n2(1− p2) n2 = f2•
sum: np = f•1 n(1− p) = f•2 n

Since p1 and p2 are unbiased estimators of

their population counterparts π1 and π2, H0 :

π1 = π2 is equivalent to independence of the

success and population variables. Applying

the formula for two-way tables,

χ2 =
n(f11f22 − f12f21)2

f1•f2•f•1f•2
,

yields after some manipulation:

χ2 =
(p1 − p2)2

p(1− p)
(

1
n1

+ 1
n2

) ∼ χ2(1) under H0.

It should not surprise us that this is just the

square of our familiar z-statistic, since we

know from STAT.1030 that the square of a

N(0,1)-distributed random variable is χ2(1)-

distributed.
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Example. Consider the following table about
consumption of alcohol for men and women:

Consumption: yes no
female (pop.1) 68 34
male (pop.2) 86 26

As is evident from the output on the next
slide, we may not reject H0 : π1 = π2 against
the two-sided alternative H1 : π1 6= π2 (p =
0.0998), but we may reject H0 against the
one-sided alternative H1 : π2 > π1 (p = 0.0499).

Using Fishers exact test, the p-value of H0 :
π1 = π2 against the two-sided alternative H1 :
π1 6= π2 is p = 0.1274, leading to the same
conclusion as above. But against the one-
sided alternative H1 : π2 > π1 it is p = 0.0676,
which means that we cannot even reject H0
in a one-sided test at α = 5%.

If we have access to software, we prefer us-
ing the output from Fishers exact test. It is
however too hard to calculate by hand, and
in larger tables even software might fail to
calculate it.
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General test for homogeneity of proportions

The χ2-test for equality of proportions may

be generalized to more than two independent

samples as follows. Assemble the frequencies

of success npi and failure ni(1−pi) for the

respective populations i in a (2×c) contingeny

table, where ni and pi denote the size and

proportion of success in population i, and c

denotes the number of populations.

The homogeneity of the populations

(with respect to the success variable)

H0 : π1 = π2 = · · · = πc versus

H1 : Not all πi, i = 1, . . . , c are equal

is then assessed by a χ2 independence test of

the population and success variables.
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Example.

An insurance company wants to test whether the pro-
portion of people who submit claims for automobile
accidents is about the same for the three age groups
25 and under, over 25 and under 50, and 50 and over:

H0 : The age goups are homogeneous wrt. claims,
H1 : The age goups are not homogeneous wrt. claims.

The (2×3) contingency table for this example is:

age< 25 25 ≤age< 50 50 ≤age Total
Claim 40 35 60 135
No claim 60 65 40 165
Total 100 100 100 300

The expected frequencies are:

age< 25 25 ≤age< 50 50 ≤age Total
Claim 45 45 45 135
No claim 55 55 55 165
Total 100 100 100 300

The χ2 statistic is:

χ2 =
(40− 45)2

45
+

(35− 45)2

45
+

(60− 45)2

45
(60− 55)2

55
+

(66− 55)2

55
+

(40− 55)2

55
= 14.14

and the degrees of freedom are (2-1)(3-1)=2. Look-

ing up in a table or calling CHIDIST(14.14;2) in Ex-

cel establishes that the p-value in this case is less than

0.1%, so we reject homogeneity with respect to claims

in favour of inhomogeneity at all conventional signifi-

cance levels.
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The median test

The hypotheses for the median test are

H0 : The c populations have the same median,

H1 : Not all c populations have the same median.

This is in fact a special case of the homo-

geneity test for independent samples which

we just discussed, with the indicator: value

≷ median as the success variable. Median

means here grand median, which is the me-

dian of all observations regardless of the pop-

ulation.

Example:

An economist wants to test the null hypoth-

esis that the median family income in three

rural areas are approximately equal. Random

samples of family incomes (in $1000/year) in

three regions (A/B/C) are given below:

A 22 29 36 40 35 50 38 25 62 16
B 31 37 26 25 20 43 27 41 57 32
C 28 42 21 47 18 23 51 16 30 48
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Example: (continued.)
Arranging all observations in order reveals
that the grand median is 31.5. The observed
and expected counts for each region are dis-
played below:

Region A Region B Region C Total
≤median 4 5 6 15
(expected) (5) (5) (5)
>median 6 5 4 15
(expected) (5) (5) (5)
Total 10 10 10 30

Note that here: eij =
fi•f•j

n
=
n/2 · ni

n
=
ni

2
.

The χ2 statistic is:

χ2 =
(4− 5)2

5
+

(5− 5)2

5
+

(6− 5)2

5
(6− 5)2

5
+

(5− 5)2

5
+

(4− 5)2

5
= 0.8

and the degrees of freedom are (2-1)(3-1)=2.
Comparing this value with critical points χ2

α(2)
of the χ2-distribution with 2 degrees of free-
dom, we conclude that there is no evidence
to reject the null hypothesis. The p-value of
the test is CHIDIST(0.8;2)=0.67.
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The median test in Excel

You find the median test under the name

Moods Test in the Nonparametric Tests tool

of the Real Statistics toolbox.
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