
4.5. Two-way ANOVA

Example. (Moore/McCabe Example 13.3–4)

Red palm oil, due to its high content of vi-

tamin A, is thought to reduce the occurence

and severity of malarity for young children.

To investigate whether this is indeed the case,

a supplement will be prepared that contains

either a placebo, a low dose, or a high dose

of red palm oil. Because boys and girls may

differ in exposure to malaria and the response

to the red palm oil supplement, we consider a

two-way ANOVA, that takes also gender into

account. Suppose we recruit 75 boys and 75

girls to the study. We will then randomly as-

sign 25 of each gender to each of the red

palm oil levels:

Gender
Red palm oil Girls Boys Total
Placebo 25 25 50
Low dose 25 25 50
High dose 25 25 50
Total 75 75 150
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This example illustrates several advantages
of two-way designs. The first is efficiency.
With a two-way design, we can use the same
tool to answer two questions: 1. Does red
palm oil/ 2. Does gender have an impact
upon prevalence of malaria? That is, we get
two one-way ANOVAs for the price of one.

The second and more important advantage is
that we may investigate interactions between
factors. Suppose that boys and girls react
indeed differently to the red palm oil supple-
ment. That piece of information would not
come out in one-way ANOVAs neither for red
palm oil nor for gender.

The final advantage is increased power of the
tests. Suppose we would run a one-way de-
sign and there are indeed differences between
boys and girls. The one-way ANOVA would
assign this variation to the residual (within
groups) part of the model. In the two-way
ANOVA, gender is included in the fit (be-
tween groups) part of the model, which in-
creases the power of the tests.
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Assumptions for Two-Way ANOVA

The assumptions for two-way ANOVA are
the same as for one-way ANOVA, just that
we have now 2 instead of only 1 factor:

We have independent random samples of size
nij from each of I × J normal populations.
The population means µij may differ, but all
populations have the same variance σ2.

Let xijk represent the kth observation from
the population having factor A at level i and
factor B at level j. The statistical model is

Xijk = µij + εijk, where

i = 1, . . . , I; j = 1, . . . , J; k = 1, . . . , nij; and
εijk ∼ N(0, σ2).

We estimate µij by x̄ij =
1

nij

nij∑
k=1

xijk,

and σ2 by (using s2
ij =

∑nij
k=1(xijk−x̄ij)2/(nij−1)):

s2 =

∑
ij(nij − 1)s2

ij

N − IJ
=

SSE

DFE
= MSE,

where DFE = observations–groups = N−IJ.
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Main effects and interactions

We shall now explore in detail the FIT part of the
model, represented by the population means µij.

Because we have independent samples from each group,

we can think of the problem initially as a one-way

ANOVA with IJ groups, that is SST = SSM + SSE,

where

SSM =
I∑

i=1

J∑
j=1

nij∑
k=1

(x̄ij − x)2

with DFM = groups−1 = IJ − 1.

In two-way ANOVA, the terms SSM and DFM are

broken down into a main effect for A, a main effect

for B, and an AB interaction as follows:

SSM = SSA + SSB + SSAB
DFM = DFA + DFB + DFAB

SSA represents variation among the means for the

different levels of A. Because there are I such means,

SSA has DFA= I − 1 degress of freedom. Similarly,

DFB= J − 1. For DFAB we obtain by subtraction:

DFAB = DFM−DFA−DFB

= (IJ − 1)− (I − 1)− (J − 1)

= (I − 1)(J − 1).
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The two-way ANOVA model

Taking the split up of the population means
µij into main effects and an interaction effect
into account, the two-way ANOVA model
may be restated as

Xijk=

µij︷ ︸︸ ︷
µ+αi+βj+(αβ)ij +εijk, εijk∼N(0, σ2),

where µ is the overall mean; αi is the effect
of level i (i = 1, . . . , I) of factor A; βj is the
effect of level j (j = 1, . . . , J) of factor B;
(αβ)ij is the interaction effect of levels i and
j; and εijk is the error associated with the
kth data point from level i of factor A and
level j of factor B.

Note that since αi, βj and (αβ)ij are devi-
ations from the overall mean µ, in the fixed
effects model the sums of all these deviations
are zero:∑

i

αi =
∑
j

βj =
∑
i,j

(αβ)ij = 0.
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The Hypothesis Tests in Two-Way ANOVA

Factor A main-effects test:

H0 : αi = 0 for all i = 1, . . . , I
H1 : Not all αi are zero

F = MSA/MSE ∼ F (I − 1, N − IJ).

Factor B main-effects test:

H0 : βj = 0 for all j = 1, . . . , J
H1 : Not all βj are zero

F = MSB/MSE ∼ F (J − 1, N − IJ).

Test for AB interactions:

H0 : (αβ)ij = 0 ∀ i=1,. . .,I; j=1,. . .,J
H1 : Not all (αβ)ij are zero

F = MSAB/MSE ∼ F ((I−1)(J−1), N−IJ).

Note: Finding a significant interaction effect
substantially reduces the usefulness of factor
A/B main effects, because then they apply
only on average, but not individually for each
level of the other factor.

148



Example: (Azcel, 4th edition.)

The brightness of films produced by 3 differ-
ent manufacturers has been compared using
3 different development processes:

All p-values are below 0.01%, so both man-
ufacturer and development method have an
impact.

There is also an interaction effect:

F = 61.756/5.811 = 10.627
Degrees of freedom:
(3− 1)(3− 1) = 4 and 45− 3 · 3 = 36
Critical value: F0.05(4,36) = 2.63

This implies that main effects must be checked
for each level of the other factor separately.

149



Two-way ANOVA in Excel

You can get the two-way ANOVA table either

from Excel’s Data Analysis tool via ‘Anova:

Two-Factor With Replication’ or from the

Real Statistics Two Factor ANOVA tool.

Doing it with Real Statistics has the advan-

tage that you get the group specific means in

such a way, that excel finds it easy to produce

a line plot of those, which in the context of

ANOVA is called an interaction plot.

Non-parallel lines in such a plot indicate that

there is an interaction effect, which implies

that the main effects hold only on average for

each factor, but not for the factor levels in-

dividually, making it necessary to investigate

the factor levels one by one. The p-value

of the interaction effect in the ANOVA table

tells whether interaction is present also out

of sample.
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Two-Way ANOVA with 1 Observation/Cell

The case of one data point in every cell presents
a problem in two-way ANOVA because then

DFE = observations− groups = 0.

However, if we may assume that there are no
interactions, then SSAB is only due to error
and contains no other information. In that
case we may use SSAB and its associated
degrees of freedom DFAB= (I − 1)(J − 1) in
place of SSE and its degrees of freedom.

We can thus conduct the tests for the main
effects by dividing MSA (MSB) by MSAB
when testing for factor A (factor B) main
effects. The resulting F -statistics has I − 1
and (I−1)(J−1) degrees of freedom for fac-
tor A, and J − 1 and (I − 1)(J − 1) degrees
of freedom for factor B.

The fixed effects two-way ANOVA model with
one observation per cell reduces then to:

Xijk = µ+ αi + βj + εijk, εijk ∼ N(0, σ2).
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Randomized Complete Block Design

When we want to compare the means of k
population means while controlling extrane-
ous variables, a procedure known as blocking
is used. A block (lohko) is a collection of k
experimental units that are as nearly alike as
possible with respect to the extraneous vari-
ables. (A block could be the same person
trying k different products.)

Each treatment is randomly assigned to 1
unit within each block (random order in try-
ing the products). Since the effect of the
extraneous variables is controlled by match-
ing like experimental units, any differences in
response are attributed to treatment effects.

This randomized complete block design (also
called repeated measures ANOVA or one-way
ANOVA with repetition) may be regarded as
a two-way ANOVA with one item per cell
because the blocks may be viewed as one
factor and the treatment levels as the other.
In the randomized block design, however, we
are only interested in the treatment levels and
not in the blocks.
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Because the randomized complete block de-
sign is just a two-way ANOVA with one ob-
servation per cell, we may test the null hy-
pothesis

H0 : µ1 = µ2 = · · · = µk.

with an F -test of the form

F =
MSTR

MSE
∼ F (k − 1, (k − 1)(b− 1)),

where k denotes the number of treatments
and b denotes the number of blocks.

Note that the randomized complete block de-
sign assumes that there is no interaction be-
tween treatments and blocks!

You get the randomized complete block de-
sign from Excel’s Data Analysis tool via ‘An-
nova: Two-Factor Without Replication’ or
from Real Statistics’ ‘One Repeated Mea-
sures ANOVA’. If you choose the Real Statis-
tics tool, which allows you also to calculate
contrasts and Tukey’s HSD, make sure to put
the treatments into columns and the blocks
into rows. Blocks are then denoted as sub-
jects and treatments as groups.
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Example: (Cochran & Snedecor)

Below are percentages of soya beans fail-

ing to sprout, planted under 5 individually

identical conditions (blocks) under 5 differ-

ent treatments, with ANOVA output from

Excel:

Degrees of freedom:

Treatment: 5− 1 = 4
Block: 5− 1 = 4
Error: (5− 1)(5− 1) = 16

There is a significant main effect for treat-

ments, but not for blocks.
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Further Two-Way Analysis

Post hoc tests and contrasts work in much

the same way as in one-way ANOVA. We only

need to replace MSE=MSW and DFE=DFW

from one-way ANOVA with the new MSE and

DFE for two-way ANOVA. (Recall that MSE

is our estimator s2 for the variance σ2.)

Example: (soya beans continued.)

Consider comparing all pairs of treatments

using Tukey’s HSD. The minimum honestly

significant difference at α = 5% is

HSD = qα(k,DFE)·
√

MSE

n

= q0.05(5,16)·
√

5.41

5
= 4.33 · 1.04 = 4.5

Only the differences of the pairs Arasan-None

and Fermate-None exceed that value and are

therefore significant.
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Example: (film processing continued.)

Consider testing the following two contrasts:

H0(1): µA = 1
2(µB + µC), H0(2): µB = µC.

A B C
∑
λ2
i

X̄i 33.867 30.733 29.267
λi(1) 1 -0.5 -0.5 1.5
λi(2) 0 1 -1 2

The contrast values and standard errors are:

L1 = 3.867, s(L1) =
√

5.811 · 1.5/15 = 0.762

L2 = 1.467, s(L2) =
√

5.811 · 2/15 = 0.880

after inserting MSW=5.811 and n=15 into

s(L) =

√
MSE

∑
λ2
i /n.

The t-statistics for the two contrasts are:

t1 =
L1

s(L1)
= 5.07 and t2 =

L2

s(L2)
= 1.67

with df = N − IJ = 45−3 ·3 = 36, such that

t0.025(36) = 2.03; p1 = 0.000, p2 = 0.104.

So we reject H0(1) and accept H0(2).

158




