
5. Multiple Regression (Regressioanalyysi)

(Azcel Ch. 11, Milton/Arnold Ch. 12)

The k-Variable Multiple Regression Model

The population regression model of a depen-

dent variable Y on a set of k independent

variables X1, X2, . . . , Xk is given by

Y = β0 + β1X1 + β2X2 + · · ·+ βkXk + ε,

where β0 is the intercept and βi, i = 1, . . . , k

are the slopes of the regression surface (also

called response surface) with respect to Xi.

Model assumptions:

1. εj ∼ NID(0, σ2) for all observations j = 1, . . . , n;

2. The variables Xi are considered fixed quantities
(not random variables), that is, the only random-
ness in Y comes from the error term ε.

The parameters β0, β1, . . . βk are estimated by

the method of least squares (pns-menetelmä),

as in the case with only 1 regressor.
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Method of Least Squares with k Regressors
(Pienimmän neliösumman menetelmä)

The following table contains the quantity of
a product sold (Y) as a function of the prod-
ucts price (X).

Such data may be conveniently illustrated in
a so called scatterplot (hajontakuvio).
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It appears, that the number of units sold Y is
roughly a linear function of the price X, that
is,

yj ≈ b0 + b1xj, or

yj = b0 + b1xj + uj, j = 1 . . .25, (1)

where the residuals (jäännökset) uj are small
in some sense compared to the linear term
b0 + b1xj. We shall in the following con-
sider a technique of identifying a linear rela-
tionship in approximately linearly distributed
data, known as Method of Least Squares or
Regression Analysis, (pienimmän neliösumman
menetelmä, regressioanalyysi).
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Before doing that, let us rewrite the regres-

sion equation (1) in matrix form as

y(25×1) = X(25×2)b(2×1) + u(25×1), where: (2)

y=


10.98
11.13
12.51

...
10.36
11.08

 X=


1 35.3
1 29.7
1 30.8
...
1 33.4
1 28.6

 b=

(
b0

b1

)
u=


u1

u2

u3
...
u24

u25

 .

Doing so has the advantage that we may eas-

ily generalize our method to the case where

the dependent variable Y , called regressand

(selitettävä muuttuja), depends linearly on

more than one independent variable X, called

regressor (selittävä muuttuja). For example,

the number of units sold might not only de-

pend on a constant (X1 = 1) and price (X2),

but also on advertisement (X3), bonuses to

sales officers (X4), and so on, such that

yj = b0·1+b1x1,j+b2x2,j+. . .+bkxk,j+uj (3)

for observation j ∈ (1, . . . , n) of n observa-

tions and k + 1 regressors (including the 1).
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The matrix formulation in this general case
remains exactly the same as before except,
that we need to add additional elements to
X and b in order to incorporate the additional
regressors, that is,

y(n×1) = X(n×(k+1))b((k+1)×1) + u(n×1), with
(4)

X =


1 x1,1 x2,1 · · · xk,1
1 x1,2 x2,2 · · · xk,2
... ... ... ...
1 x1,n x2,n · · · xk,n

 , b =


b0
b1
...
bk

 ,

and as before: y′ = (y1, y2, . . . , yn),

u′ = (u1, u2, . . . , un).

Note that the so called design matrix X has
one column more than the number of of re-
gressors, because one column is needed for
the constant term b0 in the linear specifica-
tion yj = b0 · 1 +

∑k
i=1 bixi,j + uj.

We are now in a position to discuss the method
of least squares in order to obtain estimates
for the unknown parameter vector b from the
observed vector y and the design matrix X for
the general case of k regressors.
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The method of least squares determines the

unknown parameters β0, . . . , βk by minimizing

the sum of all squared vertical distances be-

tween the observations yj and their predicted

values ŷj := b0 +
∑k
i=1 bixi,j on the regression

surface.

That is, we seek to minimize the sum of

squared residuals

f(b) :=
n∑

j=1

u2
j = u′u = (u1, u2, . . . , un)


u1
u2
...
un

 ,
(5)

which yields, recalling u = y −Xb:

f(b) = (y −Xb)′(y −Xb)

= y′y − b′X′y − y′Xb + b′X′Xb (6)

= y′y − 2b′X′y + b′X′Xb.

Now a necessary condition for a minimum of

the function f : IRn→IR at b is that ∂ f
∂b = 0.
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In order to check this condition we need to

make use of the matrix differentiation rules

∂(b′a)

∂b
= a and (7a)

∂(b′Ab)

∂b
= 2Ab for A = A′. (7b)

Applying these to

f(b) = y′y − 2b′X′y + b′X′Xb

yields

∂ f

∂b
= −2X′y + 2X′Xb

!
= 0((k+1)×1), or (8)

(X′X)((k+1)×(k+1))b((k+1)×1) = X′
((k+1)×n)

y(n×1),

(9)

which are called the normal equations (nor-

maaliyhtälöt). Solving this matrix equation

(or set of scalar equations) yields the sought

parameter vector b′ = (b0, b1, . . . , bk).
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Normal Equations in Scalar Form

We shall here only consider the case of 2

independent variables, that is:

(X′X)(3×3)b(3×1) = X′
(3×n)

y(n×1), where

X =


1 x1,1 x2,1
1 x1,2 x2,2
... ... ...
1 x1,n x2,n


(n×3)

, b =

b0b1
b2

 , y =


y1
y2
...
yn

 .
Now

X′y =

 1 · · · 1
x1,1 · · · x1,n
x2,1 · · · x2,n



y1
y2
...
yn

 =


∑
yj∑

x1,jyj∑
x2,jyj


and

X′X =

 1 · · · 1
x1,1 · · · x1,n
x2,1 · · · x2,n


1 x1,1 x2,1

... ... ...
1 x1,n x2,n



=


n

∑
x1,j

∑
x2,j∑

x1,j
∑
x2

1,j
∑
x1,jx2,j∑

x2,j
∑
x1,jx2,j

∑
x2

2,j

 ,
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such that

X′Xb =


n

∑
x1,j

∑
x2,j∑

x1,j
∑
x2

1,j
∑
x1,jx2,j∑

x2,j
∑
x1,jx2,j

∑
x2

2,j


b0b1
b2



=


nb0 + b1

∑
x1,j + b2

∑
x2,j

b0
∑
x1,j + b1

∑
x2

1,j + b2
∑
x1,jx2,j

b0
∑
x2,j + b1

∑
x1,jx2,j + b2

∑
x2

2,j



and the scalar form of the normal equations

X′y = X′Xb becomes:

∑
yj = nb0 + b1

∑
x1,j + b2

∑
x2,j,∑

x1,jyj = b0
∑

x1,j + b1
∑

x2
1,j + b2

∑
x1,jx2,j,∑

x2,jyj = b0
∑

x2,j + b1
∑

x1,jx2,j + b2
∑

x2
2,j;

where all summations extend from the 1st to

the nth observation.

Solving these equations yields the estimates

b0, b1 and b2 for the parameters β0, β1 and

β2 of the 2-variable regression model.
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Solving the Normal Equations

To find the least-square estimates for β0, . . . , βk
we need to solve the normal equations

(X′X)b = X′y.

We know that if the columns of X are linearly

independent, that is, no column can be ex-

pressed as a linear combination of the others,

then (X′X) has an inverse, which we shall de-

note by (X′X)−1. To solve the normal equa-

tions for b, we premultiply both sides of the

normal equations above by (X′X)−1 to obtain

β̂((k+1)×1) = b = (X′X)−1X′y,

the components of which are the sought least-

square estimates b0, . . . , bk for β0, . . . , βk.

As it is no easy task to find the inverse of a

matrix by hand except in the simplest cases,

the calculation of the expression above is in

practice left to the statistical software we

use.
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Example: Milton/Arnold Examples 12.2.1–3

An equation is to be developed from which

we can predict the gasoline mileage of an au-

tomobile as a linear function of its weight and

temperature at the time of operation.
Car No. 1 2 3 4 5 6 7 8 9 10
mpg(y) 17.9 16.5 16.4 16.8 18.8 15.5 17.5 16.4 15.9 18.3
(x1/tons) 1.35 1.90 1.70 1.80 1.30 2.05 1.60 1.80 1.85 1.40
(x2/oF) 90 30 80 40 35 45 50 60 65 30

The model specification matrix X, vector of

parameter estimates b, and vector of responses

y are:

X =


1 1.35 90
1 1.90 30
... ... ...
1 1.40 30

 , b =

b0b1
b2

 , y =


17.9
16.5

...
18.3

 .
We wish to solve the normal equations

X′y = X′Xb by calculating b = (X′X)−1X′y.

To this end, note that

X′y =

 1 · · · 1
1.35 · · · 1.40
90 · · · 30




17.9
16.5

...
18.3

 =

 170
282.405

8887

 .
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Furthermore,

X′X =

 1 · · · 1
1.35 · · · 1.40
90 · · · 30

1 1.35 90
... ... ...
1 1.40 30


=

 10 16.75 525
16.75 28.6375 874.5
525 874.5 31 475


with inverse matrix

(X′X)−1 =

 6.070769 −3.02588 −0.0171888
−3.02588 1.738599 0.0021663
−0.017189 0.002166 0.0002583

 .

The vector of parameter estimates is

b = (X′X)−1X′y

=

 6.070769 −3.02588 −0.0171888
−3.02588 1.738599 0.0021663
−0.017189 0.002166 0.0002583

 170
282.405

8887


=

 24.75
−4.16

−0.014897

 .

The estimated model is

Y = 24.75− 4.16X1 − 0.014897X2 + ε.

Based on this equation, we estimate the mileage of a
car weighing 1.5 tons on a 70oF day to be

ŷ = 24.75− 4.16 · 1.5− 0.014897 · 70 = 17.47mpg.
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The ANOVA F-test for Multiple Regression

In simple linear regression the F test from

the ANOVA table is equivalent to the two-

sided test of the hypothesis that the slope of

the regression line is 0. For multiple regres-

sion there is a corresponding ANOVA F test,

but it tests the hypothesis that all regression

coefficients (except the intercept β0) are 0.

The ANOVA table for multiple regression is

Source Sum of Squares DF Mean Square F Ratio

Regression
∑

(ŷi − ȳ)2 k SSR/DFR MSR/MSE

Error
∑

(yi − ŷi)2 n− (k+1) SSE/DFE

Total
∑

(yi − ȳ)2 n− 1 SST/DFT

The ratio MSR
MSE is an F statistic for testing

H0 : β1 = β2 = · · · = βk = 0

against

H1 : Not all βi, i = 1, . . . , k are zero.

Under H0: F =
MSR

MSE
∼ F (k, n− k − 1).
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How good is the regression?

The mean square error (äännösvarianssi)

MSE =
SSE

n− (k + 1)
=

∑
(yj − ŷj)2

n− (k + 1)

displayed in the ANOVA table is an unbiased
estimator of the variance σ2 of the popu-
lation errors ε. The square root of MSE
is an estimator of the standard deviation σ,
usually denoted by s and referred to as the
standard error (keskivirhe) of estimate

s =
√

MSE.

The mean square error and its square root
are measures of the size of the errors in re-
gression but give no indication about the ex-
plained component of the regression fit.

As in the case with only one regressor, we
measure the regression fit by

R2 =
s2
ŷ

s2
y

=
SSR

SST
= 1−

SSE

SST
,

the (multiple) coefficient of determination.
(Note that again: SST = SSR + SSE.)
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The multiple coefficient of determination R2

measures the quality of the regression fit as

the proportion of the variation in the de-

pendent variable that is explained by the lin-

ear combination of the independent variables.

Adding new variables to the model can never

decrease the amount of variance explained,

therefore R2 will always increase when we add

new variables (it will only stay constant if the

variables we added are completely useless).

For comparing models with varying numbers

of regressors it is useful to have a measure of

regression fit which decreases under addition

of variables of low explanatory power. Such is

given by the adjusted multiple coefficient of

determination (tarkistettu selitysaste)

R2 = 1−
MSE

MST
= 1−

SSE/(n− k − 1)

SST/(n− 1)
,

which is related to the ordinary R2 by

R2 = 1− (1−R2)
n− 1

n− (k + 1)
.
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Note that the F test for β1 = . . . = βk = 0

may just as well be regarded as a test of

R2 = 0, since

F =
SSR/k

SSE/(n− k − 1)
=

R2

1−R2
·
n− (k + 1)

k
.

Example: (continued.)

MSE =
SSE

n− (k+1)
=

0.14

10−3
= 0.02

s =
√

MSE = 0.141 . . .

R2 =
10.32

10.46
= 1−

0.14

10.46
= 0.9866

R2 = 1−
MSE

MST
= 1−

0.02

10.46/9
= 0.9828

Alternatively:

R2 = 1−(1−R2)
n− 1

n− (k + 1)
= 1−0.0134 ·

9

7
= 0.9828

F =
R2

1−R2
·
n− (k + 1)

k

=
0.9866

1− 0.9866
·

10− 3

2
= 257.7

The difference to F = 257.3 in the ANOVA table is

due to rounding error.
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Inference in Multiple Regression

Properties of the Least-Squares Estimators

Now that we learnt how to find the regression

parameters (by the method of least squares)

and how to assess the usefulness of the re-

gression as a whole (by the ANOVA F test)

we would also like to be able to tell for in-

dividual regression parameters whether they

are statistically significant or not. This re-

quires us to learn something about the sam-

pling distribution of the least square estima-

tor b = (X′X)−1X′y for the unknown param-

eter vector β.

For that purpose we define the expected value

E(Y) of a vector of random variables Y,

that is, Y = (Y1, Y2, . . . , Yn)′, as

E(Y) =


E(Y1)
E(Y2)

...
E(Yn)

 .
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The calculation rules for expectations of ran-

dom vectors resemble those of scalar expec-

tations:

1. E(C) = C,

2. E(CY) = CE(Y) (⇒ E(Y′C′) = E(Y′)C′),

3. E(Y + Z) = E(Y) + E(Z);

where Y and Z denote (n×1) random vectors

and C denotes an (m×n) matrix of constants.

These rules may be used to show that the

least squares estimator b = (X′X)−1X′y is

an unbiased estimator of β = (β0, β1, . . . , βk)

in the multiple regression model Y = Xβ+ ε:

E(b) = E[(X′X)−1X′Y ]

= E[(X′X)−1X′(Xβ + ε)]

= E[(X′X)−1X′Xβ] + E[(X′X)−1X′ε)]

= (X′X)−1X′Xβ + (X′X)−1X′E(ε)

= β.
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Before discussing the variance of b, let us

first refresh the definition and some calcula-

tion rules for the variance of scalar random

variables:

1. V (X) := E[(X−E(X))2] = E(X2)−E(X)2,

2. V (c) = 0 for c constant,

3. V (aX + b) = a2V (X) for a, b constants,

4. V (X + Y ) = V (X) + V (Y )

for X and Y independent.

If X and Y are not independent, then:

V (X + Y )

=E
{

[(X + Y )− E(X + Y )]2
}

=E
{

[(X − E(X)) + (Y − E(Y ))]2
}

=E[(X − E(X))2] + E[(Y − E(Y ))2]

+ 2E[(X − E(X))(Y − E(Y ))]

=V (X) + V (Y ) + 2E[(X − E(X))(Y − E(Y ))].
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Thus, unlike the mean, the variance of a sum

of two random variables is, in general, not the

sum of the variances. The quantity

Cov(X,Y ) := E[(X − E(X))(Y − E(Y ))]

is called the covariance of X and Y .

Thus, we obtain the variance of a sum as:

V (X + Y ) = V (X) + V (Y ) + 2Cov(X,Y ).

From the definition of covariance we obtain

the two immediate consequences

Cov(X,X) = V (X), Cov(X,Y ) = Cov(Y,X).

Furthermore,

(X−E(X))(Y−E(Y ))=XY−XE(Y )−Y E(X)+E(X)E(Y ),

and hence by taking expectations we see that

Cov(X,Y ) = E(XY )− E(X)E(Y ).

This implies that Cov(X,Y ) = 0 whenever X

and Y are independent, since then

E(XY ) = E(X)E(Y ).
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For random vectors it is convenient to col-

lect all covariances between the components

of the vector in a single matrix, the so called

variance-covariance matrix defined by Var (Y)

:=


V (Y1) Cov(Y1, Y2) . . . . . . Cov(Y1, Yn)

Cov(Y1, Y2) V (Y1) Cov(Y2, Yn)
Cov(Y1, Y3) Cov(Y2, Y3) V (Y3) Cov(Y3, Yn)

... ... . . . ...
Cov(Y1, Yn) Cov(Y2, Yn) . . . . . . V (Yn)

 ,

where Y denotes again a vector of random

variables Y = (Y1, Y2, . . . , Yn)′.

Similiar to the calculation rules for variances

of scalar random variables we have the fol-

lowing important matrix rule for variance:

Var (CY + d) = CVar (Y)C′

where Y is again an (n × 1) random vector,

C is an (m × n) constant matrix, and d an

(n× 1) constant vector.
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The assumption of the multiple regression

model that Y1, Y2, . . . , Yn are independent with

common variance σ2 may now be written as

Var (Y) =


σ2 0 . . . 0
0 σ2 0
... . . . ...
0 0 . . . σ2

 = σ2I,

where I is the (n×n) identity matrix, a matrix

of 1’s on the main diagonal and 0 elsewhere.

Recall that our least squares estimator

b = (X′X)−1X′Y is of the form CY with

C = (X′X)−1X′. We may therefore use the

rule Var (CY) = CVar (Y)C′, such that

Var (b) = Var [(X′X)−1X′Y]

= (X′X)−1X′Var (Y)[(X′X)−1X′]′,

where, using (AB)′=B′A′ and (A−1)′=(A′)−1:

[(X′X)−1X′]′ = X[(X′X)−1]′ = X[(X′X)′]−1 = X(X′X)−1.
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Var (b) = (X′X)−1X′Var (Y)[(X′X)−1X′]′

= (X′X)−1X′Var (Y)X(X′X)−1

= (X′X)−1X′σ2IX(X′X)−1

= σ2(X′X)−1(X′X)(X′X)−1

= σ2(X′X)−1.

Since σ2 is unknown, we replace it by our
usual estimator, the mean square error

s2 = MSE =
SSE

n− (k + 1)

in order to obtain

ˆVar (b) = s2(X′X)−1

as our estimator for the variance covariance
matrix of the least square parameter esti-
mates b = (b0, b1, . . . , bk)′ for the unknown
parameter vector β = (β0, β1, . . . , βk)′.

The diagonal elemements s2(X′X)−1
ii of ˆVar (b)

are the estimated variances of b0, b1, . . . , bk.
Their standard errors are therefore given by

SEbi−1
= s

√
(X′X)−1

ii =
√

MSE(X′X)−1
ii .
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Example: (continued.)

We found earlier that MSE=0.02 and

(X′X)−1 =

 6.070769 −3.02588 −0.0171888
−3.02588 1.738599 0.0021663
−0.017189 0.002166 0.0002583

 .

Our variance estimates for the least squares

coefficients b0, b1 and b2 are therefore:

ˆV (b0) = 0.02 · 6.070769 = 0.1217,
ˆV (b1) = 0.02 · 1.738599 = 0.03486,
ˆV (b2) = 0.02 · 0.0002583 = 0.00000518;

with corresponding standard errors

SEb0 =
√

0.1217 = 0.349,

SEb1 =
√

0.03486 = 0.187,

SEb2 =
√

0.00000518 = 0.002.
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Inference on Single Regression Parameters

Recall that X is normally distributed with pa-

rameters µ and σ2 if its density is of the form

f(x) =
1√

2πσ2
e
−(x−µ)2

2σ2 , −∞ < x <∞

This is denoted by X ∼ N(µ, σ2).

We say that a random vector Y = (Y1, . . . , Yn)′

follows a multinormal distribution N(µ,Σ) if

its density is of the form

f(y)=(2π)−
n
2 |Σ|−

1
2 exp

[
−

1

2
(y − µ)′Σ−1(y − µ)

]
with

µ =


µ1
µ2
...
µn

 , Σ =


σ2

1 σ12 · · · σ1n
σ21 σ2

2 · · · σ2n
... ... . . . ...
σn1 σn2 · · · σ2

n


denoting µi = E(Yi), σij = Cov(Yi, Yj), and

σ2
i = σii = V (Yi) for i, j = 1, . . . , n.
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Multinormally distributed random vectors have

the following two important properties:

1. Each single component of Y is normally

distributed with mean µi and variance σ2
i :

Y = (Y1, . . . , Yn)′ ∼ N(µ,Σ)

⇒ Yi ∼ N(µi, σ
2
i ).

2. Any arbitrary linear combination of the

components of Y is also normally distri-

buted. In matrix form this is written:

Z = AY + c ∼ N(Aµ+ c︸ ︷︷ ︸
E(Z)

, AΣA′︸ ︷︷ ︸
Var (Z)

),

where A is any (r×n) matrix of constants

and c is any (r × 1) vector of constants.
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We are now in a position to restate the k-

variable regression model in matrix form as:

Y = Xβ + ε, ε ∼ N(0, σ2I);

which implies by property 2 from above that

Y ∼ N(Xβ, σ2I).

Our interest is in the sampling distribution of

b = (X′X)−1X′Y. We know already that

E(b) = β and Var (b) = σ2(X′X)−1.

Furthermore, since b is just a linear combina-

tion of the components of Y, we have again

by property 2:

b ∼ N(β, σ2(X′X)−1),

which implies by property 1:

bi ∼ N(βi, σ
2
bi

), i = 0,1, . . . , k;

where σ2
bj−1

= V (bj−1) = σ2(X′X)−1
jj with

(X′X)−1
jj the j’th diagonal element of (X′X)−1,

and j = i + 1, so the first diagonal element

is for b0, the second diagonal element is for

b1, and so on.
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Standardizing yields

z =
bi − βi
σbi

∼ N(0,1).

Because the σbi are unknown, we substitute

σbi−1
by their estimates

SEbi−1
= s

√
(X′X)−1

ii =
√

MSE(X′X)−1
ii .

and use instead the t-statistic:

t =
bi − β∗i
SEbi

∼ t(n−k−1) under H0 : βi = β∗i .

Alternatively we may calculate (1− α) confi-

dence intervals for βi as

[bi ± tα
2
(n− k − 1) · SEbi].

In particular, we may test for statistical sig-

nificance of individual regression parameters

by calculating the t-statistics

t =
bi
SEbi

∼ t(n−k−1) under H0 : βi = 0

or by checking that

|bi| > tα
2
(n− k − 1) · SEbi.
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Example: (continued.)

The t-statistics for the regression parameters

β0 (intercept), β1 (weight), and β2 (heat)

are:

tβ0
=

b0
SEb0

=
24.75

0.349
= 70.9,

tβ1
=

b1
SEb1

=
−4.159

0.1867
= −22.3,

tβ2
=

b2
SEb2

=
−0.0149

0.0023
= −6.5.

The degrees of freedom are:

df = n− (k + 1) = 10− (2 + 1) = 7.

By calling T.INV.2T(0.001;7) in Excel or by

looking up in a table we find that the 0.1%

critical value of a 2-sided t-test with 7 de-

grees of freedom is 5.408, which is smaller

than the absolute value of any of the t-statis-

tics above. All regression parameters are

therefore significant at 0.1%.
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Using Multiple Regression for Prediction
Confidence Interval on Estimated Mean

We shall now find a confidence interval for
the mean value of the response variable Y for
a specific set of values x1, . . . , xk of the pre-
dictor variables, which have not necessarily
been used in developing the regression equa-
tion. Let

µY |x : = E(Y |X1 = x1, X2 = x2, . . . , Xk = xk)

= β0 + β1x1 + β2x2 + · · ·+ βkxk
= x′1×(k+1)β(k+1)×1, where

x′ = (1, x1, x2, . . . , xk), β = (β0, β1, . . . , βk)′.

An unbiased estimator for µY |x is

µ̂Y |x = b0 + b1x1 + b2x2 + · · ·+ bkxk = x′b.

The variance of µ̂Y |x is

Var (µ̂Y |x) = Var (x′b) = x′Var (b)x

= x′σ2(X′X)−1x = σ2x′(X′X)−1x,

such that

µ̂Y |x ∼ N(x′β, σ2x′(X′X)−1x).
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Standardizing and replacing the unknown σ2

by its estimator s2 = MSE = SSE
n−(k+1) yields

t =
µ̂Y |x − µY |x

s
√
x′(X′X)−1x

∼ t(n−k−1).

A (1− α) confidence interval on µY |x is thus[
µ̂Y |x ± tα2(n−k−1)s

√
x′(X′X)−1x

]
.

Example: (continued.) We estimated earlier

the average gasoline mileage for a car weigh-

ing 1.5 tons operated on a 70oF day as

µ̂Y |x= 24.75−4.16·1.5−0.0149·70=17.47mpg.

The standard error of the estimate was

s =
√

MSE = 0.1416.

We wish to find a 95% confidence interval

on µY |x at

x′ = (1,1.5,70).
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We know from previous work that

(X′X)−1 =

 6.070769 −3.02588 −0.0171888
−3.02588 1.738599 0.0021663
−0.017189 0.002166 0.0002583

 .

A calculation by hand or calling MMULT in
Excel yields for x′(X′X)−1x:

(1,1.5,70)

(
6.070769 −3.02588 −0.0171888
−3.02588 1.738599 0.0021663
−0.017189 0.002166 0.0002583

)(
1

1.5
70

)
= 0.22.

The t0.05
2

critical value with 7 degrees of free-

dom is 2.365, such that a 95% confidence
interval in the average gasoline milage for
x1 = 1.5 and x2 = 70 is

µ̂Y |x ± tα
2
· s
√
x′(X′X)−1x

=17.47± 2.365 · 0.1416
√

0.22

=17.47± 0.16

We can thus be 95% confident that the aver-
age gasoline milage of cars weighing 1.5 tons
operated on a 70oF day lies between 17.31
and 17.63 miles per gallon.
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Prediction Interval on Single Response

Consider next predicting a single response

Y |x = µY |x + ε. The scalar product x′b is

also an unbiased estimator of Y |x since

E(Y |x) = E(µY |x) + E(ε) = x′β.

But the variance of Ŷ |x is larger than the

variance of µ̂Y |x due to the additional varia-

tion in ε. More specifically:

Var (Ŷ |x) = Var (µ̂Y |x) + Var (ε)

= σ2x′(X′X)−1x + σ2

= σ2(1 + x′(X′X)−1x).

That is,

Ŷ |x ∼ N(x′β, σ2(1 + x′(X′X)−1x)).
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A similiar argument as for the confidence
interval on the estimated mean yields as a
(1 − α) prediction interval for an individual
response:[

Ŷ |x± tα
2
(n−k−1)s

√
1 + x′(X′X)−1x

]
.

Example: (continued.)
A 95% prediction interval for a car weighing
1.5 tons operating on a 70oF day is

[17.47± 2.365 · 0.1416
√

1 + 0.22]

=[17.47± 0.38]

=[17.09,17.85].

(The corresponding confidence interval for
the mean response was [17.31,17.63].)

Getting confidence intervals for the mean and
individual predictions in excel requires use of
the array functions MMULT for matrix multi-
plication and MINVERSE for calculating the
matrix inverse. Before entering an array func-
tion you must mark an area exactly as large
as the output matrix and finish your com-
mand with Ctrl+Shift+Enter.
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Partial F Tests

Testing a Subset of Predictor Variables

In this section we shall present a test based

on the F distribution (and in simple cases

the t distribution) in order to test whether

a subset of the original predictor variables is

sufficient for prediction. Consider the regres-

sion model

Y = β0 + β1X1 + β2X2 + · · ·+ βkXk + ε,

We refer to this model as the full model. As-

sume that we propose to reduce the number

of predictor variables by deleting r of them,

such that we obtain the reduced model:

Y = β0 + β1X1 + β2X2 + · · ·+ βk−rXk−r + ε.

We wish to test

H0 : reduced model is appropriate
against H1 : full model is needed.

This may be done using a partial F test.
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The method used to test H0 is rather in-

tuitive. We first find the residual sum of

squares for both the full model (SSEF ) and

for the reduced model (SSER) from the cor-

responding ANOVA tables. We know that

for a given model the residual sum of squares

reflects the variation in the response variable

not explained by the model. If the predic-

tor variables Xk−r+1, Xk−r+2, . . . , Xk are im-

portant, then deleting them from our model

should result in a significant increase in the

unexplained variation in Y . That is, SSER
should become considerably larger than SSEF .

The partial F test makes use of this idea. It

is given by:

F =
(SSER − SSEF )/r

MSEF
∼ F (r, n−(k+1))

if the null hypothesis, that the reduced model

is appropriate, holds true. We reject on the

right tail of the distribution, that is, large

values of the partial F statistics are taken as

evidence that the full model is needed.
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Example: (continued.)

Suppose we want to test whether the weight

of the car alone is sufficient to predict the

gasoline milage of an automobile.

From the ANOVA output for the full model

we know: SSEF = 0.14 and MSEF = 0.02.

A glance at the ANOVA table for the re-

duced model reveals that SSER = 0.999 and

we consider deleting r = 1 variable from the

model. The partial F statistic is therefore:

F =
(SSER − SSEF )/r

MSEF

=
(0.999− 0.14)/1

0.02
= 42.95.

Calling F.INV.RT(0.01;1;7) or looking up in

a table reveals that F0.01(1,7) = 12.2. The

p-value is F.DIST.RT(42.95;1;7)=0.032%.

So we reject the null hypothesis that the

weight of the car alone would suffice in pre-

dicting the gasoline milage of an automobile.
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In the special case that we consider to delete
only one variable from the full model (as in
the preceding example), the p-value for the
partial F test coincides with the p-value for
the single coefficient t test for the coeffi-
cient we are considering to delete from the
full model. Indeed, in the previous exam-
ple the p-value for the temp coefficient is
T.DIST.2T(6.545;7)=0.032%, the same as
in the partial F test.

So the t tests for significance of individual
regression parameters may alternatively be
interpreted as partial F tests for reducing the
full model by the corresponding regression
parameter alone.

That is so because the absolute value of the t
statistic for each single regression parameter
is just the square root of the partial F test for
deleting the same parameter (

√
42.95 ≈ 6.5

in the preceding example, differences to the
ANOVA output for the full model are due
to rounding), and we know already that the
square of a t-distributed random variable with
ν degrees of freedom is F (1, ν)-distributed.
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Qualitative Independent Variables

Recall that the purpose of both ANOVA and
regression is to forecast the value of a quan-
titative variable based on some other vari-
able(s). The diffence between ANOVA and
Regression is whether the explanatory vari-
able is qualitative (ANOVA) or quantitative
(Regression).

We shall next consider incorporating both
quantitative and qualitative explanatory vari-
ables into a linear model for a quantitative
dependent variable. As a start-off point we
choose qualitative variabels with only two lev-
els, such as available versus not available.
Such a variable is called a dummy variable
or indicator variable IIA, because it indicates
if some condition A holds. It has the value 1
when the condition A holds and the value 0
when the condition does not hold.

IIA =

1 if condition A holds,

0 if condition A does not hold.
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The use of indicator variables in regression

analysis does not require any additional com-

putational routines. We just include the in-

dicator variable as an additional explanatory

variable, coded as 1 if the quality of interest

is obtained and 0 if it is not obtained.

Example: (Azcel, Example 11-3.)

A motion picture industry analyst wants to

estimate the gross earnings generated by a

movie (Y /mio $) as a linear function of pro-

duction costs (X1/mio $) and promotion costs

(X2/mio $). As a third variable she wants to

consider whether the film is based on a book

(X3 = 1) or not (X3 = 0).

The estimated coefficient of 7.166 for X3

means that having the movie based on a

book increases the movie’s gross earnings by

an average of $7.166 million.
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Regression

Model Summary

.983a .967 .960 3.690
Model
1

R R Square
Adjusted R

Square
Std. Error of
the Estimate

Predictors: (Constant), Book, PromotC, ProdCosta.

ANOVAb

6325.151 3 2108.384 154.887 .000a

217.799 16 13.612
6542.950 19

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), Book, PromotC, ProdCosta.
Dependent Variable: Earningsb.

Coefficientsa

7.836 2.333 3.358 .004
2.848 .392 .447 7.258 .000
2.278 .253 .535 8.989 .000
7.166 1.818 .197 3.942 .001

(Constant)
ProdCost
PromotC
Book

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Earningsa.



The p-value of 0.001 for “Book” means that

we can reject H0 : β3 = 0 against H1 : β3 6= 0

at a significance level of α = 0.1%.

This again implies that we have in fact two

different regression models depending upon

whether the film is based on a book (X3 = 1)

or not (X3 = 0). The regression model for

films based on a book is

Y = 7.836 + 2.848X1 + 2.278X2 + 7.166 · 1 + ε

= 15.002 + 2.848X1 + 2.278X2 + ε

whereas for films not based on a book it is

Y = 7.836 + 2.848X1 + 2.278X2 + ε.

We see that the fact that H0 : β3 = 0 was

rejected implies that different subsamples of

the films are described by different regression

models with different intercepts, but identical

slope coefficients.
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In general, if the regression model contains

k quantitative regressors X1, . . . , Xk and one

dummy variable Xk+1, then rejection of

H0 : βk+1 = 0 against H1 : βk+1 6= 0 implies

that there are two parallel regression models

for the 2 subsamples corresponding to the

value of the indicator variable Xk+1:

Y = β0 +
k∑
i=1

βkXk + ε for Xk+1 = 0, and

Y = (β0 +βk+1)+
k∑
i=1

βkXk+ ε for Xk+1 = 1.

Even though we could in principle go and fit

own regression models for each subsample

separately, we have good reasons to use the

dummy variable approach instead:

1) It allows us to test statistically whether

there are indeed two separate models needed.

2) By pooling the data from both groups, we

improve the efficiency of our estimators for

the common regression parameters β1, . . . , βk
and σ2.
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Qualitative Variables with more than 2 levels

Rather than introducing a pseudo-indicator

with more than 2 levels, we account for a

qualitative variable with r levels by using r−1

indicator (0/1) variables as follows:

All indicator variables = 0 indicates the first

level, all other r − 1 levels are indicated by

setting the corresponding indicator variable

to 1 and the remaining dummies to 0.

Example: (continued.)

Suppose the analyst is interested not in whether

the movie is based on a book, but rather

in the category to which the movie belongs:

adventure, drama, or romance. Assume fur-

thermore for simplicity, that the only quan-

titative regressor is production costs (such

that we get a regression line rather than a

surface). We may then model the r = 3 sub-

groups adventure, drama, and romance by

r − 1 = 2 dummy variables X2 and X3 as

follows.
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Category: X2 X3
Adventure 0 0
Drama 1 0
Romance 0 1

Estimating the model

Y = β0 + β1X1 + β2X2 + β3X3 + ε

yields 3 estimated regression lines:

Ŷ = b0 + b1X1 for adventure,

Ŷ = (b0 + b2) + b1X1 for drama,

Ŷ = (b0 + b3) + b1X1 for romance.

Nonrejection of H0 : β2 = 0 would imply that

adventure and drama films produce the same

earnings, while nonrejection of H0 : β3 = 0

would imply that adventure and romance films

produce the same earnings (given identical

production costs X1). A partial F test could

be used to test H0 : β2 = β3 = 0, that is that

all three categories produce the same earn-

ings (given identical production costs X1).
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Interactions between Qualitative

and Quantitative Variables

So far we have assumed that the quantita-

tive variable X1 effects all levels of the qual-

itative variables in the same way, that is, all

regression lines or surfaces are parallel (iden-

tical slope coefficients, only intercepts may

differ). This assumption may be tested. In

the case of one indicator variable X2, with 2

levels, an appropriate model is

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε

Estimation of this model yields

Ŷ = b0 + b1X1 for X2 = 0,

Ŷ = b0 + b1X1 + b2 + b3X1

= (b0+b2) + (b1+b3)X1 for X2 = 1.

So we may test equality of slopes by testing

H0 : β3 = 0 against H1 : β3 6= 0.
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Dummy Regressions as Simple Contrasts

Regressing on dummy variables alone repli-
cates the results of contrasts of the form
H0 : µDummy=1 = µDummy=0. The slope co-
efficient of a dummy variable equals then the
difference in means x̄Dummy=1 − x̄Dummy=0
and the p-value of the t-test is the same as
that of the corresponding contrast.

Example. Consider again the errors made un-
der influence of drug A, drug B, or both drugs.
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Polynomial Regression

The mathematical framework of multiple re-

gression may be used to model relationships

between a response variable Y and a single

predictor variable X, where the relationship

between X and Y is curved rather than linear.

A one-variable polynomial regression model

is

Y = β0 + β1X + β2X
2 + · · ·+ βmX

m + ε,

where m is the degree of the polynomial (the

highest power of X in the equation), which

is also called the order of the model.

Polynomial models of order higher than 2 are

very rarely used in practice, due to the dan-

ger of overfitting, and because the depen-

dence between different powers of X may re-

sult in difficulties to find the right regression

parameters (so called multicollinearity, to be

discussed later).

210



Graph

Advert
14,012,010,08,06,04,02,00,0

Sa
le

s

25,0

20,0

15,0

10,0

5,0

R Sq Linear = 0,895

R Sq Quadratic =0,959



Example: (Azcel Example 11–5.)

Sales response to advertising usually follows

a curve reflecting the diminishing returns to

advertising expenditure. As a firm increases

its advertsing expenditure, sales increase, but

the rate of increase drops continually after a

certain point.

The preceding slide contains data on sales

revenues as a function of advertising expen-

diture. As is evident from the scatterplot,

sales as a function of advertising is better

approximated by a polynomial of 2nd order

than by a straight line. So we attempt to fit:

Y = β0 + β1X + β2X
2 + ε

and obtain (see next slide):

Ŷ = 3.515 + 2.515X − 0.0875X2.

(Note that the regression model is not fully

satisfactory as it is evident from the residual

plot that there is left some autocorrelation

in the residuals.)
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Linear Regression Results 
 

Model: Linear_Regression_Model 
Dependent Variable: Sales Sales 

 

 

 

Number of Observations Read 21

Number of Observations Used 21

 
 

Analysis of Variance 

Source DF
Sum of

Squares
Mean

Square F Value Pr > F 

Model 2 630.25801 315.12901 208.99 <.0001 

Error 18 27.14199 1.50789  

Corrected Total 20 657.40000  

 
 

Root MSE 1.22796 R-Square 0.9587

Dependent Mean 13.80000 Adj R-Sq 0.9541

Coeff Var 8.89827  
 
 

Parameter Estimates 

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t| 

Intercept Intercept 1 3.51505 0.73847 4.76 0.0002 

Advert Advert 1 2.51478 0.25796 9.75 <.0001 

AdvSQR AdvSQR 1 -0.08745 0.01658 -5.28 <.0001 
 

 
 
 

 
 

 

 

 


