8. Statistical Inference

8.1. Estimation (Estimointi)

A statistic is called an estimator (estimaat-
tori), if it is used in order to assess the value
of a population parameter (such as u, o2, ).
T he process of doing that is called estimation
and the resulting value estimate (estimaatti).
Parameters to be estimated are often de-
noted by 6 and their estimators by ¢t.

A point estimate (piste-estimaatti) is a sin-
gle value used as a parameter estimate. An
interval estimate (valiestimaatti) defines a
confidence interval (luottamusvali), which is
expected to contain the true population para-
meter with high probability (e.g. 95%, 99%).

Example. The sample mean X—l n_ X, s

an estimator of the population mean . Any
concrete value of X, such as x = 5, is called
an estimate.
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8.1.1. Point Estimation (Piste-estimointi)

The idea of point estimation is to find the
best possible estimate of the unknown pop-
ulation parameter 6. Good estimators have
the following properties:

1. Unbiasedness (harhattomuus):
An estimator t is unbiased, if E(t) = 6.
(t is asymptotically unbiased (asymptoot-
tisesti harhaton), if E(t) — 0 for n — o0).

2. Consistency (tarkentuvuus):
An estimator t is consistent if its proba-
bility of being close to 0 increases as the

sample size increases, that is, V() "=3° 0.

3. Efficiency (tehokkuus):
An estimator t is efficient, if it is unbi-
ased and has the smallest variance of all
unbiased estimators.

4. Sufficiency (tyhjentavyys):
An estimator t is sufficient, if it uses all
information from the sample observations.
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Example.

The most common estimators of the expected
value u, the population variance o2, the pop-
ulation proportion 1, and the population cor-
relation p are

_ 1>
X = ;@'; X; for p,
S2 = i=1(Xi 1_ Xy for o2,
p= 100;)(:' of type A for M,
G- DD

r =
VI (2 — 2)2 S0 (v — )2

because they are unbiased, consistent, and
sufficient, and for normally distributed vari-
ables also efficient.

Similarly, the population median of unsym-
metric populations is estimated by the sam-
ple median. For symmetric distributions the
sample mean is a more efficient, but less ro-
bust estimator of the population median than
the sample median.
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8.1.2. Interval Estimation (Valiestimointi)

The random interval (tn,Tn) is called
confidence interval for the parameter 6 at
confidence level 1—a (0 < a < 1),

(luottamusvali luottamustasolla 1 — «), if

that is, the interval [t,,Tn] covers the true
population parameter 6 with probability 1 —o.
The idea of interval estimation is to find sta-
tistics ¢, and Ty, such that the interval [ty, Th]
IS as narrow as possible, with the true popu-
lation parameter 6 in its center.
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Confidence Interval for u

a) o2 known

Let us first assume that the population vari-
ance o2 is known and that X1,...,Xp are
randomly sampled from a normal distribution
N(p,o0?), that is,

So in about 68% of all cases the sample mean
X remains within a distance of o¢ := o/v/n
from the population mean or expected value
. ox is therefore called the standard error of
the mean (keskiarvon keskivirhe).

Standardizing yields
X —u

=

~ N(0,1).
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Let us introduce z,,, as the value such that
D (242) =1 —g, that is, the probability that

a standard normally distgbuted random vari-
able exceeds z,; is 1005%.

Now, by symmetry of the normal distribution:

A 100(1—a)% confidence interval for u, when

o2 is known, is therefore:

— o — o}
Cl = (X — ZQ/Q%’ X—|—Za/2%> .

That is, the probability of finding the true
population mean pu outside this interval is
only 100a%.
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Example.

Let X ~ N(i,9). A random sample of size
n = 36 yields X = 10. We wish to find a
95% confidence interval for pu.

Now o = 0.05 implying 1 —a/2 = 0.975, such
that zg 95/2=NORMSINV(0.975)=1.96.

A 95% confidence interval for u, using

Cl = (X — ZO{/Q%’ X—|—Za/2%> ,

is therefore:

V9 V9
10-1.96-—~ 104+1.96- —— | ~(9,11).
( 06 Ve 0+ 1.96 \/%> (9,11)

T he probability that the true population mean
© will be outside this range is only 5%.
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Sample-Size Determination
(Otoskoon madraamisesta)

Consider a random sample X1,..., X, with X; ~ N(u, 02),
such that X ~ N(u,0?/n). We know by virtue of the
law of large numbers that by increasing the sample
size n we can eventually get the sample mean X arbi-
trarily close to the population mean u. We also know
from our discussion of the 100(1 — «)% confidence
interval for u that

— o — o)
Pl X—pulZ<zyp—=|=1—a & P(|X—pu|>z4p— ] =q,
(%-n <) (%=n>2 )
so the margin of error (virhemarginaali) for d = | X —p|

in 100(1 — a)% of all samples is d = zap%.

The minimum required sample size, such that the
sample mean X deviates from its corresponding pop-
ulation parameter u by more than a prespecified value
d only with probability «, is therefore:

2
o 2

n = ? " Zq)2
Example.

Let X ~ N(u,9) and assume we wish to find the mini-
mum required sample size such that in 95% of all cases
the sample mean deviates from the population mean
by no more than 1 unit. Now a = 0.05, such that
1 — % = 0.975 and zo.05/2:NORI\/ISINV(O.975)=1.96.

P(|X — u| > 1) < 0.05 requires then:

9
n > = 1.962 = 34.57 ~ 35.

226



b) o2 unknown

If the population variance o2 is unknown, we
need to estimate it with the sample variance

SQZZ?=1(Xz'—X)2: 1 <nXZ_2_(Z?=1Xi)2>-
n—1 ; n

n—1

The standard error of the mean o = o/y/n
is now estimated by s = S/y/n.

Recall from our discussion of the Student t-
distruibution, that

T, = H

S/v/n

A 100(1 — a)% confidence interval for u may

therefore be obtained by replacing o2 with S2

and z,/, with ta/Q(n — 1)=TINV(a;n — 1),*
that is,

~ t(n—1).

_ S S
(X _ ta/Q(n—l)\/—ﬁ, X + ta/Q(n—l)\/—ﬁ> .

*to2(n — 1) denotes the value of T for which
P(T >t,0(n-1)) =35 <& P(T|>ty»(n-1)) =«
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Example.

A shopkeeper claims that the eggs for sale
have an average weight of 50g. A client se-
lects 30 eggs randomly and gets X = 45¢g
and S = 6g. Do we believe what the shop-
keepers claims?

Consider a 95% confidence interval for u:
a = 0.05, tg 05/2(29)=TINV(0.05; 29)=2.045,

and a 95% confidence interval for pu is:

V30 V30
Now, 50 ¢ (42.76, 47.24), which leads us to
doubt the shopkeepers claim.

6 6
(45 —2.045.- ——, 454 2.045 - —) ~ (42.76, 47.24).

Note. Recall that the Student-t distribution
approaches the standard normal for n — oo,
such that for large sample sizes we may re-
place t,/o(n—1) with z, /5 in order to obtain
as a 100(1 — a)% confidence interval for u:

_ S - S
(X — ZQ/Q%’ X —|— ZO&/Q%) .

. 6 _
Example: 45+ 1.96 - 2 = (42.85, 47.15).
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Confidence Interval for Tl
Recall from our discussion of the sampling
distribution of the sample proportion 1, that
M(100 — )

n

PX N (I‘I, ) . where

_ 100 i
P:—Zli with I, — 1 for X thypeA
; O otherwise.

Replacing M with its estimator P yields for
the standard error of the sample proportion
for large sample sizes:

_ |P(100 - P)
Sp— o .

A 100(1 — a)% confidence interval for I is
therefore:

_ P(100 - P) _ P(100- P
(- oPI0D, ., [PE0-TY)

The minimum required sample size, such that the
sample proportion P differs from the population pro-
portion Il beyond a given percentage d only with prob-
ability « is

__P(100-P) ,

n
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Example.

Consider a sample of 64 products from a pro-
duction line, 26 of which are defect, that is,

. 26
P =100- 6—4% = 40.625%.

Let's find a 95% confidence interval for I.
Recalling zg g5 /»=NORMSINV(0.975)=1.96,

and using

_ P(100-P) _ P(100 - P
CI:(P—ZQ/Q\/ (100 ),P—I—za/z\/ (100 )>

n n

yields as a 95% confidence interval for NM:

40.625 -59,375 40.625 59,375
<40.625 — 1.96\/ o4 ’ , 40.625 + 1.96\/ o2 ’ )

~ (28.6, 52.7).

That is, with 95% confidence we can state
that the fraction of defect products is some-
where betweeen 28.6% and 52.7%. The risk
that the real percentage is outside this range
is only 5%.
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