
4.4. Further Analysis within ANOVA

1) Estimation of the effects

Fixed effects model:

αi = µi − µ is estimated by ai = (x̄i − x)

if H0 : µ1 = µ2 = · · · = µk is rejected.

Random effects model:

If H0 : σ2
A=0 is rejected, then we estimate the

variability σ2
A among the population means by

s2
A =

MSB−MSW

n0
with n0 =

N2 −
∑k
i=1 n

2
i

N(k − 1)
,

where N = n1 +n2 + · · ·+nk, with n0 = n in

the special case of equal sampel sizes ni = n

in all groups.
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2) Planned Comparisons: Contrasts

The hypothetical data below shows errors in

a test made by subjects under the influence

of two drugs in 4 groups of 8 subjects each.

Group A1 is a control group, not given any

drug. The other groups are experimental

groups, group A2 gets drug A, group A3 gets

drug B, and group A4 gets both drugs.
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Suppose we are really interested in answering
specific questions such as:

1. On the average do drugs have any effect
on learning at all?

2. Do subjects make more errors if given
both drugs than if given only one?

3. Do the two drugs differ in the number of
errors they produce?

All these questions can be formulated as null
hypotheses of the form

H0 : λ1µ1 + λ2µ2 + · · ·+ λkµk = 0,

where λ1 + λ2 + · · ·+ λk = 0.

For example, the first question asks whether
the mean of group A1, µ1, differes from the
average of the means for the groups A2, A3,
and A4, (µ2 + µ3 + µ4)/3. That is, we wish
to test the null hypothesis

H0(1) : µ1 −
1

3
µ2 −

1

3
µ3 −

1

3
µ4 = 0.
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A contrast is a combination of population

means of the form

ψ =
∑

λiµi, where
∑

λi = 0.

The corresponding sample contrast is

L =
∑

λix̄i.

In our example:

L1 = X̄1 −
1

3
X̄2 −

1

3
X̄3 −

1

3
X̄4.

Now, since each individual observation Xij is

distributed as N(µi, σ
2) and all observations

are independent of each other, each sample

mean X̄ is distributed as N(µi, σ
2/ni), such

that

L ∼ N
(∑

λiµi, σ
2∑ λ2

i

ni

)
,

which implies that under the null hypothesis

L

σ

√∑ λ2
i
ni

∼ N(0,1).
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Now recalling that the square of a standard

normally distributed random variable is al-

ways χ2-distributed with df = 1, we obtain

denoting Q = L2/(
∑
λ2
i /ni):

Q/σ2 ∼ χ2(1).

Furthermore, using SSW/σ2 ∼ χ2(N−k), we

obtain that:

Q/MSW ∼ F (1, N−k),

the square root of which has a t-distribution,

that is:

t =
L

s(L)
∼ t(N−k),

where

s(L) = s

√√√√∑ λ2
i

ni
and s =

√
MSW,

which simplifies to

s(L) = s

√∑
λ2
i

n
for equal sample sizes n.

s(L) is called the standard error of the contrast.
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This suggests to test the null hypothesis

H0 : λ1µ1 + λ2µ2 + · · ·+ λkµk = 0

with a conventional t-test of the form

t =
L

s(L)
∼ t(N−k).

Example: (continued.)

L = X̄1 −
1

3
X̄2 −

1

3
X̄3 −

1

3
X̄4

= 6.75−
1

3
(10.375 + 8.625 + 13.75)

= −4.167,

s(L) =

√
MSW

∑
λ2
i

n
=

√
7.38393 (1 + 3/9)

8
= 1,109 such that

t =
−4.167

1.109
= −3.76.

The associated p-value in a two-sided test is
T.DIST.2T(3.76;28)=0.08%, and in a one-
sided test against H1 : µ1 < (µ2 +µ3 +µ4)/3,
T.DIST.RT(3.76;28)=0.04%, which provides
clear statistical evidence that the drugs con-
sidered increase error rates.
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The remaining questions may be tackled in

an analogous way:

1. Do subjects make more errors if given

both drugs than if given only one?

H0(2) : µ4 − 1
2(µ2 + µ3) = 0

2. Do the two drugs differ in the number of

errors they produce?

H0(3) : µ2 − µ3 = 0

The computational steps in conducting the

test are summarized in the tables below:

A1 A2 A3 A4
∑
λ2
i

X̄i 6.750 10.375 8.625 13.750
λi(1) 1 -1/3 -1/3 -1/3 4/3
λi(2) 0 -1/2 -1/2 1 3/2
λi(3) 0 1 -1 0 2

L s(L) t p

H0(1) -4.167 1.109 -3.76 0.0008
H0(2) 4.250 1.177 3.61 0.0012
H0(3) 1.750 1.359 1.29 0.208
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Contrasts in Excel

The Real Statistics Single Factor ANOVA

tool has an option to calculate contrasts. Af-

ter entering your contrast weights (the λ’s)

into the grey shaded area labeled ‘c’ you will

get the sample contrast L, its standard er-

ror s(L), the corresponding t-statistics and

its p-value.

Below is the contrast for testing H0(2) as an

example:
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Orthogonal hypotheses

The 3 hypotheses in the preceding section
were special in the sense that the truth of
each null hypothesis is unrelated to the truth
of any others. If H0(1) is false, we know that
drugs have some effect upon errors, although
H0(1) says nothing about whether the effect
of taking both drugs simultaneously is differ-
ent from the average of the effects of the
drugs taken seperately. Similarly, if H0(2) is
false, we know that the effect of taking both
drugs is different from taking only one, but
we don’t know which of the two drugs taken
individually is more effective.

A set of contrasts such that the truth of any
one of them is unrelated to the truth of any
other is called orthogonal. For equal sample
sizes in each group the orthogonality of two
contrasts L1 =

∑
λ1ix̄i and L2 =

∑
λ2ix̄i may

be assessed by checking the orthogonality
condition ∑

λ1iλ2i = 0.
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If the group sizes ni involved in the contrast

are not all identical, the orthogonality condi-

tion becomes ∑ λ1iλ2i

ni
= 0.

In an ANOVA with k groups, no more than

k − 1 orthogonal contrasts can be tested.

Such a set of k − 1 orthogonal contrasts is

however not unique.

In practice the researcher will select a set of

orthogonal contrasts such that those con-

trasts of particular interest in the research

question are included. Once such a set is

found, it exploits all available information that

can be extracted for answering the maximum

amount of k− 1 independent questions, that

can be asked in form of contrasts.
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To illustrate the importance of orthogonal hypoth-
esis, assume that instead of testing the orthogonal
hypotheses H0(1) − H0(3) we would have tested the
original hypothesis

H0(1) : µ1 −
1

3
µ2 −

1

3
µ3 −

1

3
µ4 = 0

together with

H0(4) : µ4 − µ1 = 0,

that is that error rates are the same when taking both

drugs or taking no drugs, upon the data below:
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The two hypotheses are not orthogonal:

A1 A2 A3 A4

X̄i 5.50 5.75 5.75 9.00
λi(1) 1 -1/3 -1/3 -1/3
λi(4) -1 0 0 1

We may therefore get conflicting results from

both hypothesis tests:

L s(L) t p

H0(1) -1.33 1.21 -1.10 0.281
H0(4) 3.50 1.49 2.36 0.026

In this example, we safely accept H0(1) that

taking drugs has no impact on error rates,

while we strongly reject H0(4) that taking

both drugs has no impact.

132



Constructing Orthogonal Tests

If all sample sizes are equal (ni = n=const.),

orthogonal tests may be constructed based

on the principle that the test on the differ-

ences among a given set of means is orthog-

onal to any test involving their average.

Consider our original set of hypotheses:

H0(1) : µ1 −
1

3
(µ2 + µ3 + µ4) = 0

H0(2) : µ4 −
1

2
(µ2 + µ3) = 0

H0(3) : µ2 − µ3 = 0

H0(1) involves the average of µ2, µ3, and

µ4, while H0(2) and H0(3) involve differences

among them. Similarly, H0(2) involves the

average of µ2 and µ3, while H0(3) involves

the difference between them.
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A Word of Caution

Contrasts are a special form of planned com-

parisons, that is, the hypotheses with the

contrasts to be tested must be set up be-

fore taking a look at the data, otherwise the

associated p-values will not be valid.

The situation is similar to whether applying a one-

sided or a two-sided test. Assume you want to test

whether the means in two samples are the same using

the conventional significance level of α = 5%. You

apply a two-sided test and get a p-value of 8%, so you

may not reject. Let’s say as a step in your calculations

you figured out that x̄1 > x̄2. You may be tempted

then to replace your original two-sided test against

H1 : µ1 6= µ2 by a one-sided test against H1 : µ1 > µ2,

which, technically, would allow you to divide your p-

value by 2 and get a significant result at 4%. But

that p-value of 4% is fraud, because the reason that

it is only one half of the two sided p-value is exactly

that without looking at the data, you also had a 50%

chance that the sample means would have come out

as x̄1 < x̄2.
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3) Multiple Comparisons (Post hoc Tests)

As seen above, contrasts must be formulated
in advance of the analysis in order for the
p-values to be valid. Multiple-comparisons
procedures, on the other hand, are designed
for testing effects suggested by the data after
the ANOVA F -test led to a rejection of the
hypothesis that all sample means are equal.
For that reason they are also called post hoc
tests.

All multiple comparisons methods we will dis-
cuss consist of building t-ratios of the form

tij =
x̄i − x̄j
SEij

, or, equivalently,

setting up confidence intervals of the form

[(x̄i − x̄j)± t∗SEij]

for all
(k
2

)
=
k(k − 1)

2
pairs that can be built

within the k groups.

The methods differ in the calculation of the
standard errors SEij and the distributions and
critical levels used in the determination of t∗.
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Fisher’s LSD = least-significant difference

One obvious choice is to extend the 2 inde-
pendent sample t-test to k independent sam-
ples with test statistics

tij =
x̄i − x̄j

s
√

1
ni

+ 1
nj

, where s =
√

MSW,

and to declare µi and µj different whenever
|tij| > tα/2(DFW), or, equivalently, whenever

0 /∈

(x̄i − x̄j)± tα/2(DFW) · s

√√√√ 1

ni
+

1

nj

 ,
where DFW= N − k in the case of one-way
ANOVA. This procedure fixes the probabil-
ity of a false rejection for each single pair of
means being compared as α.

This is a problem if the numbers of means be-
ing compared is large. For example, if we use
LSD with a significance of α=5% to compare
k=20 means, then there are k(k−1)

2 = 190
pairs of means and we expect 5% ·190 = 9.5
false rejections!
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Bonferroni Method

The Bonferroni method uses the same test
statistic as Fisher’s LSD, but replaces the
significance level α for each single pair with
α′ = α/

(
k
2

)
or equivalently the original p-value

with p′ =
(
k
2

)
p as a conservative estimate of

the probability that any false rejection among

all k(k−1)
2 comparisons will occur. This is also

called the experimentwise error rate. An ob-
vious disadvantage is that the test becomes
weak when k is large.

Example:
Comparison of A1 and A2 (original data):

|tij| =

∣∣∣∣∣∣∣∣∣
x̄i − x̄j

s
√

1
ni

+ 1
nj

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
6.75− 10.375√

7.38393 · 2
8

∣∣∣∣∣∣∣ = 2.668

LSD:

pLSD = T.DIST.2T(2.668; 28) = 1.25%.

Bonferroni:

pB =
4 · 3

2
· pLSD = 6 · 1.25% = 7.5%.
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Tukey’s HSD = honestly significant difference

Tukey’s method for multiple comparisons de-
livers the most precise estimate of the proba-
bility that any false rejection among all paired
comparisons will occur. In its original form it
is only applicable in the case of equal sample
sizes in each group (ni = n), but corrections
for unequal sample sizes have been suggested
and are implemented in Real Statistics.

Tukey’s honestly significant difference is:

HSD = qα(k,DFW) ·
s
√
n
,

where qα denotes the α-critical value from
the so called Studentized range distribution
tabulated e.g. in table 6 of Aczel, and s is
estimated by

√
MSW, as usual.

Two group means µi and µj are declared dif-
ferent at significance level α if

0 /∈
[
(x̄i − x̄j)±HSD

]
,

or, equivalently, if∣∣∣∣∣x̄i − x̄js/
√
n

∣∣∣∣∣ > qα(k,DFW).
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Example:
Comparison of A1 and A2 (continued).

LSD and Bonferroni gave conflicting results
whether the difference between µ1 and µ2 is
significant at 5% or not (recall pLSD = 1.25%
and pB = 7.5%), because LSD underesti-
mates the probability of any false rejection
among all paired comparisons, whereas Bon-
ferroni overestimates it.

Applying Tukey’s procedure yields∣∣∣∣∣x̄i − x̄js/
√
n

∣∣∣∣∣ =

∣∣∣∣∣∣∣
6.75− 10.375√

7.38393/8

∣∣∣∣∣∣∣ = 3.77.

Looking up in a table or using the QCRIT
function from Real Statistics reveals that

q0.05(4; 28) = QCRIT(4;28;0.05;2) = 3.86,

which is larger than the statistic calculated
above. The difference between µ1 and µ2 is
therefore not significant at 5% level, if the
test was first suggested by the data.

Note: A planned comparison before looking at the

data in form of a contrast would have found a sig-

nificant difference with a p-value of 1.25%(=pLSD).
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Simultaneous Confidence Intervals

The idea with multiple comparisons in post-
hoc tests is usually to determine, which groups
may be combined into larger groups, that are
homogeneous in the sense that their group
means are not significantly different.

For that purpose, one constructs confidence
intervals of the form

[(x̄i − x̄j)± smallest significant difference],

where the smallest significant differences are:

LSD : tα
2
(DFW) · s

√√√√ 1

ni
+

1

nj

Bonferroni: tα
2/(

k
2)

(DFW) · s

√√√√ 1

ni
+

1

nj

HSD : qα(k,DFW) ·
s
√
n

Combinations of groups are considered homogeneous

at confidence level (1 − α), if none of their paired

comparisons lies outside the corresponding confidence

intervals; that is, pairs of means, the confidence inter-

vals of which include the value 0 will not be declared

significantly different, and vice versa.
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Multiple Comparisons in Excel

The Real Statistics toolpack implements post

hoc tests as contrasts restricted to have all

weights coefficients λ1,...,k = 0, except for

the two groups i and j which are currently

compared with weights λi = 1 and λj = −1.

Choosing ‘Contrasts’ with ‘No correction’ un-

der ‘Alpha correction for contrasts’ within

the Single Factor ANOVA tool corresponds

then to Fisher’s LSD.

Note that Real Statistics implements the

‘Bonferroni correction’ under ‘Alpha correc-

tion for contrasts’ as dividing α by the max-

imal number of orthogonal contrasts k − 1

rather than the number of all possible com-

parisons
(
k
2

)
. Generally the Bonferroni cor-

rection should not be used, because it overes-

timates the experimentwise error rate, mak-

ing the test too conservative.
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The best way to do multiple comparisons is

Tukey’s HSD, which is implemented as its

own option in the Single Factor ANOVA tool.

TUKEY HSD/KRAMER alpha 0.05
Groups mean n ss df q-crit

1 6.75 8 57.5
2 10.375 8 61.875
3 8.625 8 67.875
4 13.75 8 19.5

32 206.75 28 3.861
Q TEST
group 1 group 2 mean std err q-stat lower upper p-value x-crit

1 2 3.625 0.960724 3.773195 -0.08436 7.334356 0.05728 3.709356
1 3 1.875 0.960724 1.951653 -1.83436 5.584356 0.521842 3.709356
1 4 7 0.960724 7.28617 3.290644 10.70936 0.000103 3.709356
2 3 1.75 0.960724 1.821542 -1.95936 5.459356 0.577915 3.709356
2 4 3.375 0.960724 3.512975 -0.33436 7.084356 0.084534 3.709356
3 4 5.125 0.960724 5.334517 1.415644 8.834356 0.004057 3.709356

For unequal group sizes ni and nj, Real Statis-

tics implements Tukey’s honestly significant

difference as

HSD = qα(k,DFW) ·

√√√√MSW

2

(
1

ni
+

1

nj

)
.
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