4. Analysis of Variance (ANOVA)

4.1. Introduction: Comparing Means

Consider the problem of testing

Ho:py = pp against  Hy:pyg 7 po

in two independent samples of two different
populations of possibly unequal size n1 and
no containing normally distributed observa-
tions with both unknown means u; and vari-
ances 07;2, : = 1,2, which we assume to be
equally large. Following STAT 1030, the ap-
propriate test statistic is
p=_217%2 t(nqy + no — 2) under Hy.

L4 1

ny ' no

—1)s? —1)s2
with s2 = (n1 )51+ (n2 )82, where

niy + no — 2

2 _ Z?;l(xli — #1)? 2 __ 2?21(5627; — 22)°
51 = and s5 = :
ny — 1 no — 1
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Example (ignore the ANOVA output for now)

Two groups consisting of different people re-
ceive two different sleeping pills (med 1/2)
and the impact upon sleep prolongation is
measured:

Patient Sleep prolongation Anova; Single Factor
number: med 1 med 2
1 0.70 1.90 SUMMARY
2 -1.60 0.80 Groups Count Sum Average Variance
3 -0.20 1.10 Column 1 10 7.5 0.75 3.20056
4 -1.20 0.10 Column 2 10 23.3 2.33 4.009
5 -0.10 -0.10
6 3.40 4.40
7 3.70 5.50 ANOVA
8 0.80 1.60 Source of Variation SS df MS F P-value F crit
9 0.00 4.60 Between Groups 12.48 1 12.482 3.46263 0.079187 4.4139
10 2.00 3.40 Within Groups 64.89 18 3.60478
Average: 0.750 2.330
Stddev.: 1.789 2.002 Total 77.37 19

Pill 2 is more effective than Pill 1 in sample,
but we need to consult the independent sam-
ple t-test to check that this holds also out of
sample:

o — @ ~1.58
p=_217%2 — _1.861,
s/ L 4 L1 \/1.792+2.002
ni ns 10

where we have used that if ny = no, then
s? = (s + s5)/2. The p-value of the test is
T.DIST.2T(-1.861;18)=0.079, insufficient to
reject the null hypothesis that the medication
has no effect at a 5% significance level.
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When assessing whether two populations have
the same mean using the ANOVA F'-test, we
compare the variation between the means of
both groups with the variation within the
group. This is why this method is called
analysis of variance. If the within-group vari-
ation is small, the same variation between
the groups produces a larger statistic and a
more significant result. A large F-statistic is
thus evidence against the null Hg: pu1 = uo
in favour of the alternative Hy: u1 #= uo.

The advantage of the ANOVA F'-test is that
it may be generalized to test £k means:

Hgo: p1=po == py.
It's application requires that

e the groups are independent of each other,

e all groups have the same variance,

e the observations in all groups are normally
distributed.
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Example (continued.)

We split up the deviation of each persons
sleep prolongation z;;, « = 1,...,10, 7 =
1,2 from the overall mean x into a compo-
nent due to the different treatments r; —x,
where a_:j, 7 = 1,2 denote the mean of the
sleep prolongation for the respective treat-
ment (between group deviation), and a com-
ponent unexplained by the different treat-

ments, z;; —z; (within group deviation):

Squaring this expression and summing up vields
after some algebra:

2(33@'1 —7)° + i:(ﬂ%z —7)?
i=1 i—1 )

SST=(n—1)s?

= 2(:&—5)2 + 2(52—5)2 + i(wil—fl)Q + i(‘”@'?_@)Q
i=1 i=1 =1 =1

>4 \ - >4

SSM or SSTR or SSB SSE or SSW
=n1(Z1 — T)* + n2(d2 — £)° + (n1 — 1)s7 + (n2 — 1)s3,
where TR stands for treatment, B stands

for between groups, and W stands for within
groups (T,M,E see regression ANOVA).
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ANOVA: Single Factor

DESCRIPTION

Alpha 0.05

Groups Count Sum Mean Variance SS Std Err

1 10
2 10

7.5 0.75 3.2006 28.805 0.600398
23.3 2.33 4.009 36.081 0.600398

ANOVA

Sources SS

df MS F P value F crit

Between Groups 12.482
Within Groups 64.886
Total 77.368

1 12482 3.4626 0.0/9187 4.413873
18 3.60478
19 4.072




T he associated degrees of freedom are:
DFT=19 (n = 20 observations minus 1 for
the calculation of the grand mean),

DFB=1 (2 sample means minus 1 for the
calculation of the grand mean),

DFW=18 (n = 20 observations minus 2 for
the calculation of the sample means).

The mean squares are obtained as:

MSB = —o0 1248 12.48,
DFB 1
4.
Msw = 22W _ 6489 _ 5 s
DFW 18

Since we want to reject when the between
group variation is large compared to the within
group variation we calculate the F'-statistic
as
P MSB  12.48
 MSW  3.605
which is just the square of -1.861, the t-
statistic we obtained earlier, and the p-value
is F.DIST.RT(3.463;1;18)=0.079, just the
same as before using the t-statistic. We ex-
plain in the following why this is the case.
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Why is F = t27?

This is just a matter of algebraic manipulations. Squar-
ing the t-test statistic yields

g2

> _ (n1 — 1)3% + (no — 1)5%
ni1+no —2 .

with s

Now
SSW = (n1 — 1)s7 + (no — 1)s3 = (n1 + no — 2)s°
such that
MSW = SSW/(n1 + no — 2) = s°.
Similiarly it can be shown by inserting

_ niT1 + noxo
xr = INto

n1 + no

MSB = SSB = n1 (71 — 7)2 + no(ds — 7)2,

that MSB = —2 "2 (7, — 7,)2.
ni1 + no
MSB
Therefore: F = 5B _ 2,
MSW

It is also possible to show that squaring a t(v)-distributed
random variable will always yield a F'(1,v)-distributed
random variable, which explains the identical p-values
for the t- and for the F'-test.
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Appropriateness of the F'-test

Recall from STAT1030 that the fraction of
two independent y2-distributed variables di-
vided by their degrees of freedom follow the
F-distribution as follows:

X;~x2(y) (=1,2) ~ F(vy,v).

If the ANOVA assumptions hold and addi-
tionally pu1 = puo = .-+ = pp. as stated in Hy,
then it turns out that MSB=SSB/DFB is an
unbiased estimator of o2 and additionally

SSB/g? ~ x°(DFB).

Furthermore it turns out that under ANOVA
assumptions MSW=SSW/DFW is also an un-
biased estimator of o2 and additionally

SSW /5?2 ~ x2(DFW)

independent of MSB and no matter whether
Hg holds true or not, implying that under Hp:

F = MSB/MSW ~ F(DFB,DFW).
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4.2. One-Way ANOVA for k£ > 2 groups

In ANOVA we have k independent random
samples, each one corresponding to a popu-
lation subject to a different treatment. We
have:

e N =mnj1+no+...+mn; total observations.

e £ sample means: z1,xo,...,%L.
These may be used to calculate an esti-
mator of the population variance (MSB),
if the population means are equal. In that
case we expect the variance among the
sample means to be small.

e k sample variances: s?,s3,...,sz.
These may be used to find a second esti-
mator of the population variance (MSW),
no matter whether the population means
are equal or not.

(Note the alternative notations MSE for MSW,
and also MSTR and MSM for MSB.)
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ANOVA is a statistical method to determine
whether several population means are equal.
That is, we test

Ho:pr =puo =+ = ug against
Hqy:not all u;, :=1,...,k are equal.

ANOVA is a joint test in the sense that it
tests the equality of all population means si-
multaneously rather than pairwise. This is
achieved by comparing the two estimators of
the population variance (hence the name).

The required assumptions of ANOVA are:

e \We assume independent random sampling
from each of the k populations.

e \We assume that the k£ populations:
— are normally distributed,
— with means 1 not necessarily equal,

— but with equal variances o? =: o2.
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Checking the assumptions

1) Independence is taken care of in the sam-
pling or experimental design. Similiar to re-
gressions, the whole approach breaks down if
the independence assumption is not satisfied.

2) Use the Shapiro-Wilk test from the Real
Statistics ‘Descriptive Statistics and Normal-
ity’ window in order to check for Normality
in each of the groups. If you find any p-value
below 0.05, it means that the normality as-
sumption is not met.

Deviations from normality are acceptable as
long as

e [ he populations are symmetrical and uni-
modal

e [ here are at least 10 observations in each
group

Even symmetry can be dispensed with if all
sample sizes are equally large (so called bal-
anced design), all populations have the same
shape and there are many observations.
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3) To test for Homogeneity of variance Real
Statistics provides Levene’s test, available as
an option within Single factor ANOVA. The
output contains 3 p-values. The first p-value
(means) is the original and most powerful
version of the test and requires that all groups
have normally distributed observations. The
second version (medians) is less powerful, but
robust against skewness. The last version
(trimmed) is robust against excess kurtosis.

The null hypothesis is that all groups have
the same variance, so a p-value below 0.05
implies that the homogeneity of variance as-
sumption is not met.

ANOVA is not very sensitive to violations of
the homogeneity of variance assumption, as
long as the sizes of the different samples are
about the same. As a rule of thumb, ANOVA
IS applicable as long as the highest variance
IS no more than twice the lowest variance.
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When the ANOVA assumptions do not hold

Often violations of the assumption are just
due to some outliers, which may be easily
detected with explorative tools such as his-
tograms and boxplots. Checking ‘Outliers
and Missing Data’ within the ‘Descriptive Sta-
tistics and Normality’ window of the Real
Statistics toolbox will mark all observations
which are more than 2.5 standard deviations
away from the mean.

If the assumption of equal variances is not
satisfied but all other assumptions are in or-
der, you may replace standard ANOVA with
Welch’'s test. It is an extension of Student’s
t-test for populations with unequal variances
to more than 2 groups and is available as one
of the options within Single Factor ANOVA.
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1) When the normality tests reject. . .

Skewness and excess kurtosis in the data may
be corrected by replacing the original obser-
vations x; with some suitably transformed ob-
servations f(x;):

e Skewness to the right may be corrected
by square-root and logarithmic transfor-

mations: f(z) = /x or f(x) = log(x).

e Skewness to the left may be corrected by
f(x) = arcsiny/xz or f(x) = log (1 v )
— I
which also corrects thin-tailedness.

e Fat-tailedness (= excess kurtosis) may

be corrected by f(x) = log (,/ 11 T x)
— X
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2) When the variances are not homogeneous

If the variance is a function of the mean
alone,

0% = ¢(p),

then it is always possible to find a suitable
transformation function f(xz) such that homo-
geneity of variance holds for the transformed
data.

In Poisson type distributions, where
02 = w= A

(A =parameter of the Poisson distribution)
variance is stabilized by the square-root trans-
formation f(x) = /.

Recall that Poisson type distributions describe
counting processes of rare events, such as
the number of working accidents in different
companies.
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If the coefficient of variance is a constant,

V = o/u = const.,

like for example in the exponential distribu-
tion, then variance is stabilized by the loga-
rithmic transformation f(xz) = log(x). Con-
stant coefficients of variance occur in situ-
ations where effects are proportional rather
than additive, that is, the variance of differ-
ent treatments differ consistently by certain
percentages (rather than a certain number of
units).

The variance of proportions (that is, num-
bers in the range [0,1]) may be stabilized by
the transformation f(x) = arcsin /.

In general, if the variance is a function of the
mean alone, o2 = ¢(u), then an approximate
variance stabilizing transformation is given by

f@) = [ =

Jo(x)
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3) When transformations don't help either

Don't forget that ANOVA is rather robust to
skewness and also to differences in variance
as long as the sample sizes are equally large.
Recall also that you may apply Welch's vari-
ance weighted ANOVA when homogeneity of
variance is the only problem.

A last resort are non-parametric tests:

e [ he Mann-Whithey test in the case of
two classes, which is just a special case
of the

e Kruskall-Wallis test for arbitarily many
samples.

When the test statistics are distorted by a
large spread due to extreme outliers, which
one doesn’'t want to eliminate, one may still
try the

e Mmedian test.
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Setting up an ANOVA table

Consider k independent samples:
11,212y ++-5T1ngs

L1, L2, - - - 7xknk7

where nq + -+ np = N.

We wish to test whether all observations come
from the same distribution or not.

1) The Sum of Squares Principle

We calculate the grand mean from all obser-
vations as

1 &l 1 &

The total deV|at|ons are the differences be-
tween the data points T and the grand mean

X.

TOtZ'j = X5 — T.
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The total deviations x;; — z are split up into
group effects or treatment deviations z; — =
and the residuals e;; = x;; — x;:

Ti; — T = (2; — %) + (z;; — T;).
Squaring this expression and summing up vields

the SST = Total Sum of Squares which may
again be split into two components:

the SSB = Between Groups Sum of Squares

and

the SSW = Within Groups Sum of Squares:

SST =Y (z;; —7)% = (N — 1)s°
i j

=3 > (@~ D)7+ (e — )’
T ] T ]
= SSB + SSW.

Aczel uses the terms sum of squares for treat-
ment (SSTR) instead of SSB and sum of
squares for error (SSE) instead of SSW.
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2) Additivity of degrees of freedom

The degrees of freedom of SST are (N — 1):

N total observations in all k samples, less one
degree of freedom lost with the calculation of
the grand mean.

The degrees of freedom of SSB are (kK — 1):

k sample means, less one degree of freedom
lost with the calculation of the grand mean.

The degrees of freedom of SSW are (N — k):

N total observations in all samples, less one
degree of freedom lost with each calculation
of any of the k£ sample means.

The degrees of freedom are additive in the
same way as are the sums of squares:

DFT = DFB + DFW.
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3) The Mean Squares and the F-test

Dividing the components of the total sum of
squares by their respective degrees of free-
dom vields the mean squares

I\/ISB=SS—B and I\/ISW=SS—W.
k—1 N —k

If all ANOVA assumptions,

e independent samples,
e normally distributed observations,
e homogeneity of variance

and the null hypothesis

e equal means in all groups

hold true, then the test statistic
MSB
F —_

- MSW
follows the F' distribution with degrees of
freedom k—1 and N—k, (F ~ F(k—1,N—k)).

Large values of the F' statistic lead to rejec-
tion of the null hypothesis of equal means in
all groups.
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What if the F-test rejects?

Mathematically, the model may be written

%
X5 = pite;=pt+ (i — p) +eij, €5 ~ N(0,0°),
where X;; denotes the j'th observation of
population (treatment) 4, u is the overall mean
response to the treatments, and o; = u; — p
measures the effect of the specific treatment

in class <. This implies that testing

Ho:pyl = pp =+ = pg
IS equivalent to testing

H()I()zl:OéQ:---IOAk:O.

In the fixed effects model we choose inten-
tionally k specific populations due to some
common characteristic we want to study or
due to some specific treatments we want to
investigate. In this setup the «; are regarded
as fixed but unknown quantities to be esti-
mated and the alternative hypothesis is just

Hq:not all o; are zero.

The task is then to estimate these ¢;'s in
case the null hypothesis is rejected.



4) Estimation of the effects

In the fixed effects model, the effects are
estimated from the difference of the groups
means from the grand mean z, which is the
arithmetic mean of all onservations from all
groups:

aizxi—i, i:1,2,...]€.

Example: (sleeping pills continued).

The p-value of the F-test was 7.9% > 5%,
hence we accept pu; = po = 1.54, which is
equivalent to a1 = a» = 0 (implying no effect
of medication change).

If the F-test had rejected, we would have
estimated pu; by 1 = 0.75 and uo by xo =
2.33, such that the sample effects become

a1 = 0.75 — 1.54 = —0.79
a> = 2.33 — 1.54 = 4+0.79,

which we would have used as our estimates
for a1 and a9, imlying that medication 2 is
better than medication 1.
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4.3. The random effects model

In the fixed effects model discussed above the
treatments are selected specifically by the ex-
perimenter because they are of particular in-
terest. The purpose of the experiment is to
make inferences about the means of the par-
ticular populations from which the samples
are drawn. If, however, we want to make a
broad generalization concerning a larger set
of populations and not just the k populations
from which we sample, then the appropriate
model is called a random-effects model.

In the random-effects model the k£ sampled
populations are considered to be a random
sample of populations drawn from a larger
set. The hypothesis of interest is not that
p1 = po = --- = up. Rather we want to
determine whether there is variablility among
the population means of the larger set.
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The following model assumptions are made:

1. The ksamples represent independent ran-
dom samples from k populations randomly
selected from a larger set of populations.

2. Each of the populations in the larger set
iIs normally distributed, and therefore each
of the sampled populations is also nor-
mal.

3. Each of the populations in the larger set
has the same variance 02, and thus each
of the k£ sampled populations also has

variance o2.

4. The effects a1, ap,...,ap are independent
normally distributed random variables, each
with mean 0O and common variance 0124.
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Mathematicaly the model may be written as:
A i

Xij=p+ (Xi—p) +(Xi;— X)) = p+ A + ¢,

where A; ~ N(O, 0124), e;j ~ N (O, 2).

The null hypothesis is now stated as:
Hp: 0'124 = 0,
which we test against

Hyq: 0‘124#0,

If the null hypothesis holds, then as before:

Xi; = p+ e€; ~ N(u,02),

which implies that the ANOVA table looks
just the same as in the fixed effects model
and Hgp is also tested in exactly the same
way as in the fixed effects model.

The difference between the models becomes

first apparent in different expected mean

squares, when the null hypothesis is rejected.
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The expected mean squares for the treat-
ments is in the fixed effects model:

k
1
BE(MSB) =02+ —— Y n;(u; — w)?,
k—1 i=1
which in the special case of equal sample
sizes n; = n in each group simplifies to:

> (i — p)?
k—1
where we have written s2(u) for the sample

variance of the population means u;.

E(MSB) = o2 +n = 02 4+ n-s2(u),

Similiarly the expected mean squares in the
random effects model is

E(MSB) = o2 -+ n0-0124,
where

N2 _ b 2 k
ng = 2i=1"] and N= an

1=1

Note that ng = n in the special case of equal
sampel sizes n; = n in all groups.
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Estimating E(MSB) by MSB, and ¢2 by MSW
yields the following estimator of 031:

MSB — MSW

no

2 =

Example. (Milton/Arnold: Example 13.7.1)

A utility company has a large stock of volt-
meters that are used interchangeably by many
employees. Below are differences between 4
applied voltages and the corresponding read-
ings for 6 randomly selected voltmeters:

Voltmeter
1 2 3 4 5 6
0.18 -0.15 -025 195 -090 1.10
-1.31 1.85 0.77 1.03 -0.50 1.21
015 063 165 065 025 0.68
-0.81 045 124 125 -0.88 0.92

We wish to test whether the average readings
of all voltmeters in stock are identical.
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The null and alternative hypotheses are:
Hgyg:04=0 versus Hq:04 # 0.

The ANOVA table provides evidence of dif-
ferences in average reading errors among the
voltmeters in stock.

We can estimate how much of the variability
is due to differences in meters and how much
IS due to random sampling error. To do this,
we estimate the variance components o2 and
o2 as

s2 = MSW = 0.426 and

MSB — MSW . 2.251 — 0.426
no B 4

s5 = = 0.456.

The Random Factor Option within the Real
Statistics Single Factor ANOVA tool provides
also 95% confidence intervals for the variance
components and the overall mean.
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