5. Multiple Regression (Regressioanalyysi)
(Azcel Ch. 11, Milton/Arnold Ch. 12)

The k-Variable Multiple Regression Model

T he population regression model of a depen-
dent variable Y on a set of k£ independent
variables X1, Xo,..., X IS given by

Y = B0+ 81X1 + BoXo + - 4+ B Xk + ¢,

where Bg is the intercept and 3;, 1 =1,...,k
are the slopes of the regression surface (also
called response surface) with respect to Xj.

Model assumptions:
1. ¢; ~ NID(0,02) for all observations j =1,...,n;

2. The variables X; are considered fixed quantities
(not random variables), that is, the only random-
ness in Y comes from the error term e.

T he parameters Bg, 81, - .- B are estimated by
the method of least squares (pns-menetelma),
as in the case with only 1 regressor.
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Method of Least Squares with k Regressors
(Pienimman neliosumman menetelma)

The following table contains the quantity of
a product sold (Y) as a function of the prod-
ucts price (X).

Observation | X:Price | Y: Quantity
Number |in Euro Sold
1 35.30 10.98
2 29.70 11.13
3 30.80 12.51
4 58.80 8.40
5 61.40 9.27
6 71.30 8.73
7 74.40 6.36
8 76.70 8.50
9 70.70 7.82
10 57.50 9.14
11 46.40 8.24
12 28.90 12.19
13 28.10 11.88
14 39.10 9.57
15 46.80 10.94
16 48.50 9.58
17 59.30 10.09
18 70.00 8.11
19 70.00 6.83
20 74.50 8.88
21 72.10 7.68
22 58.10 8.47
23 44.60 8.86
24 33.40 10.36
25 28.60 11.08

Such data may be conveniently illustrated in
a so called scatterplot (hajontakuvio).

161



Dependence of Sales on Price
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It appears, that the number of units sold Y is
roughly a linear function of the price X, that
IS,

Y; = bo + b]_a}j, or

y; =bg +biz; tu;, j=1...25 (1)

where the residuals (jaannokset) u; are small
in some sense compared to the linear term
bop + b1xz;. We shall in the following con-
sider a technique of identifying a linear rela-
tionship in approximately linearly distributed
data, known as Method of Least Squares or

80

Regression Analysis, (pienimman neliogsumman

menetelma, regressioanalyysi).
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Before doing that, let us rewrite the regres-
sion equation (1) in matrix form as

Y(25x1) — X(25><2)b(2><1) +u(25><1)v where: (2)
10.98 1 35.3 U1
(11.13 (1 290.7 (’UQ\

g |1251] x_ |1 308 b=<2(1)> ue |
10.36 1 334 U4
\11.08) \1 286 \tioe

Doing so has the advantage that we may eas-
ily generalize our method to the case where
the dependent variable Y, called regressand
(selitettava muuttuja), depends linearly on
more than one independent variable X, called
regressor (selittava muuttuja). For example,
the number of units sold might not only de-
pend on a constant (X7 = 1) and price (X»),
but also on advertisement (X3), bonuses to
sales officers (X4), and so on, such that

yj — bO'1‘|‘b1$1,j+bQ$2,j+- . —I—bkxkjj—l—uj (3)

for observation j € (1,...,n) of n observa-
tions and k 4+ 1 regressors (including the 1).
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The matrix formulation in this general case
remains exactly the same as before except,
that we need to add additional elements to
X and b in order to incorporate the additional
regressors, that is,

Y(nx1) = X(nx(k—i—l))b((kz—l—l)xl) T U,y WIth
(4)
(1 211 @21 - Tp1) bo
X= |, T2 22 k2| oy 0
Kl Tln X2n *°- xk,n) bk

and as before: v = (y1,vo,...,yn),

u = (ug,uo, ..., un).
Note that the so called design matrix X has
one column more than the number of of re-

gressors, because one column is needed for
the constant term bg in the linear specifica-

tion Yj = bo- 1+ z,lle bifci,j + Uj-

We are now in a position to discuss the method
of least squares in order to obtain estimates
for the unknown parameter vector b from the
observed vector y and the design matrix X for
the general case of k regressors.
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The method of least squares determines the
unknown parameters (g, ..., 8 by minimizing
the sum of all squared vertical distances be-
tween the observations y; and their predicted
values y; 1= bo—l—z,’f:l bjx; ; on the regression
surface.

That is, we seek to minimize the sum of
squared residuals

(O]
n
fb) =Y w? =vu=(ug,up,...,un) | 2],
=1 wn
(5)

which yields, recalling u =y — Xb:

f(b) = (y — Xb)'(y — Xb)
=vy—-b' X'y —y'Xb+b'X'Xb (6)
= vy — 2b'X'y + b’X'Xb.

Now a necessary condition for a minimum of
the function f: IR"— IR at b is that % = 0.
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In order to check this condition we need to
Mmake use of the matrix differentiation rules

/
d(ba) = a and (7a)
ob
/
9(b'Ab) = 2Ab for A=A (7b)

ob

Applying these to

f(b) =y'y —2b' X'y + bP’X'Xb

vields
OF _ _oxly 4 oX'Xb = 0 3
op = 2AY T = 0(gernyxay OF (8)
/ _ /
(X X)((k+1)><(k+1))b((k+1)><1) o X((k—l—l)Xn)y(”Xl)’

(9)

which are called the normal equations (nor-
maaliyhtdlot). Solving this matrix equation
(or set of scalar equations) yields the sought
parameter vector b’ = (bg, bq,...,bs).
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Normal Equations in Scalar Form

We shall here only consider the case of 2
independent variables, that is:

/ _ /
(X X>(3><3)b(3><1) = X(3><n)y(n><1)’ where
1 11 221 ! Y1
1 1o xo2 0 Yo
X = : :, :’ ? b= bl ? y = :
b
1 L1n L2n (nx3) 2 Un
Now
(1 L\ (| _ (2w
Xy=|z11 T n S = X715
T21 ot T2n) 0\, DX Y
and
1 1 1 211 =21
X’X: L1,1 L1n : :
o1 ron) \1 xi1n T2,
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such that

n 2T 2. T2, bo

X'Xb=|>X71; Zﬂ?%,j >z 225 | | by
2

2.2 2.1 T2 D TH bo

nbg + bi1Xx1; + bl wo;
= |boXz1; + biXai; + bYziey
boXx2; + b1 xyijro; + 622"’3%,3'

and the scalar form of the normal equations
X'y = X'Xb becomes:

> yj=mnbg+b1)y x1;+b2) w2,
Swijy;=boy w1 +b1y a1 +b2d w1 20,
Saojy=boy w2+ b1y w1 w0 by a5

where all summations extend from the 1st to
the nth observation.

Solving these equations yields the estimates
bg, b1 and by for the parameters gg, 81 and
B> of the 2-variable regression model.
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Solving the Normal Equations

To find the least-square estimates for gg, ..., Bx
we need to solve the normal equations

(X'X)b = Xy.

We know that if the columns of X are linearly
independent, that is, no column can be ex-
pressed as a linear combination of the others,
then (X’X) has an inverse, which we shall de-
note by (X’X)~1. To solve the normal equa-
tions for b, we premultiply both sides of the
normal equations above by (X’X)~! to obtain

Bi(k+1)x1) = b = (X'X)~ Xy,
the components of which are the sought least-
square estimates bq,..., b for Bo,..., L.

As it is no easy task to find the inverse of a
matrix by hand except in the simplest cases,
the calculation of the expression above is in
practice left to the statistical software we

use.
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Car No.

Example: Milton/Arnold Examples 12.2.1-3

An equation is to be developed from which
we can predict the gasoline mileage of an au-
tomobile as a linear function of its weight and

temperature at the time of operation.
1 2 3 4 5 6 7 38 9 10

mpg(y)

179 165 164 168 188 155 175 16.4 159 18.3

(r1/tons) 1.35 1.90 1.70 1.80 1.30 2.05 1.60 1.80 1.85 1.40

(z2/°F)

90 30 80 40 35 45 50 60 65 30

The model specification matrix X, vector of
parameter estimates b, and vector of responses
y are:

1 1.35 90 : 17.9

0
< — 1 1.90 3:0 R o 16:.5
1 1.40 30 b 18.3

We wish to solve the normal equations
X'y = X’Xb by calculating b = (X’X)~1Xy.
To this end, note that

17.9

1 1 170
X'y =135 --- 1.40 16?‘5 = | 282.405
90 -+ 30 ) |yg3 8887
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Furthermore,

1 1 1 1.35 90
X'X=|(135 --- 1.40 ; E :
90 .- 30 1 1.40 30

10 16.75 525
= | 16.75 28.6375 874.5
525 8745 31475

with inverse matrix

6.070769 —3.02588 —0.0171888
(X'X) 1= | —-3.02588 1.738599 0.0021663
—0.017189 0.002166  0.0002583

The vector of parameter estimates is
b = (X'X) X'y

6.070769 —-3.02588 —0.0171883 170
= | —3.02588 1.738599 0.0021663 282.405
—0.017189 0.002166 0.0002583 8887
24.75
= —4.16
—0.014897

The estimated model is

Y = 24.75 — 4.16X; — 0.014897 X5 + «.

Based on this equation, we estimate the mileage of a
car weighing 1.5 tons on a 70°F day to be

y=24.75—-4.16-1.5—-0.014897 - 70 = 17.47mpg.
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The ANOVA F-test for Multiple Regression

In simple linear regression the F' test from
the ANOVA table is equivalent to the two-
sided test of the hypothesis that the slope of
the regression line is 0. For multiple regres-
sion there is a corresponding ANOVA F' test,
but it tests the hypothesis that all regression
coefficients (except the intercept 3g) are 0.

The ANOVA table for multiple regression is

Source Sum of Squares DF Mean Square F' Ratio
Regression > (@i — ) k SSR/DFR MSR/MSE
Error > (i — 5:)? n—(k+1) SSE/DFE
Total > (i — ) n—1 SST/DFT

The ratio M—g'é IS an F statistic for testing

against
Hi: Notall g;, +=1,...,k are zero.
MSR
Under Hy: F=——~F(k,n—k—1).
MSE
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How good is the regression?

The mean square error (Jdanndsvarianssi)

SSE  Y(y; — ;)3
n—(k+1) n—(k+1)
displayed in the ANOVA table is an unbiased
estimator of the variance o2 of the popu-
lation errors €. The square root of MSE
IS an estimator of the standard deviation o,
usually denoted by s and referred to as the
standard error (keskivirhe) of estimate

s = VMSE.

The mean square error and its square root
are measures of the size of the errors in re-
gression but give no indication about the ex-
plained component of the regression fit.

MSE =

As in the case with only one regressor, we
measure the regression fit by

S

N

_ SSR . SSE
 SST SST’

the (multiple) coefficient of determination.
(Note that again: SST = SSR + SSE.)
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The multiple coefficient of determination R?
measures the quality of the regression fit as
the proportion of the variation in the de-
pendent variable that is explained by the lin-
ear combination of the independent variables.
Adding new variables to the model can never
decrease the amount of variance explained,
therefore R2 will always increase when we add
new variables (it will only stay constant if the
variables we added are completely useless).

For comparing models with varying numbers
of regressors it is useful to have a measure of
regression fit which decreases under addition
of variables of low explanatory power. Such is
given by the adjusted multiple coefficient of
determination (tarkistettu selitysaste)

MSE 1 SSE/(n—k—1)

RP=1—-_"""=1- ,
MST SST/(n—1)
which is related to the ordinary R2 by
— n—1

R2=1-(1-R?

n—(k+1)
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Note that the F' test for g1 = ... = 8, = 0O
may just as well be regarded as a test of
R2 = 0, since

B SSR/k  R? n—(k+1)
- SSE/(n—k—-1) 1—R? k '

Example: (continued.)

Mg — _ SSE 014 _
n—(k+1)  10-3

s =VMSE =0.141...
10.32 0.14
R =192

— =1-— = 0.9866
10.46 10.46
— MSE 0.02
RPR=1—-—=1-———=20.9828
MST 10.46/9
Alternatively:
— 5 n—1 9
R2=1—-(1-R°) =1-0.0134.-— = 0.9828
n—(k+1) 7
R> n—(k+1)
F = :
1 — R? k
0. 10 —
= 9866 3 = 257.7

1—-0.9866 2
The difference to F = 257.3 in the ANOVA table is

due to rounding error.
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Inference in Multiple Regression
Properties of the Least-Squares Estimators

Now that we learnt how to find the regression
parameters (by the method of least squares)
and how to assess the usefulness of the re-
gression as a whole (by the ANOVA F test)
we would also like to be able to tell for in-
dividual regression parameters whether they
are statistically significant or not. This re-
quires us to learn something about the sam-
pling distribution of the least square estima-
tor b = (X’X)~1X'y for the unknown param-
eter vector 5.

For that purpose we define the expected value
E(Y) of a vector of random variables Y,
that is, Y = (Y1,Y5,...,Ys)/, as
E(Y7)
BY) = | P02

B(Yn)

177



T he calculation rules for expectations of ran-
dom vectors resemble those of scalar expec-
tations:

1. E(C)=C,
2. E(CY)=CE(Y) (= E(Y'C") = E(Y")C"),
3. E(Y+Z) =E(Y)+ E(Z);

where Y and Z denote (nx 1) random vectors
and C denotes an (mxn) matrix of constants.

These rules may be used to show that the
least squares estimator b = (X'X)~1X'y is
an unbiased estimator of 8 = (8o, 51,..-,8%)
in the multiple regression model ¥ = X5 4 €:

E(b) = E[(X'X)"1X'Y]
= E[(X’X)1X/(XB + €)]
= E[(X'X)"1X'Xg] + E[(X'X) " 1Xe)]
= (X'X)"IX'XB + (X'X)"IX'E(e)
— 5
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Before discussing the variance of b, let us
first refresh the definition and some calcula-
tion rules for the variance of scalar random
variables:

1. V(X) = E[(X-E(X))?] = E(X?)-E(X)?,
2. V(c) = 0 for ¢ constant,
3. V(aX 4 b) = a2V (X) for a, b constants,

4. V(X4+Y)=V(X)+ V(YY)
for X and Y independent.

If X and Y are not independent, then:

V(X +Y)
=E{[(X +Y) - BE(X + Y))?}
=E{[(X - B(X)) + (¥ — B(Y))]?}
=E[(X — E(X))?] + E[(Y — E(Y))?]
+ 2E[(X — E(X))(Y — E(Y))]
=V(X)+V(Y)+2E[(X — E(X))(Y — E(Y))].
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Thus, unlike the mean, the variance of a sum
of two random variables is, in general, not the
sum of the variances. The quantity

Cov(X,Y) := E[(X — E(X))(Y — E(Y))]

is called the covariance of X and Y.

Thus, we obtain the variance of a sum as:

VX +Y)=V(X)+ V(Y)+ 2Cov(X,Y).

From the definition of covariance we obtain
the two immediate consequences

Cov(X,X)=V(X), Cov(X,Y) = Cov(Y, X).
Furthermore,
(X-EX))(Y-EY))=XY-XE(Y)-YE(X)+E(X)E(Y),
and hence by taking expectations we see that
Cov(X,Y) =FE(XY)—- E(X)E(Y).

This implies that Cov(X,Y) = 0 whenever X
and Y are independent, since then

E(XY) = E(X)E(Y).
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For random vectors it is convenient to col-
lect all covariances between the components
of the vector in a single matrix, the so called
variance-covariance matrix defined by Var (Y)

V(Yl) COV(Yl, YQ) e ce COV(Yl, Yn)
COV(Y17 YQ) V(Yl) COV(Y27 Yn)
— COV(Yl, Y3) COV(YQ, Y3) V(Yg,) COV(Y3, Yn) ,
Cov(Vi,Y,) Cov(Ya,Ys) ... .. V(Yi)

where Y denotes again a vector of random
variables Y = (Y1,Y5,...,Yy) .

Similiar to the calculation rules for variances
of scalar random variables we have the fol-
lowing important matrix rule for variance:

Var (CY +d) = CVar (Y)'

where Y is again an (n x 1) random vector,
C is an (m x n) constant matrix, and d an
(n x 1) constant vector.
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The assumption of the multiple regression
model that Y7, Y>,...,Y), are independent with
common variance ¢2 may now be written as

(02 o ... O\
2
Var (Y) = ? o ? = o2],
KO 0 ... 0%

where I is the (nxn) identity matrix, a matrix
of 1's on the main diagonal and O elsewhere.

Recall that our least squares estimator
b = (X’X)"1X'Y is of the form CY with
C = (X’X)~1X’. We may therefore use the
rule Var (CY) = CVar (Y)C’, such that

Var (b) = Var [(X'X)1X"Y]
= (X'X)~1X'Var (Y)[(X'X)~1X7,
where, using (AB) =B’A’ and (A~1) =4 ~1:
[(X'X) X = X[(X'X) ] = X[(X'X)] ! = Xx(X'X) .
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Var (b) = (X’X)~1X'Vvar (Y)[(X'X)~1X")
= (X’X)"1X'Var (Y)X(X'X)1
= (X'X) "I X's?1X(X'X) !
= 2(X'X) 1(X'X)(X'X) 1
= 2(X'X) L.
Since o2 is unknown, we replace it by our
usual estimator, the mean square error
SSE

n—(k+1)

s2 = MSE =
in order to obtain
Var (b) = s2(X'X) 1

as our estimator for the variance covariance
matrix of the least square parameter esti-
mates b = (bg, b1,...,b;)" for the unknown

parameter vector 8 = (8g,B1,--.,8:) .

The diagonal elemements ,SQ(X’X)Z-_Z-1 of Var (b)
are the estimated variances of bg,b1,...,bL.
T heir standard errors are therefore given by

SE, . = s/(X'X);t = /MSE(X'X);; .
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Example: (continued.)

We found earlier that MSE=0.02 and

6.070769 —3.02588 —0.0171888
(X'X) = -3.02588 1.738599  0.0021663 | .
~0.017189  0.002166  0.0002583

Our variance estimates for the least squares
coefficients by, b1 and b, are therefore:

V(bg) = 0.02-6.070769 = 0.1217,
V(b1) = 0.02-1.738599 = 0.03486,
vV (b>) = 0.02 - 0.0002583 = 0.00000518;

with corresponding standard errors

SEp, = V0.1217 = 0.349,
SEp, = V/0.03486 = 0.187,
SE}p,, = +/0.00000518 = 0.002.
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Inference on Single Regression Parameters

Recall that X is normally distributed with pa-
rameters p and o2 if its density is of the form
1 _(@=w?

flz) = -~ se 202, —oo< <00
o

This is denoted by X ~ N(u,o2).

We say that a random vector Y = (Y1,...,Y,)’
follows a multinormal distribution N(u, ) if
its density is of the form

f) =0 8z Fexn| Sy - Ty - )]

with

2
H1 (0'1 0122 Uln\
O‘ O‘ o o o O‘
u=|r2|, m=fo2 E o
2
pn \on1 on2 - o)

denoting u; = E(Y;), 04 = Cov(Y; Y;), and
02 =0, =V(Y) fori,j=1,...,n.

1
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Multinormally distributed random vectors have
the following two important properties:

1. Each single component of Y is normally
distributed with mean u; and variance 022:

Y:(Y].?aYTL)INN(,UJaZ)

= Y; ~ N(uj,07).

2. Any arbitrary linear combination of the
components of Y is also normally distri-
buted. In matrix form this is written:

Z =AY +c~ N(Au+c, AZA"),
E(Z) Var(z)
where A is any (r xn) matrix of constants
and c is any (r x 1) vector of constants.
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We are now in a position to restate the k-
variable regression model in matrix form as:

Y =XB84e¢€ e~ N(O,o2I);
which implies by property 2 from above that
Y ~ N(XB,°1).

Our interest is in the sampling distribution of
b = (X'X)~1X’Y. We know already that

E(b) =73 and Var(b)=s2(X'X)"1.
Furthermore, since b is just a linear combina-
tion of the components of Y, we have again
by property 2:

b~ N(8,0%(X'X)™1),

which implies by property 1:
b; ~ N(Bi,08), i=0,1,...,k
where 02 = V(b;_1) = o2(X'X)7} with
b]_l J JJ
(X’X)j_j1 the j'th diagonal element of (X/X)~ 1,
and 5 =11+ 1, so the first diagonal element

is for by, the second diagonal element is for
b1, and so on.
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Standardizing yields

z:b’i_ﬂ"'wN(o,U.

O-bz'

Because the op, are unknown, we substitute
) by their estimates

SE, . = s\/(X'X); = /MSE(X'X);;*.
and use instead the t-statistic:
bz o B;k
SEbZ.
Alternatively we may calculate (1 — «) confi-
dence intervals for 3, as

t = ~ t(n—k—1) under Hqy: B; = B;.

[bi % ta(n— k—1) - SE]

In particular, we may test for statistical sig-
nificance of individual regression parameters
by calculating the t-statistics

b.
S—Nt(n k—1) under Hp: 8, =0
b

or by checking that
1b;] > t%(n —k—-1)- SEb7;°
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Example: (continued.)

T he t-statistics for the regression parameters
Bo (intercept), B1 (weight), and B> (heat)
are:

bp 2475

tgy = = = 70.9,
0T SEy,  0.349
b1 —4.159
tg, = = = —22.3,
17 SE, ~ 0.1867
bo —0.0149

t —
%27 SE, ~ 0.0023

The degrees of freedom are:

df =n—(k+1)=10-(2+1)=T7.

By calling T.INV.2T(0.001;7) in Excel or by
looking up in a table we find that the 0.1%
critical value of a 2-sided t-test with 7 de-
grees of freedom is 5.408, which is smaller
than the absolute value of any of the t-statis-
tics above. All regression parameters are
therefore significant at 0.1%.
189



Using Multiple Regression for Prediction
Confidence Interval on Estimated Mean

We shall now find a confidence interval for
the mean value of the response variable Y for
a specific set of values zq,...,x; of the pre-
dictor variables, which have not necessarily
been used in developing the regression equa-
tion. Let

py|x = EY[X1 =21, Xo =22,..., X = z)
= Po + frx1 + Poxp + - -+ + Brrk
= X1y (k+1)Pk41)x1,  Where

X/:(l,ai‘]_,CUQ,...,ZCk), 6:(507B17"'76k),'
An unbiased estimator for py |y is
fy|x = bo + brzy + boxo + - - - + bz, = x'b.

The variance of iy |y IS

Var (fiy ) = Var (x'b) = x'Var (b)x

= x'o?(X'X) " 1x = %%/ (X'X) " 1x,
such that

fyx ~ N(X'B,07x'(X'X) " 1x).
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Standardizing and replacing the unknown o2

by its estimator s2 = MSE = n—S(§4E—1) yields
p= Y TIVIX e k—1),

s (XX) " Ix

A (1 — «) confidence interval on Hy|x is thus

[ﬁm it%(n—k—l)S\/X’(X’X)—lx] |

Example: (continued.) We estimated earlier
the average gasoline mileage for a car weigh-
ing 1.5 tons operated on a 70°F day as

fly|x= 24.75-4.16:1.5-0.0149-70=17.47mpg.

The standard error of the estimate was

s = VvVMSE = 0.1416.

We wish to find a 95% confidence interval
on py|x at

x' = (1,1.5,70).
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We know from previous work that

—3.02588 1.738599 0.0021663

6.070769 —3.02588 —0.0171888
(X'X)"t= :
—0.017189  0.002166  0.0002583

A calculation by hand or calling MMULT in
Excel yields for x/(X'X)1x:

6.070769 —3.02588 —0.0171888 1
(1,1.5,70) [ —3.02588 1.738599  0.0021663 | [ 1.5 | = 0.22
~0.017189  0.002166  0.0002583/ \ 70

The toos critical value with 7 degrees of free-

2
dom is 2.365, such that a 95% confidence
interval in the average gasoline milage for
x1=15and zo =70 is

Py|x * t% : 3\/X'(X/X)_1X
=17.47 £2.365:0.1416v0.22
=17.47 =0.16

We can thus be 95% confident that the aver-
age gasoline milage of cars weighing 1.5 tons
operated on a 70°F day lies between 17.31
and 17.63 miles per gallon.
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Prediction Interval on Single Response

Consider next predicting a single response
Yix = py|x + € The scalar product x'b is
also an unbiased estimator of Y |x since

E(Y]x) = E(uy|x) + E(e) = X6,

But the variance of Y|x is larger than the
variance of [y, due to the additional varia-
tion in €. More specifically:

Var (Y|x) = Var (fiy ) + Var (e)
= 2% (X'X) " 1x 4 62
= o2(1 + ¥ (X'X) " 1x).

That is,

V|x ~ N('B,0%(1 + x'(X'X) " 1x)).
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A similiar argument as for the confidence
interval on the estimated mean yields as a
(1 — o) prediction interval for an individual
response:

Y [x £ty (n—k— 1)sy/1 4+ x'(X'X) " 1x | .

Example: (continued.)
A 95% prediction interval for a car weighing
1.5 tons operating on a 70°F day is

17.47 +2.365 - 0.1416+/1 + 0.22]
17.47 + 0.38]
17.09, 17.85].

(The corresponding confidence interval for
the mean response was [17.31,17.63].)

Getting confidence intervals for the mean and
individual predictions in excel requires use of
the array functions MMULT for matrix multi-
plication and MINVERSE for calculating the
matrix inverse. Before entering an array func-
tion you must mark an area exactly as large
as the output matrix and finish your com-
mand with Ctrl4+Shift4+Enter.
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Partial F' Tests
Testing a Subset of Predictor VVariables

In this section we shall present a test based
on the F distribution (and in simple cases
the t distribution) in order to test whether
a subset of the original predictor variables is
sufficient for prediction. Consider the regres-
sion model

Y = B0+ B1X1 + BoXo+ -+ B Xk + ¢,

We refer to this model as the full model. As-
sume that we propose to reduce the number
of predictor variables by deleting » of them,
such that we obtain the reduced model:

Y =060+ 51 X1+ BoXo+ -+ B Xp_r + €

We wish to test

Hp: reduced model is appropriate
against Hjy: full model is needed.

This may be done using a partial F' test.
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The method used to test Hgp is rather in-
tuitive. We first find the residual sum of
squares for both the full model (SSEr) and
for the reduced model (SSEg) from the cor-
responding ANOVA tables. We know that
for a given model the residual sum of squares
reflects the variation in the response variable
not explained by the model. If the predic-
tor variables Xy_ 41, Xp_y40,..., Xy are im-
portant, then deleting them from our model
should result in a significant increase in the
unexplained variation in Y. That is, SSEpR
should become considerably larger than SSE .
The partial F' test makes use of this idea. It
IS given by:

(SSEr — SSER)/r
MSFEg

if the null hypothesis, that the reduced model

IS appropriate, holds true. We reject on the

right tail of the distribution, that is, large

values of the partial F' statistics are taken as

evidence that the full model is needed.

F = ~ F(r,n—(k+1))
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Example: (continued.)

Suppose we want to test whether the weight
of the car alone is sufficient to predict the
gasoline milage of an automobile.

From the ANOVA output for the full model
we know: SSEp = 0.14 and MSEgr = 0.02.
A glance at the ANOVA table for the re-
duced model reveals that SSEr = 0.999 and
we consider deleting »r = 1 variable from the
model. The partial F statistic is therefore:

(SSEpr — SSEg)/r
MSFEg
~(0.999-0.14)/1
- 0.02
Calling F.INV.RT(0.01;1;7) or looking up in
a table reveals that Fg1(1,7) = 12.2. The
p-value is F.DIST.RT(42.95;1;7)=0.032%.
So we reject the null hypothesis that the
weight of the car alone would suffice in pre-
dicting the gasoline milage of an automobile.

F =

= 42.95.
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In the special case that we consider to delete
only one variable from the full model (as in
the preceding example), the p-value for the
partial F' test coincides with the p-value for
the single coefficient t test for the coeffi-
cient we are considering to delete from the
full model. Indeed, in the previous exam-
ple the p-value for the temp coefficient is
T.DIST.2T(6.545;7)=0.032%, the same as
in the partial F' test.

So the t tests for significance of individual
regression parameters may alternatively be
interpreted as partial F' tests for reducing the
full model by the corresponding regression
parameter alone.

That is so because the absolute value of the ¢
statistic for each single regression parameter
IS just the square root of the partial F' test for
deleting the same parameter (v/42.95 =~ 6.5
in the preceding example, differences to the
ANOVA output for the full model are due
to rounding), and we know already that the
square of a t-distributed random variable with
v degrees of freedom is F(1,v)-distributed.
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Qualitative Independent Variables

Recall that the purpose of both ANOVA and
regression is to forecast the value of a quan-
titative variable based on some other vari-
able(s). The diffence between ANOVA and
Regression is whether the explanatory vari-
able is qualitative (ANOVA) or quantitative
(Regression).

We shall next consider incorporating both
quantitative and qualitative explanatory vari-
ables into a linear model for a quantitative
dependent variable. As a start-off point we
choose qualitative variabels with only two lev-
els, such as available versus not available.
Such a variable is called a dummy variable
or indicator variable I 4, because it indicates
if some condition A holds. It has the value 1
when the condition A holds and the value O
when the condition does not hold.

7. = 1 if condition A holds,
A O if condition A does not hold.
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The use of indicator variables in regression
analysis does not require any additional com-
putational routines. We just include the in-
dicator variable as an additional explanatory
variable, coded as 1 if the quality of interest
is obtained and O if it is not obtained.

Example: (Azcel, Example 11-3.)

A motion picture industry analyst wants to

estimate the gross earnings generated by a

movie (Y /mio $) as a linear function of pro-

duction costs (X71/mio $) and promotion costs
(X>/mio $). As a third variable she wants to

consider whether the film is based on a book

(X3=1) or not (X3 =0).

The estimated coefficient of 7.166 for X3
means that having the movie based on a
book increases the movie’'s gross earnings by
an average of $7.166 million.
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The p-value of 0.001 for “Book’” means that
we can reject Hp: B3 = 0 against H1: 83 # 0
at a significance level of a = 0.1%.

This again implies that we have in fact two
different regression models depending upon
whether the film is based on a book (X3 =1)
or not (X3 = 0). The regression model for
films based on a book is

Y = 7.836 4+ 2.848X; + 2.278X> + 7.166 - 1 + ¢
= 15.002 + 2.848X7 4+ 2.278X5 + ¢

whereas for films not based on a book it is

Y = 7.836 + 2.848X1 4+ 2.278X5 + «.

We see that the fact that Hp: 83 = 0 was
rejected implies that different subsamples of
the films are described by different regression
models with different intercepts, but identical
slope coefficients.
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In general, if the regression model contains
k quantitative regressors Xq,..., X, and one
dummy variable Xg,q,, then rejection of
Hp: Br41 = 0 against Hy: Bg41 7= 0 implies
that there are two parallel regression models
for the 2 subsamples corresponding to the
value of the indicator variable Xy 1:

k
Y=60—|— Zﬁka—FE for Xk—l—l = 0, and
=1

k
Y = (Bo+Br+1)+ D BiXp+efor Xpyq =1.
i—1

Even though we could in principle go and fit
own regression models for each subsample
separately, we have good reasons to use the
dummy variable approach instead:

1) It allows us to test statistically whether
there are indeed two separate models needed.
2) By pooling the data from both groups, we
improve the efficiency of our estimators for
the common regression parameters (3q,..., Bk

and 2.
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Qualitative Variables with more than 2 levels

Rather than introducing a pseudo-indicator
with more than 2 levels, we account for a
qualitative variable with r levels by using r—1
indicator (0/1) variables as follows:

All indicator variables = 0O indicates the first
level, all other r — 1 levels are indicated by
setting the corresponding indicator variable
to 1 and the remaining dummies to O.

Example: (continued.)

Suppose the analyst is interested not in whether
the movie is based on a book, but rather
in the category to which the movie belongs:
adventure, drama, or romance. Assume fur-
thermore for simplicity, that the only quan-
titative regressor is production costs (such
that we get a regression line rather than a
surface). We may then model the » = 3 sub-
groups adventure, drama, and romance by
r —1 = 2 dummy variables Xo> and X3 as
follows.
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Category: Xo X3
Adventure O 0
Drama 1 0
Romance 0 1

Estimating the model

Y = B0+ B1X1+ B2Xo+ B3X3+ ¢

yields 3 estimated regression lines:

Py

Y = by + b1 X3 for adventure,
= (bo + bg) + b1X4 for drama,
= (bg + b3) + b1 X7 for romance.

Nonrejection of Hp: 8o = 0 would imply that
adventure and drama films produce the same
earnings, while nonrejection of Hp: B3 =0
would imply that adventure and romance films
produce the same earnings (given identical
production costs X4). A partial F test could
be used to test Hgy: B> = B3 = 0, that is that
all three categories produce the same earn-
ings (given identical production costs Xq).
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Interactions between Qualitative
and Quantitative Variables

So far we have assumed that the quantita-
tive variable X, effects all levels of the qual-
itative variables in the same way, that is, all
regression lines or surfaces are parallel (iden-
tical slope coefficients, only intercepts may
differ). This assumption may be tested. In
the case of one indicator variable X5, with 2
levels, an appropriate model is

Y = B + 01 X1+ foXo 4+ B3X1 X + ¢
Estimation of this model yields
= bo + b1X1 for Xo =0,

= bg + b1 X1 + b+ 03X,
= (bo—|—1)2) —|— (bl—l—b3)X1 for XQ = 1.

So we may test equality of slopes by testing

Y
Y =

Hgy: B3 =0 against H;i:p3#0.
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Dummy Regressions as Simple Contrasts

Regressing on dummy variables alone repli-
cates the results of contrasts of the form
Ho © pbummy=1 = #Dummy=0- | he slope co-
efficient of a dummy variable equals then the
difference in means Tpymmy=1 — TDummy=0
and the p-value of the t-test is the same as
that of the corresponding contrast.

Example. Consider again the errors made un-
der influence of drug A, drug B, or both drugs.

T d 9. T W TG Contrast Microsort Excel W o =)
m Home Insert Page Layout Formulas Data Review View Add-Ins PDF-¥Change 2012 bl @ (=
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Polynomial Regression

The mathematical framework of multiple re-
gression may be used to model relationships
between a response variable Y and a single
predictor variable X, where the relationship
between X and Y is curved rather than linear.

A one-variable polynomial regression model
IS

Y =80+ 81X+ BoX+ -+ BnX™ +e

where m is the degree of the polynomial (the
highest power of X in the equation), which
is also called the order of the model.

Polynomial models of order higher than 2 are
very rarely used in practice, due to the dan-
ger of overfitting, and because the depen-
dence between different powers of X may re-
sult in difficulties to find the right regression
parameters (so called multicollinearity, to be
discussed later).
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Example: (Azcel Example 11-5.)

Sales response to advertising usually follows
a curve reflecting the diminishing returns to
advertising expenditure. As a firm increases
its advertsing expenditure, sales increase, but
the rate of increase drops continually after a
certain point.

The preceding slide contains data on sales
revenues as a function of advertising expen-
diture. As is evident from the scatterplot,
sales as a function of advertising is better
approximated by a polynomial of 2nd order
than by a straight line. So we attempt to fit:

Y = Bo+ B1X + B2X% + ¢

and obtain (see next slide):

Y =3.515+2.515X — 0.0875X 2.

(Note that the regression model is not fully
satisfactory as it is evident from the residual
plot that there is left some autocorrelation
in the residuals.)
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Linear Regression Results

Model: Linear_Regression_Model
Dependent Variable: Sales Sales

Number of Observations Read 21

Number of Observations Used 21

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr>F
Model 2 630.25801 315.12901  208.99 <.0001
Error 18 27.14199 1.50789

Corrected Total 20 657.40000

Root MSE 1.22796 R-Square 0.9587
Dependent Mean 13.80000 Adj R-Sq 0.9541
Coeff Var 8.89827

Parameter Estimates
Parameter Standard
Variable Label DF Estimate Error tValue Pr>|t|
Intercept Intercept 1 3.51505 0.73847 4.76  0.0002
Advert  Advert 1 2.51478 0.25796 9.75 <.0001
AdvSQR AdvSQR 1 -0.08745 0.01658 -5.28 <.0001

Standardized Residual of Sales
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