
8. Statistical Inference

8.1. Estimation (Estimointi)

A statistic is called an estimator (estimaat-

tori), if it is used in order to assess the value

of a population parameter (such as μ,σ2,¦).

The process of doing that is called estimation

and the resulting value estimate (estimaatti).

Parameters to be estimated are often de-

noted by θ and their estimators by t.

A point estimate (piste-estimaatti) is a sin-

gle value used as a parameter estimate. An

interval estimate (vÄaliestimaatti) de¯nes a

con¯dence interval (luottamusvÄali), which is

expected to contain the true population para-

meter with high probability (e.g. 95%, 99%).

Example. The sample mean ¹X = 1
n

�n
i=1Xi is

an estimator of the population mean μ. Any

concrete value of ¹X, such as ¹x= 5, is called

an estimate.
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8.1.1. Point Estimation (Piste-estimointi)

The idea of point estimation is to ¯nd the

best possible estimate of the unknown pop-

ulation parameter θ. Good estimators have

the following properties:

1. Unbiasedness (harhattomuus):

An estimator t is unbiased, if E(t) = θ.
(t is asymptotically unbiased (asymptoot-
tisesti harhaton), if E(t)→ θ for n→∞).

2. Consistency (tarkentuvuus):

An estimator t is consistent if its proba-
bility of being close to θ increases as the
sample size increases, that is,V (t)

n→∞−→ 0.

3. E±ciency (tehokkuus):

An estimator t is e±cient, if it is unbi-
ased and has the smallest variance of all

unbiased estimators.

4. Su±ciency (tyhjentÄavyys):

An estimator t is su±cient, if it uses all
information from the sample observations.
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Example.

The most common estimators of the expected
value μ, the population variance σ2, the pop-
ulation proportion ¦, and the population cor-
relation ρ are

¹X =
1

n

n3
i=1

Xi for μ,

S2 =

�n
i=1(Xi − ¹X)2

n− 1 for σ2,

P̂ = 100
#Xi of type A

n
for ¦,

r =

�n
i=1(xi − ¹x)(yi − ¹y)��n

i=1(xi − ¹x)2
�n
i=1(yi − ¹y)2

for ρ,

because they are unbiased, consistent, and
su±cient, and for normally distributed vari-
ables also e±cient.

Similarly, the population median of unsym-
metric populations is estimated by the sam-
ple median. For symmetric distributions the
sample mean is a more e±cient, but less ro-
bust estimator of the population median than
the sample median.
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8.1.2. Interval Estimation (VÄaliestimointi)

The random interval (tn, Tn) is called

con¯dence interval for the parameter θ at

con¯dence level 1−α (0 < α < 1),

(luottamusvÄali luottamustasolla 1− α), if
P(tn ≤ θ ≤ Tn) = 1− α,

that is, the interval [tn, Tn] covers the true

population parameter θ with probability 1−α.
The idea of interval estimation is to ¯nd sta-

tistics tn and Tn such that the interval [tn, Tn]

is as narrow as possible, with the true popu-

lation parameter θ in its center.
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Con¯dence Interval for μ

a) σ2 known

Let us ¯rst assume that the population vari-

ance σ2 is known and that X1, . . . , Xn are

randomly sampled from a normal distribution

N(μ,σ2), that is,

¹X =
1

n

n3
i=1

Xi ∼ N

X
μ,
σ2

n

~
.

So in about 68% of all cases the sample mean

¹X remains within a distance of σ ¹X := σ/
√
n

from the population mean or expected value

μ. σX is therefore called the standard error of

the mean (keskiarvon keskivirhe).

Standardizing yields

Z :=
¹X − μ
σ/
√
n
∼ N(0,1).
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Let us introduce zα/2 as the value such that

©
p
zα/2

Q
= 1−α

2
, that is, the probability that

a standard normally distributed random vari-

able exceeds zα/2 is 100
α

2
%.

Now, by symmetry of the normal distribution:

P
D−zα/2 ≤ Z ≤ zα/2i = 1− α ⇔

P

w
−zα/2 ≤

¹X − μ
σ/
√
n
≤ zα/2

W
= 1− α ⇔

P

w
−zα/2

σ√
n
≤ ¹X − μ ≤ zα/2

σ√
n

W
= 1− α ⇔

P

w
−
w
¹X + zα/2

σ√
n

W
≤ −μ ≤ −

w
¹X − zα/2

σ√
n

WW
= 1− α

⇔ P

w
¹X − zα/2

σ√
n
≤ μ ≤ ¹X + zα/2

σ√
n

W
= 1− α.

A 100(1−α)% con¯dence interval for μ, when

σ2 is known, is therefore:

CI =

X
¹X − zα/2

σ√
n
, ¹X + zα/2

σ√
n

~
.

That is, the probability of ¯nding the true

population mean μ outside this interval is

only 100α%.
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Example.

Let X ∼ N(μ,9). A random sample of size

n = 36 yields ¹X = 10. We wish to ¯nd a

95% con¯dence interval for μ.

Now α= 0.05 implying 1−α/2 = 0.975, such

that z0.05/2=NORMSINV(0.975)=1.96.

A 95% con¯dence interval for μ, using

CI =

X
¹X − zα/2

σ√
n
, ¹X + zα/2

σ√
n

~
,

is therefore:X
10− 1.96 ·

√
9√
36
, 10+ 1.96 ·

√
9√
36

~
≈ (9,11).

The probability that the true population mean

μ will be outside this range is only 5%.
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Sample-Size Determination
(Otoskoon mÄaÄarÄaÄamisestÄa)

Consider a random sample X1, . . . ,Xn with Xi ∼ N(μ,σ2),
such that ¹X ∼ N(μ,σ2/n). We know by virtue of the
law of large numbers that by increasing the sample
size n we can eventually get the sample mean ¹X arbi-
trarily close to the population mean μ. We also know
from our discussion of the 100(1 − α)% con¯dence
interval for μ that

P

w
| ¹X−μ|≤zα/2

σ√
n

W
=1−α ⇔ P

w
| ¹X−μ|>zα/2

σ√
n

W
=α,

so the margin of error (virhemarginaali) for d= | ¹X−μ|
in 100(1− α)% of all samples is d= zα/2

σ√
n
.

The minimum required sample size, such that the
sample mean ¹X deviates from its corresponding pop-
ulation parameter μ by more than a prespeci¯ed value
d only with probability α, is therefore:

n=
σ2

d2
· z2α/2.

Example.
Let X ∼ N(μ,9) and assume we wish to ¯nd the mini-
mum required sample size such that in 95% of all cases
the sample mean deviates from the population mean
by no more than 1 unit. Now α = 0.05, such that
1− α

2
= 0.975 and z0.05/2=NORMSINV(0.975)=1.96.

P(| ¹X − μ| > 1) ≤ 0.05 requires then:

n ≥ 9

12
· 1.962 = 34.57 ≈ 35.
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b) σ2 unknown

If the population variance σ2 is unknown, we
need to estimate it with the sample variance

S2 =

∑n
i=1(Xi − X̄)2

n− 1
=

1

n− 1

(
n∑
i=1

X2
i −

(
∑n

i=1Xi)2

n

)
.

The standard error of the mean σX̄ = σ/
√
n

is now estimated by sX̄ = S/
√
n.

Recall from our discussion of the Student t-

distruibution, that

Tn =
X̄ − µ
S/
√
n
∼ t(n−1).

A 100(1−α)% confidence interval for µ may

therefore be obtained by replacing σ2 with S2

and zα/2 with tα/2(n − 1)=TINV(α;n − 1),∗

that is,(
X̄ − tα/2(n−1)

S
√
n
, X̄ + tα/2(n−1)

S
√
n

)
.

∗tα/2(n − 1) denotes the value of T for which
P (T > tα/2(n−1)) = α

2
⇔ P (|T | > tα/2(n−1)) = α.
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Example.

A shopkeeper claims that the eggs for sale

have an average weight of 50g. A client se-

lects 30 eggs randomly and gets ¹X = 45g

and S = 6g. Do we believe what the shop-

keepers claims?

Consider a 95% con¯dence interval for μ:
α= 0.05, t0.05/2(29)=TINV(0.05; 29)=2.045,

and a 95% con¯dence interval for μ is:w
45− 2.045 · 6√

30
, 45+ 2.045 · 6√

30

W
≈ (42.76, 47.24).

Now, 50 /∈ (42.76, 47.24), which leads us to
doubt the shopkeepers claim.

Note. Recall that the Student-t distribution

approaches the standard normal for n → ∞,
such that for large sample sizes we may re-

place tα/2(n−1) with zα/2 in order to obtain
as a 100(1− α)% con¯dence interval for μ:X

¹X − zα/2
S√
n
, ¹X + zα/2

S√
n

~
.

Example: 45± 1.96 · 6√
30
= (42.85, 47.15).
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Con¯dence Interval for ¦

Recall from our discussion of the sampling
distribution of the sample proportion ¦, that

P̂
as.∼ N

X
¦,
¦(100−¦)

n

~
, where

P̂ =
100

n

n3
i=1

Ii with Ii =

F
1 for Xi of type A

0 otherwise.

Replacing ¦ with its estimator P̂ yields for
the standard error of the sample proportion
for large sample sizes:

sP̂ =

�
P̂ (100− P̂)

n
.

A 100(1 − α)% con¯dence interval for ¦ is
therefore:X

P̂ − zα/2
5
P̂(100− P̂)

n
, P̂ + zα/2

5
P̂(100− P̂)

n

~
.

The minimum required sample size, such that the

sample proportion P̂ di®ers from the population pro-

portion ¦ beyond a given percentage d only with prob-

ability α is

n=
P̂ (100− P̂ )

d2
· z2α/2.
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Example.

Consider a sample of 64 products from a pro-

duction line, 26 of which are defect, that is,

P̂ = 100 · 26
64
% = 40.625%.

Let's ¯nd a 95% con¯dence interval for ¦.
Recalling z0.05/2=NORMSINV(0.975)=1.96,

and using

CI =

X
P̂ − zα/2

5
P̂(100− P̂)

n
, P̂ + zα/2

5
P̂(100− P̂)

n

~
yields as a 95% con¯dence interval for ¦:

X
40.625− 1.96

5
40.625 · 59,375

64
, 40.625+ 1.96

5
40.625 · 59,375

64

~
≈ (28.6, 52.7).

That is, with 95% con¯dence we can state

that the fraction of defect products is some-

where betweeen 28.6% and 52.7%. The risk

that the real percentage is outside this range

is only 5%.
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