
Nonlinear Models and Transformations

Sometimes relationships between Y and one

or more of the Xi’s is nonlinear. Remember

that powers of the Xi’s still keep the model

linear in terms of the slope coefficients βi.

When we talk about nonlinear models, we

mean models which are not linear in the re-

gression coefficients βi.

Luckily many nonlinear models can be made

linear by appropriate transformations. Such

models are called intrinsically linear.

Consider for example the multiplicative model:

Y = β0X
β1
1 X

β2
2 · · ·X

βk
k ε,

which may be linearized by the logarithmic
transformation into the form:

logY =logβ0+β1 logX1+β2 logX2+· · ·+βk logXk+log ε.
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In the special case of only one independent

variable one obtaines the power model:

Y = β0X
β1ε,

which linearizes as

Y ∗ = β∗0 + β∗1X
∗+ ε∗

where Y ∗ = logY , β∗0 = logβ0, β∗1 = β1,

X∗ = logX and ε∗ = log ε. The estimates

for the original parameters are recovered by

the inverse transformations

β̂1 = β̂∗1 and β̂0 = eβ̂
∗
0.

Example: (continued.)

The estimated parameters of the power model

for the sales and advertising data are ob-

tained from regressing the log of sales upon

the log of advertising as

β̂1 = 0.553 and β̂0 = e1.701 = 5.479, that is,

Ŷ = 5.479 ·X0.553.
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Linear Regression Results 
 

Model: Linear_Regression_Model 
Dependent Variable: LogSales LogSales 

 

 

 

Number of Observations Read 21

Number of Observations Used 21

 
 

Analysis of Variance 

Source DF
Sum of

Squares
Mean

Square F Value Pr > F 

Model 1 4.27217 4.27217 337.56 <.0001 

Error 19 0.24047 0.01266  

Corrected Total 20 4.51263  

 
 

Root MSE 0.11250 R-Square 0.9467

Dependent Mean 2.52692 Adj R-Sq 0.9439

Coeff Var 4.45205  
 
 

Parameter Estimates 

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t| 

Intercept Intercept 1 1.70082 0.05123 33.20 <.0001 

Log_Advt Log_Advt 1 0.55314 0.03011 18.37 <.0001 

 



The exponential model is:

Y = β0e
β1X1+···+βkXkε.

It is linearized by:

logY =logβ0 +
k∑
i=1

βiXi + log ε.

So we regress the logarithm of the dependent

variable upon the untransformed independent

variables.

The reciprocal model is:

Y =
1

β0 + β1X1 + · · ·+ βkXk + ε
.

It is linearized by:

1

Y
= β0 + β1X1 + · · ·+ βkXk + ε.

So we regress the reciprocal of the dependent

variable upon the untransformed independent

variables.
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The logarithmic model is:

Y = β0 + β1 logX + ε.

This model is already linear in the β’s, so

there is no need to transform any regres-

sion output. We only have to remember to

regress Y upon logX rather than X itself.

Example: (continued.)

The estimated parameters of the logarithmic

model for the sales and advertising data are

obtained from regressing sales upon the log

of advertising as

β̂0 = 3.668 and β̂1 = 6.784,

that is,

Ŷ = 3.668 + 6.784 logX.

This is the best model for the sales and ad-

vertising data that we have tried.
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Linear Regression Results 
 

Model: Linear_Regression_Model 
Dependent Variable: Sales Sales 

 

 

 

Number of Observations Read 21

Number of Observations Used 21

 
 

Analysis of Variance 

Source DF
Sum of

Squares
Mean

Square F Value Pr > F 

Model 1 642.62235 642.62235 826.24 <.0001 

Error 19 14.77765 0.77777  

Corrected Total 20 657.40000  

 
 

Root MSE 0.88191 R-Square 0.9775

Dependent Mean 13.80000 Adj R-Sq 0.9763

Coeff Var 6.39068  
 
 

Parameter Estimates 

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t| 

Intercept Intercept 1 3.66825 0.40159 9.13 <.0001 

Log_Advt Log_Advt 1 6.78400 0.23601 28.74 <.0001 
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Logistic Regression

With logistic regression we are interested to

model some probability p as a function of an

explanatory variable x. The naive approach

to set p = β0 +β1x+ ε doesn’t work because

given normally distributed residuals ε it is in-

consistent with the fact that 0 ≤ p ≤ 1.

Instead one divides the probability p by (1−p)

in order to obtain the so called odds

ODDS =
p

1− p
and postulates that the log odds or logit

z = log(ODDS) = log

(
p

1− p

)
is a linear function of x:

z = log

(
p

1− p

)
= β0 + β1x.

This is the (binary) logistic regression model.
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Solving log
(

p
1−p

)
= β0 + β1x for p yields the

so called logistic function:

p =
eβ0+β1x

1 + eβ0+β1x
=

1

1 + e−(β0+β1x)
,

such that:
p→ 1 for β1x→∞,
p→ 0 for β1x→ −∞.

The parameter b1 = β̂1 estimates the change
in the logit caused by a unit change x. From

ODDS = ez = eβ0+β1x = eβ0eβ1x

we see that the odds ratio (vetosuhde)

ODDSx+1

ODDSx
=
eβ0eβ1(x+1)

eβ0eβ1x
= eβ1.

is the factor by which the odds of the event
change for a one-unit change in the explana-
tory variable.

In the special case that x is a dummy variable,
the logistic regression model with only one
regressor may be fitted exactly, such that

ODDS{x=0} = eβ0 and ODDS{x=1} = eβ0+β1.
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Example: (Moore/McCabe Example 16.4)

In the preceding contingency table, the prob-
abilities for being a frequent binge drinker are

pmen =
1630

7180
= 0.227, pwomen =

1684

9916
= 0.170.

The corresponding odds are:

ODDSmen =
0.227

0.773
= 0.294, ODDSwomen =

0.170

0.830
= 0.205

with associated log odds or logits:

zmen =log(0.294)=−1.23, zwomen =log(0.205)=−1.59.

Coding x = 1 for men and x = 0 for women,

we obtain by inserting into z = b0 + b1x:

zmen = b0+b1 = −1.23, zwomen = b0 = −1.59.

Solving for b1 yields:

b1 = −1.23− (−1.59) = 0.36,

such that the odds ratio becomes

e0.36 = 1.43,

which indeed coincides with

ODDSmen

ODDSwomen
=

0.294

0.205
= 1.43.
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Inference for Logistic Regression

A level α confidence interval for β1 (slope) is

b1 ± zα/2SEb1.

A level α confidence interval for eβ1 (odds

ratio) is obtained by transforming the con-

fidence interval for the slope β1 into[
e
b1−zα/2SEb1, e

b1+zα/2SEb1
]
.

To test H0 : β1 = 0, compute the test statistic:

z =
b1
SEb1

∼ N(0,1) under H0.

Computer output usually reports the square

of this statistic, called the Wald statistic:

z2 =

(
b1
SEb1

)2

∼ χ2(1) under H0.

Note that β1 = 0 corresponds to eβ1 = 1,

that is identical odds for the event occuring

regardless of the value of x.
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Example: (continued.)

By looking up in a table, or by calling
NORMSINV in excel, we find z0.05/2 = 1.96.
A 95% confidence interval for β1 is:

b1 ± zα/2SEb1 = 0.3616± 1.96 · 0.0388

= [0.2855, 0.4376].

The 95% confidence interval for eβ1 is:[
e
b1−zα/2SEb1, e

b1+zα/2SEb1
]

=
[
e0.2855, e0.4376

]
= [1.33, 1.55].

The Wald statistic for β1 is:(
b1
SEb1

)2

=
(

0.3616

0.0388

)2
= 86.67

with associated p-value:

CHIDIST(86.67;1) = 1.3 · 10−20,

leaving no doubt that being a man raises the
odds of being a frequent binge drinker.

The Real Statistics toolpack offers logistic
regression under ‘Multinomial logistic regres-
sion’ as one of the choices within the ‘Re-
gression’ tool. Set the number of variables
to 1 in order to get binary logistic regression.
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Multicollinearity

The purpose of this section is to convince
ourselves that for a “reliable” regression it is
important to have explanatory variables that
are as “unrelated to each other” as possible.

What does “reliability” mean?

With reliability I mean in this context both
efficient estimation in the sense that stan-
dard errors and confindence bands for indi-
vidual regression parameters are small, but
also that the parameter estimates are robust
with respect to changing numbers of regres-
sors, or adding or deleting a few data points.

What does “unrelatedness” mean?

With unrelatedness I mean that it should not
be possible to predict any of the regressors as
a linear function of the other regressors. The
mathematical term for this is multicollinearity.
Intuitively, multicollinearity means that some
regressors are so similiar, that the regression
has a hard time to decide who is responsible
for changes in the dependent variable Y .
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Consider first the case of only two explana-

tory variables. X1 and X2 are said to be per-

fectly collinear if we can find two constants

a and b such that:

X1 = a+ bX2.

In such a case both variables fall on a straight

line, and one of them perfectly determines

the other. Therefore, no information about

Y is gained by adding X2 to a regression that

contains already X1 (or vice versa).

An obvious measure of collinearity between

only two variables is their correlation r12. A

pair of variables with |r12| = 1 is perfectly

collinear, with decreasing degree of collinear-

ity for decreasing |r12|.

Unfortunately, in the case of more than two

regressors things become more complicated.

High correlations remain a warning signal of

multicollinarity. But we may still have mul-

ticollinarity, even though taken individually,

the correlation coefficients look moderate.
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Definition of Multicollinearity

Exact or perfect multicollinearity between the

regressors X1, . . . , Xk is said to exist if the

regressors are linearly dependent, that is, we

may express one or more of the regressors as

a linear combination of the other regressors,

e.g.:

X1 = c2X2 + c3X3 + · · ·+ ckXk.

We talk about near multicollinearity if the

equation above holds only approximately:

X1 ≈ c2X2 + c3X3 + · · ·+ ckXk.

There is obiously no objective rule to decide

whether a set of regressors is near muliti-

collinear or not, since multicollinearity is a

characteristic of degree. We shall later give

some rules of thumb when multicollinearity

starts being a problem.
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Geometric Interpretation of Multicollinearity

Geometrically, if there is multicollinearity

among the regressors X1, . . . , Xk, then taking

the observations as points in the k-dimensional

space with the ith coordinate given by the

the value for the ith regressor fall roughly on

a so called hyperplane or lower-dimensional

plane with less than k dimensions.

For example, when there are two predictor

variables (k = 2), multicollinearity means that

a two-dimensional scatterplot of the values

of X1 and X2 falls roughly on a straight line.

For k = 3 predictor variables multicollinearity

means that a three-dimensional scatterplot

of the values of X1, X2 and X3 falls roughly

on either a plane or a straight line.

Example. (Weiss: Example B.22)

230



 
 

Scatter Plot 
 

 

 

 

 
Correlation Analysis 

 

 

 

3  Variables: WEIGHT   WIDTH    LENGTH 

 
 

Pearson Correlation Coefficients, N = 82 

 WEIGHT WIDTH LENGTH

WEIGHT 
WEIGHT 

1.00000 0.84110 0.84001

WIDTH 
WIDTH 

0.84110 1.00000 0.86464

LENGTH 
LENGTH 

0.84001 0.86464 1.00000



Causes of Multicollinearity

• Sometimes multicollinearity arises because

the regressors are naturally related to each

other. In the previous example, weight, length

and width measured essentially the same con-

cept, namely the size of the car.

• We can also introduce multicollinearity by

creating regressors from another regressor,

as is done in polynomial regression through

the taking of powers. We might also com-

bine two or more regressors to obtain another

regressor. For example, we might sum the

exam scores X1 and X2 in order to obtain

the total exam score X3. Then there will be

multicollinearity among X1, X2, and X3.

• An incorrect use of dummy variables may

introduce multicollinearity, e.g. using r in-

stead of r − 1 indicator variables to describe

a qualitative variable with r levels.
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• A data collection method may produce mul-

ticollinearity, when gathering data with re-

lated values on several variables. For exam-

ple, if we run a regression of home size Y

versus family income X1 and family size X2,

then we will get multicollinearity if we hap-

pen to sample mainly small families with low

income and large families with high income,

rather than also collecting data from large

families with low income and small families

with high income.

• Sometimes constraints on the data may

force us to introduce multicollinearity. For

example, if we run a regression of chemical

yield Y on the concentration of two elements

X1 and X2 with their sum being constant,

then as one chemical increases in concen-

tration, the other one must decline. So X1

and X2 are (negatively) correlated, and mul-

ticollinearity is present.
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Consequences of Exact Multicollinearity

Recall the least square estimate for the un-
known parameter vector β = (β0, β1, . . . , βk)′:

b = (X′X)−1X′y,

which we obtained by premultiplying the
normal equations

(X′X)b = X′y by (X′X)−1.

Now if one or more regressors may be ex-
pressed as linear combinations of other re-
gressors, the columns of X will be linearly de-
pendent, which implies that the rank of X′X
is less than k+ 1 and the inverse (X′X)−1

does not exist! That is, we simply cannot
calculate any least square estimate for β.

The normal equations (X′X)b = X′y remain
a valid description of the minimization prob-
lem faced in least square estimation, but an
unambigious solution can no longer be found.
This is only logical, since several combina-
tions of the regressors serve equally well in
explaining the dependent variable.

234



Consequences of Near Multicollinearity

1. Lack of Robustness with respect to

inclusion/ exclusion of regressors

The first important point to understand when

assessing the impact of multicollinearity, is

that in the general case we may expect the

slope coefficient of any regressor to change

when other regressors are added or elimi-

nated from the regression equation. To see

this, write the regression equation as

Y(n×1) = β0 (n×1) + X(n×k)β(n×k) + ε∗(n×1).

Taking the arithmetic mean yields:

Y (n×1) = β0 (n×1) + X(n×k)β(n×k) + ε∗(n×1).

Subtracting both equations from each other

yields the regression model in deviation form:

Y − Y︸ ︷︷ ︸
y

= X −X︸ ︷︷ ︸
x

β + ε∗ − ε∗︸ ︷︷ ︸
ε

.

Note that X and x are of size (n × k) and

have no leading columns of 1’s.
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In order to assess the impact of adding/ delet-

ing a group of regressors from the regres-

sion equation, we divide the regressors into

2 groups: group 1 say, consisting of the first

m regressors X1, . . . , Xm, and group 2 con-

sisting of the remaining r = k−m regressors

Xm+1, . . . Xm+r.

That is, we split the parameter vector β into

β1 = (β1, . . . , βm)′ and β2 = (βm+1, . . . , βm+r)
′

and the design matrix into x1 and x2 behind

the m’th column:

x(n×k) =

x1,1 · · · xm,1
... ...

x1,n · · · xm,n︸ ︷︷ ︸
x1 (n×m)

xm+1,1 · · · xm+r,1
... ...

xm+1,n · · · xm+r,n


︸ ︷︷ ︸

x2 (n×r)

,

such that the regression equation becomes

y = x1β1 + x2β2 + ε,

and the normal equations (x′x)b = x′y are:(
x′1x1 x′1x2
x′2x1 x′2x2

)(
b1
b2

)
=

(
x′1y
x′2y

)
.
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We wish to find the least square estimate b1
for the slope coefficients β1, . . . βm of the first
m regressors X1, . . . , Xm under presence of r
additional regressors Xm+1, . . . , Xm+r. For
that purpose we premultiply the first row of
the normal equations

x′1x1b1 + x′1x2b2 = x′1y

by (x′1x1)−1 in order to obtain:

b1 + (x′1x1)−1x′1x2b2 = (x′1x1)−1x′1y

⇔ b1 = (x′1x1)−1x′1 (y − x2b2)︸ ︷︷ ︸
u2

,

This is in general not the same as b1 =
(x′1x1)−1x′1y which we would have got if we
had regressed y on x1, . . . , xm alone.

Is there special situation in which adding an
additional set of r regressors does not change
the slope estimates b1, . . . , bm, that is,

b1 = (x′1x1)−1x′1u2 = (x′1x1)−1x′1y

except for the trivial case that u2 = y when
the additional regressors have no explanatory
power, that is x2b2 = 0? Yes, there is!
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Consider the case that x′1x2 = 0(m×r), then:

b1 = (x′1x1)−1x′1y − (x′1x1)−1x′1x2b2

= (x′1x1)−1x′1y.

In order to understand the meaning of the
requirement x′1x2 = 0 we calculate x′1x2:

x′1x2 =

x1,1 · · · x1,n
... ...

xm,1 · · · xm,n

xm+1,1 · · · xm+r,1
... ...

xm+1,n · · · xm+r,n


=

∑x1xm+1 · · ·
∑
x1xm+r

... ...∑
xmxm+1 · · ·

∑
xmxm+r

 !
= 0(m×r).

Now recall that∑
xixj =

∑
(Xi − X̄i)(Xj − X̄j) ∝ rij,

because

rij =

∑
(Xi − X̄i)(Xj − X̄j)√∑

(Xi − X̄i)2∑(Xj − X̄j)2
.

That is, adding/deleting a group of useful

regressors to/from the model will leave the

other coefficients unchanged only if all re-

gressors from group 1 are uncorrelated with

all regressors from group 2!
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Linear Regression Results 
 

Model: Linear_Regression_Model 
Dependent Variable: MPG MPG 

 

 

 

Number of Observations Read 82

Number of Observations Used 82

 
 

Analysis of Variance 

Source DF
Sum of

Squares
Mean

Square F Value Pr > F 

Model 3 582.30758 194.10253 105.01 <.0001 

Error 78 144.18022 1.84846  

Corrected Total 81 726.48780  

 
 

Root MSE 1.35958 R-Square 0.8015

Dependent Mean 23.51220 Adj R-Sq 0.7939

Coeff Var 5.78246  
 
 

Parameter Estimates 

Variable Label DF 
Parameter

Estimate
Standard

Error t Value Pr > |t| 
Variance 
Inflation 

Intercept Intercept 1 48.61827 4.98552 9.75 <.0001 0 

WEIGHT WEIGHT 1 -0.00586 0.00072062 -8.13 <.0001 4.12927 

LENGTH LENGTH 1 0.01391 0.02680 0.52 0.6051 4.78615 

WIDTH WIDTH 1 -0.13021 0.11170 -1.17 0.2473 4.81613 

 



Example. (Weiss: Example B.23)

Consider the preceding regression of a cars
fuel efficiency (mpg) upon its weight, length
and width. The estimated regression is:

m̂pg = 48.618−0.0059weight+0.014length−0.13width.

The regression estimates for the slope coeffi-

cients for all combinations of regressors are:

Variables included Slope estimates for
in regression equation weight length width
weight -0.0063 – –
length – -0.183 –
width – – -0.787
weight, length -0.0062 -0.003 –
weight, width -0.0057 – -0.099
length, width – -0.076 -0.512
weight, length, width -0.0059 0.014 -0.130

While the slope coefficient of weight is fairly

stable with respect to the presence/ absence

of other regressors, there are large swings in

both the slope coefficients for length

(-0.183 – 0.014) and weight (-0.099 – -0.787).

In the regression with all regressors present,

the slope coefficient for length has even the

wrong sign!
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A Counter-Example: Uncorrelated Predictors

(Weiss: Example B.27)

The adjoining table

shows the outcome of

an experiment, where

the whiteness of pa-

per (Y) has been

measured as a func-

tion of two bleach-

ing agents (C and H)

used in its production.

The scatterplot of H versus C shows a rect-

angular mesh of points with no trend. The

correlation coefficient between C and H is

0. The regression output for regressing Y

on either C or H alone, or both C and H

shows that the sample regression coefficients

remain the same as we include different sets

of predictors in the regression equation.
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3D Scatterplot of Dependent vs. Explanatory Variables

H
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Predictor variables are C and H

Model Summary

.945a .893 .880 .90087
Model
1

R R Square
Adjusted R

Square
Std. Error of
the Estimate

Predictors: (Constant), H, _Ca. 

Coefficientsa

11.939 .626 19.083 .000
-1.407 .122 -.916 -11.526 .000 1.000 1.000
-2.056 .712 -.230 -2.887 .010 1.000 1.000

(Constant)
_C
H

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Tolerance VIF
Collinearity Statistics

Dependent Variable: Ya. 

Predictor variable is C

Model Summary

.916a .840 .831 1.06879
Model
1

R R Square
Adjusted R

Square
Std. Error of
the Estimate

Predictors: (Constant), _Ca. 

Coefficientsa

11.116 .661 16.822 .000
-1.407 .145 -.916 -9.715 .000 1.000 1.000

(Constant)
_C

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Tolerance VIF
Collinearity Statistics

Dependent Variable: Ya. 

Predictor variable is H

Model Summary

.230a .053 .000 2.59922
Model
1

R R Square
Adjusted R

Square
Std. Error of
the Estimate

Predictors: (Constant), Ha. 

Coefficientsa

5.954 1.007 5.914 .000
-2.056 2.055 -.230 -1.001 .330 1.000 1.000

(Constant)
H

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Tolerance VIF
Collinearity Statistics

Dependent Variable: Ya. 



2. Lack of Robustness with respect to

small changes in the data

Rather than proving the general case we shall

here only illustrate lack of robustness for the

case of two strongly correlated regressors.

For only two regressors, we may write the

normal equations (X′X)b = X′y in deviation

form as( ∑
x2

1
∑
x1x2∑

x1x2
∑
x2

2

)(
b1
b2

)
=

(∑
x1y∑
x2y

)
.

In our illustration we shall further restrict our-

selves to the case that
∑
x2

1 =
∑
x2

2 = 1, as

this allows us to interpret the off-diagonal

terms
∑
x1x2 as the correlation coefficient

r12 between X1 and X2, since then

r12 =

∑
(X1 − X̄1)(X2 − X̄2)√∑

(X1 − X̄1)2∑(X2 − X̄2)2

=

∑
x1x2√∑
x2

1
∑
x2

2

=
∑

x1x2.
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As an example of the normal equations( ∑
x2

1
∑
x1x2∑

x1x2
∑
x2

2

)(
b1
b2

)
=

(∑
x1y∑
x2y

)
for two highly correlated regressors consider(

1 0.999
0.999 1

)(
b1
b2

)
=

(
2.998
2.999

)
with solutions b1 = 1 and b2 = 2.

Now consider adding/removing a few data
points, such that the values on the right side
of the normal equations change by about 1%:(

1 0.999
0.999 1

)(
b1
b2

)
=

(
3.0285
2.9685

)
The new solutions are b1 = 31.5 and b2 =
−28.5, completely unrelated to the original
coefficients under almost the same data!

Compare this with uncorrelated regressors:(
1 0
0 1

)(
b1
b2

)
=

(
2.998
2.999

)
,

where a 1% change on the right hand side
yields but a 1% change in the coefficients.
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3. Inflated Standard Errors of the
Sample Regression Coefficients

Recall that the variance covariance matrix for
the slope estimates b is Var (b) = σ2(X′X)−1,
such that in the case with only two regressors
and design matrix in deviation form:

Var (b) =

(
V (b1) Cov(b1, b2)

Cov(b1, b2) V (b2)

)
= σ2(x′x)−1

= σ2

(
x′1x1 x′1x2

x′2x1 x′2x2

)−1

= σ2

( ∑
x2

1

∑
x1x2∑

x1x2
∑
x2

2

)−1

=
σ2∑

x2
1

∑
x2

2 − (
∑
x1x2)2

( ∑
x2

2 −
∑
x1x2

−
∑
x1x2

∑
x2

1

)
,

by using the matrix inversion formula(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

This implies e.g. for the variance of b1:

V (b1) =
σ2
∑
x2

2∑
x2

1

∑
x2

2 − (
∑
x1x2)2

=
σ2∑

x2
1 −

(
∑

x1x2)
2∑

x2
2

=
σ2∑

x2
1

(
1− (

∑
x1x2)

2∑
x2

1

∑
x2

2

) =
σ2∑

x2
1(1− r2

12)
.

That is, the variance of the slope estimate
may approach infinity as the correlation be-
tween the regressors approaches one.
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Example. (Weiss: Example B.24)

Standard errors of the slope coefficients for

all combinations of regressors for mpg:

Variables included Standard errors for
in regression equation weight length width
weight 0.0003532 – –
length – 0.01783 –
width – – 0.0706
weight, length 0.0006551 0.02263 –
weight, width 0.0006526 – 0.0937
length, width – 0.03292 0.1368
weight, length, width 0.0007206 0.02680 0.1117

The standard errors of the slope coefficients

vary by a factor of about 2. For each regres-

sor the smallest standard error occurs for the

regression which includes only that regressor

alone. Adding predictors increases the stan-

dard error, even though MSE as an estima-

tor of the residual variance is a decreasing

function of the number of regressors, such

that also SEbi−1
=
√

MSE(X′X)−1
ii should de-

crease. This increase in standard errors is a

clear indication of multicollinearity.
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4. Unreliable t-statistics

Since the t-statistic for testing the utility of

individual regression parameters is calculated

as t = bi/SEbi, both of which we found to

be severely affected by the presence of mul-

ticollinearity, it may come at no surprise that

multicollinearity undermines the usefulness of

this test. In severe cases of multicollinear-

ity it is even possible that the F -test for the

overall utility of the regression is significant,

but that all t-tests turn out non-significant.

Example. (Weiss: Example B.25)

Variables included t-statistic for utility of
in regression model weight length width
weight −17.78∗∗∗ – –
length – −10.26∗∗∗ –
width – – −11.15∗∗∗

weight, length −9.48∗∗∗ −0.13 –
weight, width −8.73∗∗∗ – −1.06
length, width – −2.32∗ −3.75∗∗∗

weight, length, width −8.13∗∗∗ 0.52 −1.17
∗/∗∗∗ denotes significance at 5%/ 0.1%.

Length and width are judged significant only

in regresssions not including weight.
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No Effect of Multicollinearity on Prediction

Although multicollinearity affects the values

and our understanding of the sample regres-

sion coefficients, it does not adversely affect

the predicted value and the prediction inter-

val for the response variable.

Example. (Weiss: Example B.26)

Consider the predicted value and prediction

interval for mpg for a car with weight=3000,

length=190, and width=70:
Variables included Predicted Prediction
in regression model R2 s mpg interval for mpg
weight 0.798 1.354 24.582 21.868–27.296
length 0.568 1.980 22.181 18.852–26.784
width 0.609 1.886 23.618 19.843–27.393
weight, length 0.798 1.363 24.559 21.804–27.313
weight, width 0.801 1.353 24.496 21.779–27.214
length, width 0.634 1.836 23.291 19.604–26.978
weight, length, width 0.802 1.360 24.580 21.830–27.329

Based on R2 and s =
√

MSE, regressions

including weight are superior to those that

don’t (R2≈0.8, s≈1.35 vs. R2≈0.6, s≈1.9).

The predicted values for mpg and the predic-

tion intervals are similiar.
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Detecting Multicollinearity:
Variance Inflation Factors (VIF’s)

Recall the variance of the slope estimates bi,
i = 1,2 in the case of two regressors:

V (bi) =
σ2∑

x2
i (1− r2)

,

where r was the correlation coefficient be-
tween the observations for the two regres-
sors. The ratio of V (bi) to what it would be
if the regressors were uncorrelated is:

VIF =
σ2∑

x2
i (1− r2)

/
σ2∑
x2
i

=
1

1− r2
,

called the variance inflation factor of bi.
Note that r2 = R2 in a regression of Xi on
Xj. The variance inflation factor in the case
of arbitrarily many regressors is:

VIF(bi) =
1

1−R2
i

,

where R2
i denotes the coefficient of determi-

nation in a regression of Xi on all other re-
gressors. Regressors with VIF>10 (R2>0.9)
should be eliminated from the regression.
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Solutions to the Multicollinearity Problem

1. Make sure you haven’t made any errors
such as using too many dummies for too
few cases or calculating some regressor
as a (near) linear combination of others.

2. Get more and better data. Sometimes
multicollinearity is just due to small sam-
ple size or bad sampling schemes.

3. Combine or apply some nonlinear trans-
formation to (some of) your collinear re-
gressors. (But be aware of the conse-
quences for the normality assumption of
the error term!)

4. Use out-of-sample information. Suppose
prior research has shown that β1 = 2β2.
Then, create a new variable X3 =X1−X2
and regress Y upon X3 instead of both
on X1 and X2. ⇒ b3 = β̂2, 2b3 = β̂1.
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5. Use a partial F -test instead of t-tests for

individual coefficients. That is, if X1, X2

and X3 are highly correlated, test β1 =

β2 = β3 = 0 instead of testing βi = 0,

i = 1,2,3, individually.

6. The most simple and most often used so-

lution is to drop collinear variables from

the regression equation based on crite-

ria such as the variance inflation factor.

If that is done properly, we manage to

reduce multicollinearity with only minor

reduction in goodness of fit.

However, erroneously dropping a relevant

variable will result in a misspecified model,

that is, the coefficient estimates will be

biased with standard errors which under-

estimate the true variance of the esti-

mators. So never drop a variable based

upon software output alone, but reflect

on whether the variable makes sense or

not!
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