
WELCOME TO:

STAT.1030:

Tilastotieteen perusteet

Introduction to Statistics

Bernd Pape

University of Vaasa

Department of Mathematics and Statistics

TERVETULOA!

www.uwasa.fi/∼bepa/TilPer.html



Contents

0 Mathematical Tools

1 Introduction

2 Data and Measurement

3 1-dimensional Empirical Distributions

4 2-dimensional Empirical Distributions

5 Probability Calculus

6 Probability Distributions

7 Data Collection

8 Statistical Inference

Midterm exam: chapters 1–4
Final exam: chapters 5–8

2



0. A survival kit of mathematical tools

Exponentiation (Potenssifunktiot)

Exponentiation with base (kantaluku) a 6= 0

and positive integer exponent (eksponentti)

n is defined as an n times repeated multipli-

cation of a:

an := a× · · · × a︸ ︷︷ ︸
n

.

For negative integer exponents we define:

a−n :=
1

an
, a 6= 0, n = 1,2,3 . . .

Furthermore:

a0 := 1 for a 6= 0

and 0n := 0 for all n.

Basic Identities:

am+n = am · an,
(am)n = am·n,

(a · b)n = an · bn.
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Roots (Juuret)

A root r of a number x is any number which

yields x when repeatedly multiplied by itself:

r × r × · · · × r︸ ︷︷ ︸
n

= x.

In terms of exponentiation, r is a root of x if

rn = x.

The number n is called the degree (aste) of

the root, and a root of degree n is called the

n’th root (n’s juuri):

r = n
√
x.

We define fractional powers (murtoeksponen-

tit) as the n’th root of the base:

x1/n := n
√
x.

The basic identities from the previous page

remain valid also for fractional powers.
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Logarithms (Logaritmit)

The logarithm of a number x to a given base
a is the power or exponent to which the base
must be raised in order to produce the num-
ber. For example, the logarithm of 1 000 to
the base 10 is 3, because 3 is how many 10’s
you must multiply to get 1000. Formally:

ay = x ⇔: y = loga x.

In this course we will mainly consider the nat-
ural logarithm (luonnollinen logaritmi) with
base a = e = 2.7182 . . . (Neperin luku) and
then drop the subscript a.

Note: You can find the logarithm to any ar-
bitrary base by taking the ratio of logarithms
to some other arbitrary base which is on your
calculator, for example:

log2 5 =
log10 5

log10 2
=

loge 5

loge 2
≈ 2.32.

Basic Identities:

log(x y) = logx+ log y,

log (xn) = n logx.
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The Summation Sign (Summamerkki)

The symbol
∑

is used to denote the sum of

the terms that follow it, taken over the range

given above and below the symbol:

n∑
i=1

ai = a1 + a2 + · · ·+ an.

Examples:

4∑
i=1

xi = x1 + x2 + x3 + x4,

3∑
i=1

i2 = 12 + 22 + 32 = 14.

The representation of a sum is not unique:

a4 + a5 + a6 =
6∑
i=4

ai =
3∑
i=1

ai+3 =
2∑
i=0

a6−i.

6



Sums and Differences:
n∑
i=1

(ai ± bi) =
n∑
i=1

ai ±
n∑
i=1

bi.

Example:

3∑
i=1

(ai ± bi) = (a1 ± b1) + (a2 ± b2) + (a3 ± b3)

=(a1 + a2 + a3)± (b1 + b2 + b3) =
3∑
i=1

ai ±
3∑
i=1

bi.

Constant Factors:
n∑
i=1

cai = c
n∑
i=1

ai.

Example:

2∑
i=1

cai = ca1 + ca2 = c(a1 + a2) = c

2∑
i=1

ai.

Constants:
n∑
i=1

c = nc.

Example:
4∑
i=1

c = c+ c+ c+ c = 4c.
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Common exam mistake: In general

n∑
i=1

aibi 6=

 n∑
i=1

ai

 n∑
i=1

bi

 .

This implies by setting ai = bi, that generally

n∑
i=1

a2
i 6=

 n∑
i=1

ai

2

.

Example:

2∑
i=1

a2
i = a2

1 + a2
2, but

 2∑
i=1

ai

2

= (a1 + a2)(a1 + a2)

= a2
1 + 2a1a2 + a2

2,

which coincides with the expression above

only in the special case that a1a2 = 0, that

is, only when at least one of the summands

a1 or a2 is zero.
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Linear Interpolation

x1 x2

y1

y2

x

y

Suppose you got two data points (x1, y1) and

(x2, y2) and you would like to get an esti-

mate for the ordinate of a point with a given

x-coordinate somewhere between x1 and x2.

Suppose furthermore you got reasons to be-

lieve that all the points between (x1, y1) and

(x2, y2) lie on a straight line. Then you may

obtain the missing y-coordinate as follows.

9



The as yet unknown ordinate y may be writ-
ten as

y = y1 +∆y,

where ∆y = y − y1 denotes the distance on
the y-axis corresponding to an increase of
∆x = x− x1 on the x-axis.

The ratio of these distances is called the
slope (jyrkkyys) of the line, that is,

slope =
∆y

∆x
⇒ ∆y = slope ·∆x.

Therefore,

y = y1 + slope ·∆x.

Now the slope of a line is constant, which
means that we might just as well have calcu-
lated it as the ratio of the distance between
y1 and y2 to the distance between x1 and x2:

slope =
y2 − y1

x2 − x1
.

This yields the linear interpolation formula:

y = y1 +
y2 − y1

x2 − x1
· (x− x1).
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Differentiation (Differentiaalilaskentaa)

The slope of a line tells by how much the

value of y = f(x) changes (∆y), when we

change the value of x by ∆x = 1 unit.

If f is nonlinear, then the slope is no longer

constant, but we may sometimes be able to

assign a variable slope to f as the slope of

a straight line which is tangent to f at y =

f(x). This slope, if it exists, is in general

itself a function of x and called the derivative

of f with respect to x (f :n derivaatta x:n

suhteen). Notation:

dy

dx
or

df

dx
(x) or

d

dx
f(x) or f ′(x).

Basic Derivatives:

f(x) = axn ⇒ f ′(x) = anxn−1.

In particular: (ax)′ = a and a′ = 0.

f(x) = ex ⇒ f ′(x) = ex.
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Differentiation Rules (Derivoimissääntöjä)

Constant Factor: [a · f(x)]′ = a · f ′(x)

Example:

f(x) = aex ⇒ f ′(x) = aex.

Sum Rule: [f(x) + g(x)]′ = f ′(x) + g′(x)

Example:

f(x) = x2 + x ⇒ f ′(x) = 2x+ 1.

Product Rule: [f(x)g(x)]′=f ′(x)g(x)+f(x)g′(x)

Example:

[x(x+1)]′ = 1·(x+1) + x·1 = 2x+ 1.

Chain Rule: If f(x) = h(g(x)), then

f ′(x) = h′(g(x)) · g′(x).

Example:(
e−ax

)′
= e−ax · (−a) = −ae−ax.
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Extrema and Derivatives (Ääriarvoja)

x is called a (local) maximum/minimum of
f , if f(x) is the largest/smallest value which
f attains within a neighbourhood of x. It is
called an extremum, if x is either a maximum
or a minimum.

If f is differentiable in x (that is, f ′(x) exists),
then the definition of extrema implies that
the tangent to f in x must be parallel to the
x-axis, such that its slope is zero. In other
words, if f is differentiable in x and x is an
extremum, then f ′(x) = 0.

Note: f ′(x) = 0 is only a necessary condition
(välttämätön ehto) for extrema of differen-
tiable functions, that is, it doesn’t guarantee
us that x is indeed an extremum of f . It just
tells us that x cannot be an extremum if f
is differentiable in x and f(x) 6= 0. It also
doesn’t tell us whether x is a maximum or a
minimum. Sufficient conditions for extrema
and decision criteria whether an extremum is
a minimum or a maximum can be found by
considering higher derivatives of f .

13



Partial Derivatives (Osittaisderivaatta)

Let z = f(x, y). Taking the derivative of f
with respect to x while keeping y constant is
called the partial derivative of f with repect
to x. Notation:

∂z

∂x
or

∂f

∂x
or

∂

∂x
f(x, y) or fx.

Example:

f(x, y) = 2x3y ⇒
∂f

∂x
= 6x2y,

∂f

∂y
= 2x3.

An extremum of a differentiable function f

at the point (x, y) requires in analogy to the
one-dimensional case:

∂

∂x
f(x, y) = 0 and

∂

∂y
f(x, y) = 0.

These are again just necessary conditions for
extrema and do not allow us to distinguish
between minima and maxima. If there is only
one point (x0, y0) for which fx = fy = 0,
then f(x0, y0) is a minimum/maximum if
f(x0, y0) ≶ f(x, y) for all 4 pairs x, y → ±∞.
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The definite Integral

a b

∫ b

a
f(x) dx

f (x)

Let f be a continuous nonnegative function
of a real variable x and a ≤ b. Then the region
of the plane bounded by the graph of f , the
x-axis, and the vertical lines x=a and x=b is
called the definite integral of f from a to b
(f :n määrätty integraali a:sta b:hen)

∫ b
a f(x) dx.

The value of a definite integral can be de-
termined to any desired precision by approxi-
mating the area under the graph as the sum
of the surfaces of rectangles bounded by the
x-axis and f .
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The calculation rules below become evident

by considering the geometric interpretation

of the definite integral:∫ a
a
f(x) dx = 0,

∫ b
a
f(x) dx+

∫ c
b
f(x) dx =

∫ c
a
f(x) dx for a≤b≤c,

∫ b
a
c·f(x) dx = c ·

∫ b
a
f(x) dx,

∫ b
a
f(x)± g(x) dx =

∫ b
a
f(x) dx±

∫ b
a
g(x) dx.

F is called an antiderivative (integraalifunktio)

of f if F ′(x) = f(x). If an antiderivative F

of f is known, then we may determine the

integral of f from∫ b
a
f(x) dx = [F (x)]ba := F (b)− F (a).
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Example:∫ 1

−1
|x3| dx =

∫ 0

−1
|x3| dx+

∫ 1

0
|x3| dx

=
∫ 0

−1
−x3 dx+

∫ 1

0
x3 dx

= −
1

4

∫ 0

−1
4x3 dx+

1

4

∫ 1

0
4x3 dx

= −
1

4

[
x4
]0
−1

+
1

4

[
x4
]1
0

= −
1

4

[
04 − (−1)4

]
+

1

4

[
14 − 04

]
= −

1

4
· (−1) +

1

4
· 1 =

1

2

Note that the technique above works only if

we can guess an antiderivative of f . If this is

not the case (as it often is in statistics), then

we need to approximate the area under the

curve by rectangles (or other clever shapes).

This is done in software packages like Math-

ematica and matlab and integral tables such

as those in Lehtonen/Niemi.
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1. Introduction

Statistics is the science of collecting, orga-
nizing, analyzing, and interpreting data.

Why should one study statistics?

Because most interesting questions cannot
cannot be answered without processing data.

Consider the following hypothetical example presented

in a book by Andy Field∗: Andy is a psychologist and

suspects that most contestants in Big Brother TV

shows have a narcissistic personality disorder. Sup-

pose that 75% of all contestants have the disorder,

while its level of occurence in the general population

is only about 1%. Andy comes up with 2 theories

(research hypotheses) explaining his finding.

Theory 1: People with narcissistic personality
disorder are more likely to audition for Big
Brother than those without.

Theory 2: The producers of Big Brother are
more likely to select people with narcissistic
personality disorder than people without.
∗Discovering Statistics Using SPSS, Sage, 2009
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Suppose that Andy applies a personality test

to all people turning up for the audition, keep-

ing track of who gets selected for the show,

with the following result:

No Disorder Disorder Total

Selected 3 9 12
Rejected 6805 845 7650

Total 6808 854 7662

Theory 1 is supported by the data, because

11%(= 854/7662·100) of the applicants were

diagnosed with the disorder, which is much

higher than the usual 1%.

Theory 2 is also supported by the data, be-

cause 75% of the contestants selected have

the disorder, while from the pool of appli-

cants we would have expected a rate of only

11%.
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