4.5. Two-way ANOVA

Example. (Moore/McCabe Example 13.3–4)

Red palm oil, due to its high content of vitamin A, is thought to reduce the occurence and severity of malarity for young children. To investigate whether this is indeed the case, a supplement will be prepared that contains either a placebo, a low dose, or a high dose of red palm oil. Because boys and girls may differ in exposure to malaria and the response to the red palm oil supplement, we consider a *two-way ANOVA*, that takes also gender into account. Suppose we recruit 75 boys and 75 girls to the study. We will then randomly assign 25 of each gender to each of the red palm oil levels:

	<u>Gender</u>						
Red palm oil	Girls	Boys	Total				
Placebo	25	25	50				
Low dose	25	25	50				
High dose	25	25	50				
Total	75	75	150				

This example illustrates several advantages of two-way designs. The first is <u>efficiency</u>. With a two-way design, we can use the same tool to answer two questions: 1. Does red palm oil/ 2. Does gender have an impact upon prevalence of malaria? That is, we get two one-way ANOVAs for the price of one.

The second and more important advantage is that we may investigate <u>interactions</u> between factors. Suppose that boys and girls react indeed differently to the red palm oil supplement. That piece of information would not come out in one-way ANOVAs neither for red palm oil nor for gender.

The final advantage is <u>increased power</u> of the tests. Suppose we would run a one-way design and there are indeed differences between boys and girls. The one-way ANOVA would assign this variation to the *residual* (within groups) part of the model. In the two-way ANOVA, gender is included in the *fit* (between groups) part of the model, which increases the power of the tests.

Assumptions for Two-Way ANOVA

The assumptions for two-way ANOVA are the same as for one-way ANOVA, just that we have now 2 instead of only 1 factor:

We have independent random samples of size n_{ij} from each of $I \times J$ normal populations. The population means μ_{ij} may differ, but all populations have the same variance σ^2 .

Let x_{ijk} represent the *k*th observation from the population having factor A at level *i* and factor B at level *j*. The statistical model is

$$\begin{split} X_{ijk} &= \mu_{ij} + \epsilon_{ijk}, & \text{where} \\ i &= 1, \dots, I; \ j &= 1, \dots, J; \ k &= 1, \dots, n_{ij}; \text{ and} \\ \epsilon_{ijk} &\sim N(0, \sigma^2). \end{split}$$

We estimate μ_{ij} by $\bar{x}_{ij} = \frac{1}{n_{ij}} \sum_{k=1}^{n_{ij}} x_{ijk}$, and σ^2 by (using $s_{ij}^2 = \sum_{k=1}^{n_{ij}} (x_{ijk} - \bar{x}_{ij})^2 / (n_{ij} - 1))$:

$$s^2 = \frac{\sum_{ij}(n_{ij}-1)s_{ij}^2}{N-IJ} = \frac{SSE}{DFE} = MSE,$$

where DFE = observations-groups = N-IJ.

Main effects and interactions

We shall now explore in detail the FIT part of the model, represented by the population means μ_{ij} .

Because we have independent samples from each group, we can think of the problem initially as a one-way ANOVA with IJ groups, that is SST = SSM + SSE, where

SSM =
$$\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} (\bar{x}_{ij} - \overline{\bar{x}})^2$$

with DFM = groups-1 = IJ - 1.

In two-way ANOVA, the terms SSM and DFM are broken down into a main effect for A, a main effect for B, and an AB interaction as follows:

SSM = SSA + SSB + SSABDFM = DFA + DFB + DFAB

SSA represents variation among the means for the different levels of A. Because there are I such means, SSA has DFA= I - 1 degress of freedom. Similarly, DFB= J - 1. For DFAB we obtain by subtraction:

$$DFAB = DFM - DFA - DFB$$

= (IJ - 1) - (I - 1) - (J - 1)
= (I - 1)(J - 1).

Taking the split up of the population means μ_{ij} into main effects and an interaction effect into account, the two-way ANOVA model may be restated as

$$X_{ijk} = \overbrace{\mu + \alpha_i + \beta_j + (\alpha\beta)_{ij}}^{\mu_{ij}} + \epsilon_{ijk}, \ \epsilon_{ijk} \sim N(0, \sigma^2),$$

where μ is the overall mean; α_i is the effect of level i (i = 1, ..., I) of factor A; β_j is the effect of level j (j = 1, ..., J) of factor B; $(\alpha\beta)_{ij}$ is the interaction effect of levels i and j; and ϵ_{ijk} is the error associated with the kth data point from level i of factor A and level j of factor B.

Note that since α_i , β_j and $(\alpha\beta)_{ij}$ are deviations from the overall mean μ , in the fixed effects model the sums of all these deviations are zero:

$$\sum_{i} \alpha_{i} = \sum_{j} \beta_{j} = \sum_{i,j} (\alpha \beta)_{ij} = 0.$$

The Hypothesis Tests in Two-Way ANOVA

Factor A main-effects test:

$$H_0: \quad \alpha_i = 0 \text{ for all } i = 1, \dots, I$$
$$H_1: \quad \text{Not all } \alpha_i \text{ are zero}$$
$$F = MSA/MSE \sim F(I - 1, N - IJ).$$

Factor B main-effects test:

$$H_0: \quad \beta_j = 0 \text{ for all } j = 1, \dots, J$$

$$H_1: \quad \text{Not all } \beta_j \text{ are zero}$$

$$F = MSB/MSE \sim F(J-1, N-IJ).$$

Test for AB interactions:

$$H_0: (\alpha\beta)_{ij} = 0 \forall i=1,...,I; j=1,...,J$$

$$H_1: \text{ Not all } (\alpha\beta)_{ij} \text{ are zero}$$

$$F = MSAB/MSE \sim F((I-1)(J-1), N-IJ).$$

<u>Note:</u> Finding a significant interaction effect substantially reduces the usefulness of factor A/B main effects, because then they apply only on average, but not individually for each level of the other factor.

Example: (Azcel, 4th edition.)

The brightness of films produced by 3 different manufacturers has been compared using 3 different development processes:

	<u>Kodak</u>			<u>Fuji</u>		<u>Agfa</u>		
A	В	С	A	В	С	A	В	С
32	26	28	43	32	32	23	27	25
34	29	28	41	38	32	24	30	27
31	27	27	44	38	36	25	25	26
30	30	30	50	40	35	21	25	22
37	31	32	47	36	34	26	27	25

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Film Manufacturer	1363.378	2	681.6889	117.3078	1.7E-16	3.259446
Processing (A/B/C)	165.6444	2	82.82222	14.25239	2.76E-05	3.259446
Interaction	247.0222	4	61.75556	10.62715	8.63E-06	2.633532
Within	209.2	36	5.811111			
Total	1985.244	44				

All p-values are below 0.01%, so both manufacturer and development method have an impact.

There is also an interaction effect:

F = 61.756/5.811 = 10.627

Degrees of freedom:

(3-1)(3-1) = 4 and $45 - 3 \cdot 3 = 36$ Critical value: $F_{0.05}(4, 36) = 2.63$

This implies that main effects must be checked for each level of the other factor separately. Two-way ANOVA in Excel

You can get the two-way ANOVA table either from Excel's Data Analysis tool via 'Anova: Two-Factor With Replication' or from the Real Statistics Two Factor ANOVA tool.

Doing it with Real Statistics has the advantage that you get the group specific means in such a way, that excel finds it easy to produce a line plot of those, which in the context of ANOVA is called an interaction plot.

Non-parallel lines in such a plot indicate that there is an interaction effect, which implies that the main effects hold only on average for each factor, but not for the factor levels individually, making it necessary to investigate the factor levels one by one. The *p*-value of the interaction effect in the ANOVA table tells whether interaction is present also out of sample.

X	ا ا	@* -		_	File	ms - Microsoft Ex	cel	8					×
F	ile Ho	me Insert	Page Layou	t Formulas	1	Data Review	Vie	ew	Add-Ins PDF	-XChange 201	2 🛆 🕜	- 6	×
Pa	ste	Arial B I U 		= = = = = ≡ ≡ ≡ = = ⊈ ∉ ⊗ ·		General ▼ ♥ ♥ ♥ ♥ ♥ €.00 →.00 Number 5		A Styles	Hard Format ★	Σ · A Z · Z · Sort a C · Filter Editi	k Find & Select +		
	W43		(=	fx									~
-	A	B	C .		F	F	3	G	Н	1	J	K	E
1		A	вс		-		- 2	~			0		-
23	Kodak	32 34	26 29	28 28	-	Two Factor Anov	/a	-			23	1	
4		31	27	27	_	Input Range		test	\$A\$1:\$D\$16	_ Fill	ок		
5		30	30	30	-		v he	adinos	included with da	ta			
6	Eve	3/	31	32	-	, Coldminy of		uanigo			Cancel	cel	
0	Fuji	43	32	32	-	Alpha		0.05	0.05				-
0		41	30	36	-								
10		50	40	35	-		it –						
11		47	36	34	-	Excel form	nat	C	Standard format				
12	Aqfa	23	27	25									
13	, igita	24	30	27		- Analysis Typ	be -						
14		25	25	26		Anova - F	ixed	0	Anova - Random	i			
15		21	25	22		C Anova - M	lixe	0	Anova - Regress	sion			
16		26	27	25		Cast		~	-				
17						 Reformat 			Gage R&R				
18						C Scheirer F	lay	Hare					
19						- Options for	Exp	el form	at				
20						op dons for				-			
21					_	Number of Re	ows	per Sa	ample 5			-	_
22					-	Display in	put	flippin	a rows and colum	ns			-81
23					-	·		······································					-81
24					-	Output Range	Г	A 30		New			-9
25					-	ouput Runge	1	AJU					-81
27					1	-	-	_					-
14 .	() H ()	AS ANOVA	test In	out / Output	/	RealStat 191	1		101			. b	n i
Poi	nt		A CONT IN	and a output	<u>A</u> .	The second of the second	-			100% 🕘		- 0	Đ .::

X	🚽 🧐 🔹 (≌ 🔹 📮 Films - Microsoft Excel					el	-	Chart Tools				- 0	×	
F	ile Hon	ne Insert	Page Lay	out Form	nulas Data	Review	View	PDF-XChan	ge 2012	Design	Layout	Format	> 🕜 🗆	₽ X
	Chart 4	ب ۲	(=	f _x										*
and a	A	В	C	D	E	F	G	Н	1	J	K	L	M	E
30	Descriptive	Statistics					Two Fact	or Anova						-
31														
32	COUNT	balanced					ANOVA				Alpha	0.05		
33		A	В	С				SS	df	MS	F	p-value	sig	_
34	Kodak	5	5	5	15		Rows	1363.378	2	681.6889	117.3078	1.7E-16	yes	
35	Fuji	5	5	5	15		Columns	165.6444	2	82.82222	14.25239	2.76E-05	yes	
36	Agfa	5	5	5	15		Inter	247.0222	4	61.75556	10.62/15	8.63E-06	yes	
31		15	15	15	45		Within	209.2	36	5.811111				_
38						-	lotal	1985.244	44	45.11919				-
39	MEAN	٨	P	0	-		1.			8888			40	
40	Kodak	32.8	28.6	20	30 13333		50						-	
12	Fuii	15	36.8	33.8	38 53333		40						-	
42	Aofa	23.8	26.8	25	25.2		40						-	
44	rigiti	33 86667	30 73333	29 26667	31 28889		30	-				Koda	k	
45				20.20001	0						_			
46	VARIANCE						20					-Fuji	3	
47		Α	В	С								Agfa		
48	Kodak	7.7	4.3	4	8.409524		10				1			
49	Fuji	12.5	9.2	3.2	31.12381									
50	Agfa	3.7	4.2	3.5	4.885714		0			1	_			
51		87.69524	25.35238	16.92381	45.11919			A	В		C			
52							18 P.			3333			1.0	-
14 4	► ► SAS	S ANOVA	test	nput / Out	tput / RealS	tat 🧷	/		•	101				•
Rea	dy					Averag	je: 31.2888	8889 Count:	15 Sum:	281.6	□ <u>□</u> 1009	% 🗩 —	-0	- 🕀 , ::

Two-Way ANOVA with 1 Observation/Cell

The case of one data point in every cell presents a problem in two-way ANOVA because then

DFE = observations - groups = 0.

However, if we may assume that there are no interactions, then SSAB is only due to error and contains no other information. In that case we may use SSAB and its associated degrees of freedom DFAB=(I-1)(J-1) in place of SSE and its degrees of freedom.

We can thus conduct the tests for the main effects by dividing MSA (MSB) by MSAB when testing for factor A (factor B) main effects. The resulting *F*-statistics has I - 1and (I-1)(J-1) degrees of freedom for factor A, and J - 1 and (I - 1)(J - 1) degrees of freedom for factor B.

The fixed effects two-way ANOVA model with one observation per cell reduces then to:

 $X_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}, \qquad \epsilon_{ijk} \sim N(0, \sigma^2).$

Randomized Complete Block Design

When we want to compare the means of k population means while controlling extraneous variables, a procedure known as *blocking* is used. A <u>block</u> (lohko) is a collection of k experimental units that are as nearly alike as possible with respect to the extraneous variables. (A block could be the same person trying k different products.)

Each treatment is randomly assigned to 1 unit within each block (random order in trying the products). Since the effect of the extraneous variables is controlled by matching like experimental units, any differences in response are attributed to treatment effects.

This randomized complete block design (also called repeated measures ANOVA or one-way ANOVA with repetition) may be regarded as a two-way ANOVA with one item per cell because the blocks may be viewed as one factor and the treatment levels as the other. In the randomized block design, however, we are only interested in the treatment levels and not in the blocks. Because the randomized complete block design is just a two-way ANOVA with one observation per cell, we may test the null hypothesis

 $H_0: \ \mu_1 = \mu_2 = \dots = \mu_k.$

with an F-test of the form

$$F = \frac{\mathsf{MSTR}}{\mathsf{MSE}} \sim F(k-1, (k-1)(b-1)),$$

where k denotes the number of treatments and b denotes the number of blocks.

Note that the randomized complete block design assumes that there is *no interaction between treatments and blocks!*

You get the randomized complete block design from Excel's Data Analysis tool via 'Annova: Two-Factor Without Replication' or from Real Statistics' 'One Repeated Measures ANOVA'. If you choose the Real Statistics tool, which allows you also to calculate contrasts and Tukey's HSD, make sure to put the treatments into columns and the blocks into rows. Blocks are then denoted as subjects and treatments as groups.

Example: (Cochran & Snedecor)

Below are percentages of soya beans failing to sprout, planted under 5 individually identical conditions (blocks) under 5 different treatments, with ANOVA output from Excel:

	Arasan	Spergon	Semesan	Fermate	None	
Block 1	2	4	3	9	8	
Block 2	6	10	5	7	10	
Block 3	7	9	9	5	12	
Block 4	11	8	10	5	13	
Block 5	5	10	6	3	11	
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Rows	49.84	4	12.46	2.30	0.103	3.01
Columns	83.84	4	20.96	3.87	0.022	3.01
Error	86.56	16	5.41			
Total	220.24	24				

Degrees of freedom:

Treatment: 5-1=4Block: 5-1=4Error: (5-1)(5-1)=16

There is a significant main effect for treatments, but not for blocks. Post hoc tests and contrasts work in much the same way as in one-way ANOVA. We only need to replace MSE=MSW and DFE=DFW from one-way ANOVA with the new MSE and DFE for two-way ANOVA. (Recall that MSE is our estimator s^2 for the variance σ^2 .)

Example: (soya beans continued.) Consider comparing all pairs of treatments using Tukey's HSD. The minimum honestly significant difference at $\alpha = 5\%$ is

$$HSD = q_{\alpha}(k, \text{DFE}) \cdot \sqrt{\frac{\text{MSE}}{n}}$$
$$= q_{0.05}(5, 16) \cdot \sqrt{\frac{5.41}{5}}$$
$$= 4.33 \cdot 1.04 = 4.5$$

Only the differences of the pairs Arasan-None and Fermate-None exceed that value and are therefore significant.

XII	>	• (* * -		Seeds	- Microsoft	Excel			
File	e H	lome Insert Pa	age Layou 🛛 F	ormulas Di	ata Review	View Add	I-Ins PDF-X	Char 🗠 🌘	X 9 - (
c/As	X	Arial	- 10 -	= = [General	-		- A7-
		BIU	· Δ · .			· ∞ •			- AA -
Paste	e 🚽		- A -			 €.0 .00	Styles	Cells	- uu -
Clinh	aard	E Ford	· 🗕 ·	Alianm	ant E	.00 →.0	-		litina
Ciipbo	oaru	Form	. 04 (~	Alignin	ent in	Number	13	E	Jung
	A	H8 🔻		Jx	412			4.8.1	+ C =
4	AG	AH	Al	AJ	AK	AL	AM	AN	AU A
2		Block 1	Arasan 2	Spergon	Semesan 3	q	None	4	
3		Block 2	6	10	5	7	10	7	
4		Block 3	7	9	9	5	12		
5		Block 4	11	8	10	5	13		
6		Block 5	5	10	6	3	11		
7									
8		ANOVA	6 2			Alpha	0.05		
9		Sources	SS	df	MS	F	P value	F crit	
10		Subjects	49.84	4	12.46	2.303142	0.103195	3.006917	
11		Groups	83.84	4	20.96	3.874307	0.021886	3.006917	
12		Error	220.24	24	5.41				
14		TUCAL	220.24	24					
15		C						22	
16		On	e Factor AN	OVA Repeat	ted Measure	s and Contra	ists 🔄	2.5	
17							1	1	
18			Input Range	testis	SAH\$1:SAMSE		ОК		
19			Row and c	olumn beadir	nas included v	with data	Cancel		
20			in the first of the t				Concer		
21			Alpha	0.05			Help		
22			- Ontions -			ion for contra		-	
23					Aprila correct	action	363		
25					NO CON	ecuon			
26			Contras	ts	C Dunn/S	idak correctio			
27			Tukey H	SD	C Bonferr	oni correction	Ê.		
28			111						
29			Output Range	test!	AH\$8	New	[
30				- 10 					
31									
32			Papastad N	loacuro An	01/2				
34		Groups	Repeated N	moon	n				
35		Arasan	1	6.2	5				
36		Spergon		8.2	5				
37		Semesan		6.6	5				
38		Fermate		5.8	5				
39		None	-1	10.8	5				
40			0	-4.6	5				
41		Q TEST					Alpha	0.05	
42		std err	q-stat	df	q-crit	x-crit	lower	upper	p-value
43		1.04019229	-4.42226	16	4.333	4.507153	-9.10715	-0.09285	0.044294
44									
45									
46									-
14 4	H 4	SAS / Analysi	s / InOutp	ut test	<u>(9</u>)			101	•
Point	t l						100% (-)	

Example: (film processing continued.)

Consider testing the following two contrasts: $H_0(1): \mu_A = \frac{1}{2}(\mu_B + \mu_C), \quad H_0(2): \mu_B = \mu_C.$

	А	В	С	$\sum \lambda_i^2$
$ar{X_i}$	33.867	30.733	29.267	
$\lambda_i(1)$	1	-0.5	-0.5	1.5
$\lambda_i(2)$	0	1	-1	2

The contrast values and standard errors are: $L_1 = 3.867, s(L_1) = \sqrt{5.811 \cdot 1.5/15} = 0.762$ $L_2 = 1.467, s(L_2) = \sqrt{5.811 \cdot 2/15} = 0.880$ after inserting MSW=5.811 and n=15 into $s(L) = \sqrt{\text{MSE} \sum \lambda_i^2/n}$. The *t*-statistics for the two contrasts are:

 $t_1 = \frac{L_1}{s(L_1)} = 5.07$ and $t_2 = \frac{L_2}{s(L_2)} = 1.67$ with $df = N - IJ = 45 - 3 \cdot 3 = 36$, such that $t_{0.025}(36) = 2.03$; $p_1 = 0.000$, $p_2 = 0.104$. So we reject $H_0(1)$ and accept $H_0(2)$.

1	X	3-1-1			f	Films - Mic	rosoft Excel				
ſ	F	ile Hom	e Insert I	Page Layout	Formulas	Data Rev	view View	Add-Ins Pl	DF-XChang	je 2012 🛛 🛇 🄇	2 🖬 🗆 🚯
ſ		F10	•	(-	fx MEA	N					*
1	A.	F	G	Н	1	J	K	L	М	N	0 🖻
ľ	3	COUNT	balanced								^
	4		A	В	С	Two Facto	or ANOVA Fo	llow-up		Σ	3
	5	Kodak	5	5	5						
	6	Fuji	5	5	5	Input R	ange Rea	Stat!\$G\$12:\$	1\$14 _	FII OK	
	7	Agfa	5	5	5			_			
	8		15	15	15	Alpha	0.0	5		Cancel	
	9		-			- Solo	ct and of these	o tooto			
	10	MEAN		124	1735	Jele Con				Help	
	11		A	В	С	I CS	imple Effect				
	12	Kodak	32.8	28.6	29	(• c	ontrast - no co	orrection			
	13	Fuji	45	36.8	33.8	Co	ontrast - Dunr	n/Sidak correct	tion		
	14	Agfa	23.8	26.8	25	00	ontrast - Bonf	erroni correcti	on		
	15		33.86667	30.73333	29.26667		ukovia USD tor				
	10	VADIANCE	-				ukeys hob tes	st			
-	10	VARIANCE	٨	D	0	- Sele	ct one of thes	e options			
	10	Kadak	A 77	D (2)		CR	ows	Columns			
2	19	Fuii	1.1	4.3	20		0113	Column			
	20	Aafa	37	3.2	3.2	C Ir	nteraction	# Contrasts	3 2		
	22	Ayla	87 69524	25 35238	16 92381						
	23		01.03324	23.33230	10.32301	Output	Range F44		_	New	
	24	Two Eactor	Anova								
	25	ine i dotoi	, increa								
	26	ANOVA				Alpha	0.05				
	27		SS	df	MS	F	p-value	sia			
	28	Rows	1363.378	2	681,6889	117.3078	1.7E-16	ves			
	29	Columns	165.6444	2	82.82222	14.25239	2.76E-05	ves			=
	30	Inter	247.0222	4	61.75556	10.62715	8.63E-06	ves			
1000	31	Within	209.2	36	5.811111						
	32	Total	1985.244	44	45.11919						
	33										
	34	CONTRAS	T: COLUMI	VS							
	35	Groups	С	mean	n						
	36	A	1	33.86667	15						
	37	В	-0.5	30.73333	15						
	38	С	-0.5	29.26667	15						
	39		0	3.866667	10		1212102421				
	40	T TEST					Alpha	0.05			
	41	std err	t-stat	df	p-value	t-crit	lower	upper	sig	Cohen d	effect r
	42	0.762306	5.072326	36	1.2E-05	2.028094	2.320638	5.412696	yes	1.60401	0.645601
	43										
	44	CONTRAS	T: COLUM	VS							
	45	Groups	С	mean	n						
	46	A	1.94	33.86667	15						
	47	В	1	30.73333	15						
	48	С	-1	29.26667	15						
	49		0	1.466667	7.5						
	50	0 T TEST			Alpha	0.05					
1	51	std err	t-stat	df	p-value	t-crit	lower	upper	sig	Cohen d	effect r
	52	0.880236	1.66622	36	0.104349	2.028094	-0.31853	3.251867	no	0.608418	0.267577
-	53	A N SAG		/test /I	nput / Our	tout Re:	alStat 🕼	4	111		• []
F	Poi	nt		A LESU A I	input (Ou	sput iner	anored Carl		100%		
	1001								10000	A.	