
7. Data Collection

7.1. Introduction

The set of all statistical units of interest is

called population (populaatio/ perusjoukko).

A subset of a population is called a sample

(nÄayte). It is called a random sample (satun-

naisotos), if every element of the population

has a positive probability of being selected.

In a census (kokonaistutkimus) we collect in-

formation about all elements of the popu-

lation, whereas in a sample survey (otanta-

tutkimus) we collect information only from

the elements of the sample.

Much statistical data is available from Statis-

tics Finland (Tilastokeskus) at www.stat.¯.

If ready-made data is not available, you must

produce it yourself, either in an observational

study (havaintotutkimus) which measures

variables without attempting to in°uence

their values, or in an experiment (koe) which

deliberately imposes some treatment on the

objects in order to observe their responses.
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7.2. Design of Experiments

Some Terms

The objects on which the experiment is done

are the experimental units (koeyksikÄot). A

speci¯c experimental condition applied to the

units is called a treatment (kÄasittely). The

explanatory variables in an experiment are

called factors (tekijÄat), the values of which

are called factor levels (tekijÄan taso). Then

a treatement is de¯ned by the levels of each

of the factors. The dependent variables in

an experiment are called response variables

(vastemuuttujat).

Example. A television program is interrupted

either 1, 3 or 5 times with a commercial for

a certain product of either 30 or 90 seconds.

Then there are two factors: length of the

commercial with 2 levels, and repetition with

3 levels. The 6 combinations of one level of

each of the two factors form 6 treatments.

A potential response variable would be the

inclination of viewers of the TV programme

to buy the product.
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Principles of Experimental Design

(koesuunitelman periaatet)

After deciding on the factors, the response

variables and the layout of the treatment,

one has to ensure that no lurking variables

outside the control of the experimenter in-

°uence the outcome of the experiment. The

design of a study is called biased (harhainen)

if it systematically favours certain outcomes.

In order to avoid such a bias (harha) in simple

experiments with only one treatment, one in-

troduces a so called control group (vertailu-/

kontrolliryhmÄa), which is not exposed to the

treatment in question.

Example. Medical experiments without con-

trol group tend to report curative e®ects even

for medication which is known to have no

e®ect. This is the so called placebo e®ect

(lumevaikutus). Introducing a control group

exposed to placebo treatment alone makes

sure that any measured response to medica-

tion is not due to the placebo e®ect.
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Comparison of the e®ects of several treat-

ments is only valid when all treatments are

applied to similiar groups of experimental units.

Therefore the experimental units must be as-

signed to the treatments in a way that does

not depend on any of their characteristics

nor on the judgement of the experimenter

in any way. Doing this by impersonal chance

is called randomization (satunnaistaminen).

Example. (TV commercial continued)

If 60 people are available for testing the com-

mercial we may randomly assign them to the

six treatments e.g. by letting them tossing a

dice. If we wish groups of equal size they

may toss again if their group is already full.

In practice, randomization may be either done

with a table of random digits (satunnaisluvun-

taulukko) or a random number generator

(satunnaislukugeneraattori).
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A table of random digits is a list of the digits

0,1,2, . . . ,9 with the following properties:

1. The digit in any position has the same

chance of being any one of 0,1,2, . . . ,9.

2. The digits in di®erent positions are inde-

pendent in the sense that the value of any

one has no in°uence on the value of any

other.

This implies:

Any pair has the same chance of being any

of the 100 possible pairs: 00,01, . . . ,98,99;

any triple has the same chance of being any

of the 1000 possible triples: 000,001, . . . ,999;

. . . and so on for groups of four or more ran-

dom digits.

A random number generator is a computer

algorithm that generates a random number

usually between 0 and 1 (implemented in Ex-

cel as the function RAND()). You can get an

integer random number x with the property

a ≤ x ≤ b by calling RANDBEWTEEN(a,b)

in Excel.
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Example. (TV commercial continued)

In order to assign people randomly to the

treatments with a table of random digits,

enumerate each person, and assign it to the

random digit at his position, disregarding the

digits 0,7,8,9 and those with a group that is

already full.

In order to assign people randomly to the

treatments with the random number gener-

ator in Excel, generate for each of them a

number x in the range 1 ≤ x ≤ 6 with the

command RANDBETWEEN(1,6) (drawing

again for groups that are already full).

Note. We may avoid extra drawings for full

groups by assigning remaining persons to treat-

ments rather than treatments to persons.
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7.3. Sampling Methods (OtantamenetelmÄat)

Simple Random Sampling (SRS)

(Yksinkertainen satunnaisotanta)

Simple Random Sampling (SRS) should be

used when there is no prior information avail-

able about the structure of the population. In

SRS, every statistical unit has the same prob-

ability to be included into the sample, which

implies that also every sample of the same

size has the same chance of being drawn.

To choose a simple random sample of size n

out of a population of N elements, enumer-

ate the elements of the population from 1

to N, generate n random number within the

same range (=RANDBETWEEN(1,N)), and

select those statistical units with their order

numbers chosen by the random number gen-

erator into the sample.
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If a table of random digits is to be used, the

elements of the population must be num-

bered from 0 to N − 1. Then one consid-

ers numbers made up of the same number of

digits k as N.

Example.

Suppose we want to select a simple random

sample of size n = 5 from a population of

N = 600 elements using a random digit table

starting with the digits

59426 45792 78799 15803.

After enumerating the elements of the popu-

lation from 0 to 599, we select the elements

with the numbers 594, 264, 579, 278, and

158. (The number 799 is discarded since it

is larger than 599.)

Note. SRS need not necessarily yield a rep-

resentative sample if the population is made

up of very heterogeneous groups.
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Systematic Sampling (Systemaattinen otanta)

Systematic Sampling is applicable when the

population cannot be precisely determined

(e.g. customer research) or when the ele-

ments of the population are arranged in some

order (e.g. existing register). In systematic

sampling one unit is chosen from the whole

population in regular distances of length k =

N/n, where N denotes the size of the popu-

lation and n the size of the sample. The ¯rst

sample unit is chosen randomly from the ¯rst

k elements of the population, and after that

every k'th element is selected.

Note. Systematic Sampling is inappropriate

when the statistical units have been ordered

according to their values, or the distance k in

which units are selected coincides with some

systematic periodicity in the data.

210



Cluster Sampling (ryvÄasotanta)

In cluster sampling the population may be

divided into groups or clusters based upon

some characteristics, such as county, educa-

tion institution, etc.

Cluster Sampling consists of selecting m out

of M clusters, and then either using all el-

ements within the m clusters as the sample

(single-stage cluster sampling) or further se-

lecting a random sample of n elements out

of the m clusters selected (two-stage cluster

sampling).

Unlike strati¯ed sampling (ositetussa otanta)

to be discussed below, cluster sampling does

not assume that the units within the same

cluster have more similiar characteristics re-

garding the topic under investigation then

those between di®erent clusters.
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In Strati¯ed Sampling (ositetussa otanta) one

tries to exploit some available background in-

formation about the properties of the pop-

ulation. If the population may be split up

into heterogeneous groups in such a way that

that elements within the same group are sim-

ilar, but di®erent between di®erent groups,

then strati¯ed sampling should be applied.

Each group is called stratum (osite) and one

takes seperate random samples from each

group, that is, one ¯rst decides upon L strata

O1, O2, . . . , OL with respective numbers of ob-

servations N1, . . . , NL and then takes random

samples of each of them using either SRS or

systematic sampling.

The splitup of the population into strata is

called Allocation (kiintiÄointi). In a uniform

allocation (tasainen kiintiÄointi) the sample gets

equally many elements from each stratum. In

proportional allocation (suhteellinen kiintiÄointi)

the number of elements from each stratum

is proportional to its size. The allocation

is called optimal (optimaalinen) if it results

from minimzing e.g. the costs of the survey.
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7.4. Sampling Distributions (otantajakaumat)

Every function of sample observations alone

is called a (sample) statistic (tunnusluku).

The sample mean, variance, and standard

deviation are examples of (sample) statis-

tics. Numerical measures of the population

are called parameters (parametrit).

Now selecting a sample is a random event,

which implies that sample statistics are ran-

dom variables with associated probability dis-

tributions. The probability distribution of a

statistic is called a sampling distribution

(otantajakauma). Sampling distributions will

soon be valuable to us when we want to as-

sess whether we can reasonably expect our

sample (the only thing we do observe) to

have been taken from a population with a hy-

pothesized prespeci¯ed distribution (statisti-

cal inference/ tilastollinen pÄaÄattely).
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The Sampling Distribution of the Mean

(Otoskeskiarvon otosjakauma)

Let X1, . . . ,Xn be a random sample of a distribution
with E(Xi) = μ and V (Xi) = σ2. Then:
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Furthermore, recall from our discussion of

sums of normally distributed variables that

¹X ∼ N(μ,σ2/n) for Xi ∼ N(μ,σ2), and
¹X
as.∼ N(μ,σ2/n) otherwise,

since by the central limit theorem

¹Xn − μ
σ/
√
n

as.∼ N(0,1).
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The Standardized Sampling Distribution of
¹X when σ is not known: The t-distribution

Let X1, . . . ,Xn be independent N(μ,σ
2) ran-

dom variables (denoted as Xi ∼ NID(μ,σ2)
"Normally and Independently Distributed")

and ¹X = 1
n

�n
i=1Xi, of which we now wish

to ¯nd the standardized sampling distribu-

tion also for the case that σ is not known.

We then use the sample standard deviation,

S =

>��: 1

n− 1
n3
i=1

(Xi − ¹X)2

in the place of σ. The standardized sampling
distribution of ¹X is now no longer normal,

but

Tn =
¹X − μ
S/
√
n
∼ t(n−1),

where t(n−1) denotes the Student t-distribution
with degrees of freedom (df) n−1.

The Student t-distributions are symmetrical
around the origin and similiar in shape to

the normal distribution, but have wider tails.

They approach N(0,1) as n→∞.
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Table. Tail fractiles (tα) of the t-distribution: P(T > tα(df)) = α.

df 0.100 0.050 0.025 0.010 0.005 0.001

1 3.078 6.314 12.706 31.821 63.656 318.289

2 1.886 2.920 4.303 6.965 9.925 22.328

3 1.638 2.353 3.182 4.541 5.841 10.214

4 1.533 2.132 2.776 3.747 4.604 7.173

5 1.476 2.015 2.571 3.365 4.032 5.894

6 1.440 1.943 2.447 3.143 3.707 5.208

7 1.415 1.895 2.365 2.998 3.499 4.785

8 1.397 1.860 2.306 2.896 3.355 4.501

9 1.383 1.833 2.262 2.821 3.250 4.297

10 1.372 1.812 2.228 2.764 3.169 4.144

11 1.363 1.796 2.201 2.718 3.106 4.025

12 1.356 1.782 2.179 2.681 3.055 3.930

13 1.350 1.771 2.160 2.650 3.012 3.852

14 1.345 1.761 2.145 2.624 2.977 3.787

15 1.341 1.753 2.131 2.602 2.947 3.733

16 1.337 1.746 2.120 2.583 2.921 3.686

17 1.333 1.740 2.110 2.567 2.898 3.646

18 1.330 1.734 2.101 2.552 2.878 3.610

19 1.328 1.729 2.093 2.539 2.861 3.579

20 1.325 1.725 2.086 2.528 2.845 3.552

21 1.323 1.721 2.080 2.518 2.831 3.527

22 1.321 1.717 2.074 2.508 2.819 3.505

23 1.319 1.714 2.069 2.500 2.807 3.485

24 1.318 1.711 2.064 2.492 2.797 3.467

25 1.316 1.708 2.060 2.485 2.787 3.450

26 1.315 1.706 2.056 2.479 2.779 3.435

27 1.314 1.703 2.052 2.473 2.771 3.421

28 1.313 1.701 2.048 2.467 2.763 3.408

29 1.311 1.699 2.045 2.462 2.756 3.396

30 1.310 1.697 2.042 2.457 2.750 3.385

40 1.303 1.684 2.021 2.423 2.704 3.307

50 1.299 1.676 2.009 2.403 2.678 3.261

60 1.296 1.671 2.000 2.390 2.660 3.232

70 1.294 1.667 1.994 2.381 2.648 3.211

80 1.292 1.664 1.990 2.374 2.639 3.195

90 1.291 1.662 1.987 2.368 2.632 3.183

100 1.290 1.660 1.984 2.364 2.626 3.174

tα

Example. T ∼ t(10)⇒ 0.025 = P (T ≥ 2.228).

Implementation in Excel:

P(T > tα(df)) = α ⇒ tα(df)=TINV(2 ∗ α; df),
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Note.

The symmetry of the Student t-distribution

implies that

P(T > tα(df)) = α ⇔ P(|T | > tα(df)) = 2α.

Now renaming α as α/2 we obtain

P(|T | > tα/2(df)) = α.

That is, we may also use the preceeding table

in order to ¯nd the critical value tα/2 such

that P(|T | > tα/2) = α simply by looking up

in the column corresponding to α/2.

Example.

T ∼ t(10)⇒ 0.05 = P(|T | ≥ 2.228).

Implementation in Excel:

P(|T | > tα(df)) = α ⇒ tα(df)=TINV(α; df).
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The Sampling Distribution of the Sample Proportion
(Prosenttisen osuuden otosjakauma)

Let ¦ denote the percentage of type A elements in a

random sample with elements X1, . . . ,Xn. ¦ may then

be estimated from:

P̂ =
100

n

n3
i=1

Ii, Ii =

⎧⎨⎩1 for Xi of type A

0 otherwise.

Now Ii ∼Ber(p) with p = ¦/100, such that�n
i=1 Ii ∼Bin(n, p) with expected value np and

variance np(1 − p), such that by the central
limit theorem for large n and ¦ ≈ 50:

n3
i=1

Ii
as.∼ N(np, npq)

⇒ P̂ =
100

n

n3
i=1

Ii
as.∼ N

X
100p,

100p · 100(1− p)
n

~

⇒ P̂
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X
¦,
¦(100−¦)
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~
.
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