
4. Analysis of Variance (ANOVA)

4.1. Introduction: Comparing Means

Consider the problem of testing

H0 : µ1 = µ2 against H1 : µ1 6= µ2

in two independent samples of two different

populations of possibly unequal size n1 and

n2 containing normally distributed observa-

tions with both unknown means µi and vari-

ances σ2
i , i = 1,2, which we assume to be

equally large. Following STAT1030, the ap-

propriate test statistic is

t =
x̄1 − x̄2

s
√

1
n1

+ 1
n2

∼ t(n1 + n2 − 2) under H0.

with s2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
, where

s2
1 =

∑n1

i=1(x1i − x̄1)2

n1 − 1
and s2

2 =

∑n2

i=1(x2i − x̄2)2

n2 − 1
.
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Example (ignore the ANOVA output for now)

Two groups consisting of different people re-
ceive two different sleeping pills (med 1/2)
and the impact upon sleep prolongation is
measured:

Pill 2 is more effective than Pill 1 in sample,
but we need to consult the independent sam-
ple t-test to check that this holds also out of
sample:

t =
x̄1 − x̄2

s
√

1
n1

+ 1
n2

=
−1.58√

1.792+2.002

10

= −1.861,

where we have used that if n1 = n2, then
s2 = (s2

1 + s2
2)/2. The p-value of the test is

T.DIST.2T(-1.861;18)=0.079, insufficient to
reject the null hypothesis that the medication
has no effect at a 5% significance level.
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When assessing whether two populations have

the same mean using the ANOVA F -test, we

compare the variation between the means of

both groups with the variation within the

group. This is why this method is called

analysis of variance. If the within-group vari-

ation is small, the same variation between

the groups produces a larger statistic and a

more significant result. A large F -statistic is

thus evidence against the null H0 : µ1 = µ2

in favour of the alternative H1 : µ1 6= µ2.

The advantage of the ANOVA F -test is that

it may be generalized to test k means:

H0 : µ1 = µ2 = · · · = µk.

It’s application requires that

• the groups are independent of each other,

• all groups have the same variance,

• the observations in all groups are normally

distributed.
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Example (continued.)

We split up the deviation of each persons
sleep prolongation xij, i = 1, . . . ,10, j =
1,2 from the overall mean x̄ into a compo-
nent due to the different treatments x̄j − x̄,
where x̄j, j = 1,2 denote the mean of the
sleep prolongation for the respective treat-
ment (between group deviation), and a com-
ponent unexplained by the different treat-
ments, xij − x̄j (within group deviation):

xij − x̄ = (x̄j − x̄) + (xij − x̄j).
Squaring this expression and summing up yields
after some algebra:

n1∑
i=1

(xi1 − x̄)2 +
n2∑
i=1

(xi2 − x̄)2

︸ ︷︷ ︸
SST=(n−1)s2

=
n1∑
i=1

(x̄1−x̄)2 +
n2∑
i=1

(x̄2−x̄)2

︸ ︷︷ ︸
SSM or SSTR or SSB

+
n1∑
i=1

(xi1−x̄1)2 +
n2∑
i=1

(xi2−x̄2)2

︸ ︷︷ ︸
SSE or SSW

=n1(x̄1 − x̄)2 + n2(x̄2 − x̄)2 + (n1 − 1)s2
1 + (n2 − 1)s2

2,

where TR stands for treatment, B stands
for between groups, and W stands for within
groups (T,M,E see regression ANOVA).
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ANOVA: Single Factor

DESCRIPTION Alpha 0.05
Groups Count Sum Mean Variance SS Std Err

1 10 7.5 0.75 3.2006 28.805 0.600398
2 10 23.3 2.33 4.009 36.081 0.600398

ANOVA
Sources SS df MS F P value F crit

Between Groups 12.482 1 12.482 3.4626 0.079187 4.413873
Within Groups 64.886 18 3.60478
Total 77.368 19 4.072



The associated degrees of freedom are:
DFT=19 (n = 20 observations minus 1 for
the calculation of the grand mean),
DFB=1 (2 sample means minus 1 for the
calculation of the grand mean),
DFW=18 (n = 20 observations minus 2 for
the calculation of the sample means).

The mean squares are obtained as:

MSB =
SSB

DFB
=

12.48

1
= 12.48,

MSW =
SSW

DFW
=

64.89

18
= 3.605.

Since we want to reject when the between
group variation is large compared to the within
group variation we calculate the F -statistic
as

F =
MSB

MSW
=

12.48

3.605
= 3.463,

which is just the square of -1.861, the t-
statistic we obtained earlier, and the p-value
is F.DIST.RT(3.463;1;18)=0.079, just the
same as before using the t-statistic. We ex-
plain in the following why this is the case.
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Why is F = t2?

This is just a matter of algebraic manipulations. Squar-
ing the t-test statistic yields

t2 =
n1·n2

n1+n2
(x̄1 − x̄2)2

s2
.

with s2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
.

Now

SSW = (n1 − 1)s2
1 + (n2 − 1)s2

2 = (n1 + n2 − 2)s2

such that

MSW = SSW/(n1 + n2 − 2) = s2.

Similiarly it can be shown by inserting

x̄ =
n1x̄1 + n2x̄2

n1 + n2
into

MSB = SSB = n1(x̄1 − x̄)2 + n2(x̄2 − x̄)2,

that MSB =
n1 · n2

n1 + n2
(x̄1 − x̄2)2.

Therefore: F =
MSB

MSW
= t2.

It is also possible to show that squaring a t(ν)-distributed

random variable will always yield a F (1, ν)-distributed

random variable, which explains the identical p-values

for the t- and for the F -test.
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Appropriateness of the F -test

Recall from STAT1030 that the fraction of
two independent χ2-distributed variables di-
vided by their degrees of freedom follow the
F -distribution as follows:

Xi ∼ χ2(νi) (i = 1,2) :
X1/ν1

X2/ν2
∼ F (ν1, ν2).

If the ANOVA assumptions hold and addi-
tionally µ1 = µ2 = · · · = µk as stated in H0,
then it turns out that MSB=SSB/DFB is an
unbiased estimator of σ2 and additionally

SSB/σ2 ∼ χ2(DFB).

Furthermore it turns out that under ANOVA
assumptions MSW=SSW/DFW is also an un-
biased estimator of σ2 and additionally

SSW/σ2 ∼ χ2(DFW)

independent of MSB and no matter whether
H0 holds true or not, implying that under H0:

F = MSB/MSW ∼ F (DFB,DFW).

97



4.2. One-Way ANOVA for k ≥ 2 groups

In ANOVA we have k independent random
samples, each one corresponding to a popu-
lation subject to a different treatment. We
have:

• N = n1 +n2 + . . .+nk total observations.

• k sample means: x̄1, x̄2, . . . , x̄k.
These may be used to calculate an esti-
mator of the population variance (MSB),
if the population means are equal. In that
case we expect the variance among the
sample means to be small.

• k sample variances: s2
1, s

2
2, . . . , s

2
k.

These may be used to find a second esti-
mator of the population variance (MSW),
no matter whether the population means
are equal or not.

(Note the alternative notations MSE for MSW,
and also MSTR and MSM for MSB.)
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ANOVA is a statistical method to determine

whether several population means are equal.

That is, we test

H0 : µ1 = µ2 = · · · = µk against

H1 : not all µi, i = 1, . . . , k are equal.

ANOVA is a joint test in the sense that it

tests the equality of all population means si-

multaneously rather than pairwise. This is

achieved by comparing the two estimators of

the population variance (hence the name).

The required assumptions of ANOVA are:

• We assume independent random sampling

from each of the k populations.

• We assume that the k populations:

– are normally distributed,

– with means µj not necessarily equal,

– but with equal variances σ2
i =: σ2.
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Checking the assumptions

1) Independence is taken care of in the sam-
pling or experimental design. Similiar to re-
gressions, the whole approach breaks down if
the independence assumption is not satisfied.

2) Use the Shapiro-Wilk test from the Real
Statistics ‘Descriptive Statistics and Normal-
ity’ window in order to check for Normality
in each of the groups. If you find any p-value
below 0.05, it means that the normality as-
sumption is not met.

Deviations from normality are acceptable as
long as

• The populations are symmetrical and uni-
modal

• There are at least 10 observations in each
group

Even symmetry can be dispensed with if all
sample sizes are equally large (so called bal-
anced design), all populations have the same
shape and there are many observations.
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3) To test for Homogeneity of variance Real

Statistics provides Levene’s test, available as

an option within Single factor ANOVA. The

output contains 3 p-values. The first p-value

(means) is the original and most powerful

version of the test and requires that all groups

have normally distributed observations. The

second version (medians) is less powerful, but

robust against skewness. The last version

(trimmed) is robust against excess kurtosis.

The null hypothesis is that all groups have

the same variance, so a p-value below 0.05

implies that the homogeneity of variance as-

sumption is not met.

ANOVA is not very sensitive to violations of

the homogeneity of variance assumption, as

long as the sizes of the different samples are

about the same. As a rule of thumb, ANOVA

is applicable as long as the highest variance

is no more than twice the lowest variance.
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When the ANOVA assumptions do not hold

Often violations of the assumption are just

due to some outliers, which may be easily

detected with explorative tools such as his-

tograms and boxplots. Checking ‘Outliers

and Missing Data’ within the ‘Descriptive Sta-

tistics and Normality’ window of the Real

Statistics toolbox will mark all observations

which are more than 2.5 standard deviations

away from the mean.

If the assumption of equal variances is not

satisfied but all other assumptions are in or-

der, you may replace standard ANOVA with

Welch’s test. It is an extension of Student’s

t-test for populations with unequal variances

to more than 2 groups and is available as one

of the options within Single Factor ANOVA.
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1) When the normality tests reject. . .

Skewness and excess kurtosis in the data may

be corrected by replacing the original obser-

vations xi with some suitably transformed ob-

servations f(xi):

• Skewness to the right may be corrected

by square-root and logarithmic transfor-

mations: f(x) =
√
x or f(x) = log(x).

• Skewness to the left may be corrected by

f(x) = arcsin
√
x or f(x) = log

(
x

1− x

)
,

which also corrects thin-tailedness.

• Fat-tailedness (= excess kurtosis) may

be corrected by f(x) = log

√1 + x

1− x

.
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2) When the variances are not homogeneous

If the variance is a function of the mean

alone,

σ2 = φ(µ),

then it is always possible to find a suitable

transformation function f(x) such that homo-

geneity of variance holds for the transformed

data.

In Poisson type distributions, where

σ2 = µ = λ

(λ =parameter of the Poisson distribution)

variance is stabilized by the square-root trans-

formation f(x) =
√
x.

Recall that Poisson type distributions describe

counting processes of rare events, such as

the number of working accidents in different

companies.
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If the coefficient of variance is a constant,

V = σ/µ = const.,

like for example in the exponential distribu-

tion, then variance is stabilized by the loga-

rithmic transformation f(x) = log(x). Con-

stant coefficients of variance occur in situ-

ations where effects are proportional rather

than additive, that is, the variance of differ-

ent treatments differ consistently by certain

percentages (rather than a certain number of

units).

The variance of proportions (that is, num-

bers in the range [0,1]) may be stabilized by

the transformation f(x) = arcsin
√
x.

In general, if the variance is a function of the

mean alone, σ2 = φ(µ), then an approximate

variance stabilizing transformation is given by

f(x) =
∫

dx√
φ(x)

.
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3) When transformations don’t help either

Don’t forget that ANOVA is rather robust to

skewness and also to differences in variance

as long as the sample sizes are equally large.

Recall also that you may apply Welch’s vari-

ance weighted ANOVA when homogeneity of

variance is the only problem.

A last resort are non-parametric tests:

• The Mann-Whitney test in the case of

two classes, which is just a special case

of the

• Kruskall-Wallis test for arbitarily many

samples.

When the test statistics are distorted by a

large spread due to extreme outliers, which

one doesn’t want to eliminate, one may still

try the

• median test.
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Setting up an ANOVA table

Consider k independent samples:

x11, x12, . . . , x1n1
,

...

xk1, xk2, . . . , xknk,

where n1 + · · ·+ nk = N .

We wish to test whether all observations come

from the same distribution or not.

1) The Sum of Squares Principle

We calculate the grand mean from all obser-

vations as

x =
1

N

k∑
i=1

ni∑
j=1

xij =
1

N

k∑
i=1

nix̄i.

The total deviations are the differences be-

tween the data points xij and the grand mean

x:

Totij = xij − x.
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The total deviations xij − x are split up into

group effects or treatment deviations x̄i − x
and the residuals eij = xij − x̄i:

xij − x = (x̄i − x) + (xij − x̄i).

Squaring this expression and summing up yields

the SST = Total Sum of Squares which may

again be split into two components:

the SSB = Between Groups Sum of Squares

and

the SSW = Within Groups Sum of Squares:

SST =
∑
i

∑
j

(xij − x)2 = (N − 1)s2

=
∑
i

ni(xi−x)2︷ ︸︸ ︷∑
j

(xi − x)2 +
∑
i

(ni−1)s2
i︷ ︸︸ ︷∑

j

(xij − xi)2

= SSB + SSW.

Aczel uses the terms sum of squares for treat-

ment (SSTR) instead of SSB and sum of

squares for error (SSE) instead of SSW.
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2) Additivity of degrees of freedom

The degrees of freedom of SST are (N − 1):

N total observations in all k samples, less one

degree of freedom lost with the calculation of

the grand mean.

The degrees of freedom of SSB are (k − 1):

k sample means, less one degree of freedom

lost with the calculation of the grand mean.

The degrees of freedom of SSW are (N − k):

N total observations in all samples, less one

degree of freedom lost with each calculation

of any of the k sample means.

The degrees of freedom are additive in the

same way as are the sums of squares:

DFT = DFB + DFW.
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3) The Mean Squares and the F -test

Dividing the components of the total sum of
squares by their respective degrees of free-
dom yields the mean squares

MSB =
SSB

k − 1
and MSW =

SSW

N − k
.

If all ANOVA assumptions,

• independent samples,
• normally distributed observations,
• homogeneity of variance

and the null hypothesis

• equal means in all groups

hold true, then the test statistic

F =
MSB

MSW
follows the F distribution with degrees of
freedom k−1 and N−k, (F ∼ F (k−1, N−k)).

Large values of the F statistic lead to rejec-
tion of the null hypothesis of equal means in
all groups.
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What if the F-test rejects?

Mathematically, the model may be written

Xij=µi+εij=µ+

αi︷ ︸︸ ︷
(µi − µ) +εij, εij ∼ N(0, σ2),

where Xij denotes the j’th observation of
population (treatment) i, µ is the overall mean
response to the treatments, and αi = µi − µ
measures the effect of the specific treatment
in class i. This implies that testing

H0 : µ1 = µ2 = · · · = µk

is equivalent to testing

H0 : α1 = α2 = · · · = αk = 0.

In the fixed effects model we choose inten-
tionally k specific populations due to some
common characteristic we want to study or
due to some specific treatments we want to
investigate. In this setup the αi are regarded
as fixed but unknown quantities to be esti-
mated and the alternative hypothesis is just

H1 : not all αi are zero.

The task is then to estimate these αi’s in
case the null hypothesis is rejected.



4) Estimation of the effects

In the fixed effects model, the effects are
estimated from the difference of the groups
means from the grand mean x, which is the
arithmetic mean of all onservations from all
groups:

ai = x̄i − x, i = 1,2, . . . k.

Example: (sleeping pills continued).

The p-value of the F-test was 7.9% > 5%,
hence we accept µ1 = µ2 = 1.54, which is
equivalent to α1 = α2 = 0 (implying no effect
of medication change).

If the F-test had rejected, we would have
estimated µ1 by x̄1 = 0.75 and µ2 by x̄2 =
2.33, such that the sample effects become

a1 = 0.75− 1.54 = −0.79

a2 = 2.33− 1.54 = +0.79,

which we would have used as our estimates
for α1 and α2, imlying that medication 2 is
better than medication 1.
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4.3. The random effects model

In the fixed effects model discussed above the

treatments are selected specifically by the ex-

perimenter because they are of particular in-

terest. The purpose of the experiment is to

make inferences about the means of the par-

ticular populations from which the samples

are drawn. If, however, we want to make a

broad generalization concerning a larger set

of populations and not just the k populations

from which we sample, then the appropriate

model is called a random-effects model.

In the random-effects model the k sampled

populations are considered to be a random

sample of populations drawn from a larger

set. The hypothesis of interest is not that

µ1 = µ2 = · · · = µk. Rather we want to

determine whether there is variablility among

the population means of the larger set.

114



The following model assumptions are made:

1. The k samples represent independent ran-

dom samples from k populations randomly

selected from a larger set of populations.

2. Each of the populations in the larger set

is normally distributed, and therefore each

of the sampled populations is also nor-

mal.

3. Each of the populations in the larger set

has the same variance σ2, and thus each

of the k sampled populations also has

variance σ2.

4. The effects α1, α2, . . . , αk are independent

normally distributed random variables, each

with mean 0 and common variance σ2
A.
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Mathematicaly the model may be written as:

Xij = µ+

Ai︷ ︸︸ ︷
(X̄i−µ) +

εij︷ ︸︸ ︷
(Xij−X̄i) = µ+Ai + εij,

where Ai ∼ N(0, σ2
A), εij ∼ N(0, σ2).

The null hypothesis is now stated as:

H0 : σ2
A = 0,

which we test against

H1 : σ2
A 6= 0,

If the null hypothesis holds, then as before:

Xij = µ+ εij ∼ N(µ, σ2),

which implies that the ANOVA table looks

just the same as in the fixed effects model

and H0 is also tested in exactly the same

way as in the fixed effects model.

The difference between the models becomes

first apparent in different expected mean

squares, when the null hypothesis is rejected.
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The expected mean squares for the treat-

ments is in the fixed effects model:

E(MSB) = σ2 +
1

k − 1

k∑
i=1

ni(µi − µ)2,

which in the special case of equal sample

sizes ni = n in each group simplifies to:

E(MSB) = σ2 + n

∑
(µi − µ)2

k − 1
= σ2 + n·s2(µ),

where we have written s2(µ) for the sample

variance of the population means µi.

Similiarly the expected mean squares in the

random effects model is

E(MSB) = σ2 + n0·σ2
A,

where

n0 =
N2 −

∑k
i=1 n

2
i

N(k − 1)
and N=

k∑
i=1

ni.

Note that n0 = n in the special case of equal

sampel sizes ni = n in all groups.
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Estimating E(MSB) by MSB, and σ2 by MSW

yields the following estimator of σ2
A:

s2
A =

MSB−MSW

n0

Example. (Milton/Arnold: Example 13.7.1)

A utility company has a large stock of volt-

meters that are used interchangeably by many

employees. Below are differences between 4

applied voltages and the corresponding read-

ings for 6 randomly selected voltmeters:

We wish to test whether the average readings

of all voltmeters in stock are identical.
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The null and alternative hypotheses are:

H0 : σA = 0 versus H1 : σA 6= 0.

The ANOVA table provides evidence of dif-

ferences in average reading errors among the

voltmeters in stock.

We can estimate how much of the variability

is due to differences in meters and how much

is due to random sampling error. To do this,

we estimate the variance components σ2 and

σ2
A as

s2 = MSW = 0.426 and

s2
A =

MSB−MSW

n0
=

2.251− 0.426

4
= 0.456.

The Random Factor Option within the Real

Statistics Single Factor ANOVA tool provides

also 95% confidence intervals for the variance

components and the overall mean.
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