
8.2. Hypothesis Testing (Hypoteesien testaus)

8.2.1. Main Steps in Testing (Test. pÄaÄapiirtet)

In hypothesis testing one attempts to decide

based upon data, whether the parameters of

a population agree with a prespeci¯ed as-

sumption, called hypothesis (hypoteesi).

The null hypothesis (nollahyoteesi) H0 is an

assertion about the value of a population pa-

rameter based upon prior knowledge, which

we hold true unless we have su±cient sta-

tistical evidence to conclude otherwise. The

alternative hypothesis (vastahypotheesi) H1
is the negation of the null hypothesis. This

is usually the research hypothesis, which the

researcher wants to show holds true.
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Example.

A machine ¯lls paint buckets with 1000g each.

The standard deviation of the ¯ll is known to

be 10g. In order to assess whether the ma-

chine works correctly one would set up the

hypothesis:

H0 : μ = 1000g and H1 : μ W= 1000g.

H1 above is called two-tailed or two-sided

(kaksisuuntainen), because it may hold true

for μ both smaller and larger than 1000g.

One-tailed or one-sided (yksisuuntainen) al-

ternative hypotheses would have been either

H1 : μ > 1000g

or

H1 : μ < 1000g.
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Because the choice between H0 and H1 de-

pends upon the information given in the sam-

ple, the decision is based upon so called test

statistics (testisuure), which are usually based

upon the estimators of the parameters to be

tested. This requires knowing the sampling

distribution of the test statistics (testisuuren

otantajakauma).

Example. (paint buckets continued)

A natural candidate for the test statistic is

the sample mean. If the weight of the paint

buckets is normally distributed, then

¹X ∼ N
X
1000g,

(10g)2

n

~
if H0 holds true.
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Next one determines the values of the test

statistics, which shall then be regarded as de-

viating too much from the presumed value,

for the sample to be taken from a population

with parameters according to H0. This set of
values is called the critical region (hylkÄaysalue,

kriittinen alue) C. The critical region of a test
depends upon the form of the alternative hy-

pothesis, the sampling distribution of the test

statistics, and the so called signi¯cance level

(merkitsevyys-/ riskitaso) α, which denotes

the probability of rejecting H0 even though

in fact it holds true. Commonly used signif-

icance levels are α = 0.05 (denoted by *),

α = 0.01 (denoted by **), and α = 0.001
(denoted by ***).

Example. (paint buckets continued)

In the case of the two-sided alternative H1 :
μ W= 1000g, a critical region at signi¯cance

level α is

C ¹X = { ¹X|| ¹X − 1000g| > k}
where

PH0(| ¹X − 1000g| > k) = α.
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Example. (paint buckets continued)

Consider taking a sample of 25 buckets and

a signi¯cance level of α= 0.05. In searching

for the critical region C ¹X recall from our dis-

cussion of con¯dence intervals that the mar-

gin of error for k = | ¹X−μ| in 100(1−α)% of

all samples is

k = zα/2 ·
σ√
n
= 1.96 · 10√

25
= 3.92.

The critical region for the two-sided test is

therefore:

C ¹X = { ¹X|| ¹X − 1000| > 3.92}.

An easier way to perform the very same test

is considering the standardized test statistics

Z =
¹X − μ
σ/
√
n
∼ N(0,1) if H0 holds true.

In terms of this new test statistic the critical

region becomes:

CZ = {|Z| > z0.05/2}= {|Z| > 1.96},
such that H0 will be rejected if |Z| > 1.96.
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Example. (paint buckets continued)

If the sample mean is ¹X = 1006g, then

Z =
1006− 1000
10/
√
25

= 3 > 1.96

(also: | ¹X − 1000| = 6 > 3.92)

⇒ H0 is rejected at signi¯cance level 0.05.

⇒ The machine appears to malfunction.

Hypothesis Testing in a nutshell:

1. Set up the null hypothesis H0.

2. Set up the alternative hypothesis H1.

3. Determine the test statistic and its dis-

tribution under H0.

4. Decide upon a signi¯cance level α and de-
termine the corresponding critical region.

5. Take a sample, compute the test statistic

and compare its value with the critical

region.

6. Make the test decision (acceptance/

rejection) and interpret the result.
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Type I and Type II Errors

(Testauksen liityvÄat virhemahdollisuudet)

After the test decision is made, we cannot

be sure it was correct, because it was only

based on observations of the sample rather

than the full population.

Type I error (α): Rejection error (hylkÄaÄamis-

virhe), rejecting the correct H0 hypotesis.

Type II error (β): Acceptance error (hyvÄaksy-

misvirhe), accepting the false H0 hypotesis.

Reality

Decision

H0 H1

H0 Correct decision Type II error (β)

H1 Type I Error (α) Correct decision

Acceptance and rejection of H0 form a par-

tition of the sample space of the decisions

we may choose to take, such that the prob-

ability of correctly rejecting H0 when H0 is

false is π := 1 − β. This is the so called

power of the test (testin voimakkuus).
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p-values

Statistical programs usually report so called

p-values (p-arvot). They express the proba-

bility to obtain the observed or an even more

extreme value of the observed statistic if H0
holds true. These probabilities are called

observed signi¯cance levels (havaitu merkit-

sevyystaso) and denote the highest α, which

do not yet lead to a rejection of H0. That

is, they may be compared with the chosen

signi¯cance level as follows:

Accept H0 at signi¯cance level α if p ≥ α.

Reject H0 at signi¯cance level α if p < α.

Example. (paint buckets continued)
The value of the test-statistic was 3, the p-
value of which is obtained by using the stan-
dard normal cumulative distribution function
©(z)=NORMSDIST(z) as follows:

p = P(|Z| > 3) = P(Z > 3 or Z < −3) = 2P(Z > 3)

= 2[1− P(Z ≤ 3)] = 2[1− 0.9987� ,� 1
©(3)

] = 0.0026,

which implies that applying any signi¯cance

level lower than 0.26%, that is α > 0.0026,

will lead to a rejection of H0.
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8.2.2. Tests for the Mean (KeskiarvotestejÄa)

1. One sample (Yksi ostos)

In the case of one sample one investigates

whether the sample mean supports the value

of the population mean as stated in the null

hypothesis. The test assumes, that the sam-

ple observations are normally distributed

(X1, . . . , Xn ∼ NID(μ,σ2)) or n is large. The
null hypothesis is then of the form

H0 : μ = μ0.

a) The test statistic for known population

variance σ2 is:

Z =
¹X − μ0
σ/
√
n
∼ N(0,1) if H0 holds true.

The critical regions C are of the form:

H1 : μ > μ0 ⇒ C = {Z|Z > zα}
H1 : μ < μ0 ⇒ C = {Z|Z < −zα}
H1 : μ W= μ0 ⇒ C = {Z||Z| > zα/2}

Example: See paint buckets above.
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b) The test statistic for unknown population

variance σ2 is:

T =
¹X − μ0
S/
√
n
∼ tn−1 if H0 holds true, where

S2 =

�n
i=1(Xi − ¹X)2

n− 1 =
1

n− 1

X
n3
i=1

X2
i −

(
�n

i=1Xi)2

n

~
.

The fractiles of the t-distribution are used

to set up critical regions C as follwows:

H1 : μ > μ0 ⇒ C = {T |T > tα(n− 1)}
H1 : μ < μ0 ⇒ C = {T |T < −tα(n− 1)}
H1 : μ W= μ0 ⇒ C = {T ||T | > tα/2(n− 1)}

Example. (paint buckets continued)

Let us assume that we do not know the variance of
the paint buckets weight and that our sample of 25
buckets yields S = 11.2. A 5% critical region for the
two-sided test is then

C = {T ||T | > t0.05/2(24)}= {T ||T | > TINV(0.05; 24) = 2.064}.

Now t =
1006− 1000
11.2/

√
25

≈ 2.68 ∈ C.

⇒ H0 is rejected, that is we decide μ W= 1000g.
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2. Two independent samples

(Kaksi riippumatonta otosta)

In the case of two independent samples we

compare two sample means from di®erent

populations and attempt to clarify whether

both population means are identical. The

test assumes X11, . . . ,X1n ∼ N(μ1,σ
2
1) and

X21, . . . ,X2n ∼ N(μ2,σ22), and that both sam-
ples are taken independently. The null hypo-

thesis is now of the form

H0 : μ1 = μ2.

a) Both σ21 and σ22 are known, then:

Z =
¹X1 − ¹X25
σ21
n1
+

σ22
n2

∼ N(0,1) if H0 holds true.

Critical regions are based upon the frac-

tiles of the standard normal distribution:

H1 : μ1 > μ2 ⇒ C = {Z|Z > zα}
H1 : μ1 < μ2 ⇒ C = {Z|Z < −zα}
H1 : μ1 W= μ2 ⇒ C = {Z||Z| > zα/2}
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b) σ21 and σ22 unknown, but of equal size,

that is we may assume σ21 = σ22 =: σ
2.

We estimate σ21 and σ22 using

S21 =

�n1
i=1(X1i − ¹X1)2

n1 − 1
and S22 =

�n2
i=1(X2i − ¹X2)2

n2 − 1
,

and the common population variance σ2

with S2 =
(n1 − 1)S21 + (n2 − 1)S22

n1 + n2 − 2
.

The test statistic is now

T =
¹X1 − ¹X2

S
5
1
n1
+ 1

n2

∼ t(n1+n2−2) under H0.

Critical regions are based upon the frac-

tiles of the t-distribution:

H1 : μ1 > μ2 ⇒ C = {T |T > tα(n1 + n2 − 2)}
H1 : μ1 < μ2 ⇒ C = {T |T < −tα(n1 + n2 − 2)}
H1 : μ1 W= μ2 ⇒ C = {T ||T | > tα/2(n1 + n2 − 2)}
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c) If σ21 and σ22 are both unknown and pos-

sibly of unequal size, the test statistic is

T =
¹X1 − ¹X25
S21
n1
+

S22
n2

approx. ∼ t(df) under H0,

where the degrees of freedom (vapaus-
asteet) df may be calculated from

df =
(S21/n1+ S22/n2)

2

(S21/n1)
2/(n1 − 1) + (S22/n2)

2/(n2 − 1)
rounded down to the nearest integer.

Note. The statistical formula collection writes for df :

1

df
=

c2

n1 − 1
+
(1− c)2
n2 − 1

, where c=
S21/n1

(S21/n1) + (S22/n2)
.

This gives the same result, because:

1− c= (S21/n1) + (S22/n2)

(S21/n1) + (S22/n2)
− S21/n1

(S21/n1) + (S22/n2)

=
S22/n2

(S21/n1) + (S22/n2)
, such that

1

df
=
(S21/n1)

2/(n1 − 1)
(S21/n1+ S22/n2)

2
+
(S22/n2)

2/(n2 − 1)
(S21/n1+ S22/n2)

2

=
c2

n1 − 1
+
(1− c)2
n2 − 1

.

243



Sampling distribution of the sample variance:

The Chi-square (χ2) distribution

Let Z1, . . . , Zn be independent N(0,1) ran-

dom variables. Then

χ2 =
n3
i=1

Z2i ∼ χ2(n),

where χ2(n) denotes the χ2-distribution with

degrees of freedom df = n.

Note.

We will shortly use that for Xi ∼ NID(μ,σ2):

(n− 1)S
2

σ2
=

n3
i=1

X
Xi − ¹X

σ

~2
∼ χ2(n− 1),

where S2 =
�n
i=1(Xi − ¹X)2/(n − 1) denotes

the sample variance of X1, . . . , Xn.

The tail fractiles χ2α of the χ
2-distribution for

P(χ2 > χ2α(df)) = α are tabulated (see next

page) and implemented in Excel as:

χ2α(df) = CHIINV(α; df).
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Table. Tail fractiles χ2α of the χ
2-distribution: P (χ2>χ2α(df))=α.

df / α 0.995 0.990 0.975 0.950 0.900 0.100 0.050 0.025 0.010 0.001

1 0.000039 0.000157 0.000982 0.003932 0.0158 2.706 3.841 5.024 6.635 10.827

2 0.0100 0.0201 0.0506 0.103 0.211 4.605 5.991 7.378 9.210 13.815

3 0.0717 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 16.266

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 18.466

5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.832 15.086 20.515

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 22.457

7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 24.321

8 1.344 1.647 2.180 2.733 3.490 13.362 15.507 17.535 20.090 26.124

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 27.877

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 29.588

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 31.264

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 32.909

13 3.565 4.107 5.009 5.892 7.041 19.812 22.362 24.736 27.688 34.527

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 36.124

15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 37.698

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 39.252

17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 40.791

18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 42.312

19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 43.819

20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 45.314

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 46.796

22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 48.268

23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 49.728

24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 51.179

25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 52.619

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 54.051

27 11.808 12.878 14.573 16.151 18.114 36.741 40.113 43.195 46.963 55.475

28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 56.892

29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 58.301

30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 59.702

40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 73.403

50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 86.660

60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 99.608

70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 112.317

80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 124.839

90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 137.208

100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 149.449

χα
2
(df)

Example:

χ2 ∼ χ2(16)⇒ 0.05 = P(χ2 ≥ 26.296).
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The sampling distribution for the ratio of
sample variances: Fisher's F -distribution

Let U ∼ χ2m and W ∼ χ2n be independent,
then the ratio

F =
U/m

W/n
∼ F(m,n)

where F(m,n) denotes the F -distribution with
degrees of freedom df = m and n (Fisherin
F-jakauma vapausastein m ja n).

Note.
This implies by the remark on χ2-distributions,
that the ratio of the sample variances S2U and
S2W is in independent samples distributed as

S2U/σ
2
U

S2W/σ
2
W

∼ F(nU − 1, nW − 1),

where nU and nW denote the sample size of U
and W , and σ2U , σ

2
W the population variances.

Tail fractiles Fα(m,n) for the probabilities
P [F > Fα(m,n)] = α of the F-distribution
are tabulated for various combinations of m,
n and α (see next page) and implemented in
excel as FINV(α;m;n).
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Example.

F ∼ F(10,20)⇒ 0.10 = P(F ≥ 1.94).

Table. Tail fractiles F0.10(m,n) of the

F -distribution for P [F > F0.10(m,n)] = 0.10.

Table. Tail fractiles F0.05(m,n) of the

F -distribution for P [F > F0.05(m,n)] = 0.05.
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The F test for equality of spread

(Varianssien σ21 ja σ
2
2 yhtÄa suuruuden testaus)

In order to decide whether test procedure 2b)

or 2c) is appropriate for comparing the means

of two independent samples one applies the

so called F test with the hypothesis

H0 : σ21 = σ22 against H1 : σ21 W= σ22.

The test statistic is

F =
S21
S22
∼ F(n1 − 1, n2 − 1) if H0 holds true,

so the critical region of the two sided test is:
C = {F |F < F1−α/2(n1− 1, n2− 1)}∪ {F |F > Fα/2(n1− 1, n2− 1)}.
Since tables usually provide only a few critical

values for the upper tail, it is common prac-

tice to label the samples such that S21 ≥ S22.
That way we are sure that F ≥ 1 and the

critical region of the two sided test becomes:

C = {F |F > Fα/2(n1−1, n2−1)} for S21 ≥ S22.
Note. Unlike the t procedures for means, the F test

and other procedures for standard deviations are ex-

tremely sensitive to nonnormal distributions. This lack

of robustness does not improve in large samples.
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Example.

Does calcium reduce blood pressure?

Group Treatment n ¹x s
1 Calcium 10 5.000 8.743
2 Placebo 11 -0.273 5.901

Let's ¯rst test H0 : σ
2
1 = σ22 against H1 :

σ21 W= σ22 at α=20%. The test statistic is:

F =
larger s2

smaller s2
=
8.7432

5.9012
≈ 2.195

with critical region:

C = {F |F > Fα/2(n1 − 1, n2 − 1)}.
Now by looking up from a table, or calling

FINV(0.1;9;10) in excel, we ¯nd that

Fα/2(n1 − 1, n2 − 1) = F0.1(9,10) = 2.347,

which leads us to accept equal variances even

at α= 20%, since 2.195 < 2.347.

Alternatively, we might have calculated the

p-value of the F -test as p = 0.237 by calling

2*FDIST(2.195;9;10) in excel, which leads

to the same conclusion, since 0.237 > 0.2.
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Example: (continued).

So we assume equal variances, which means

that in testing for equality of means we should

apply procedure 2b) with test statistic

t =
¹x1 − ¹x2

s
5
1
n1
+ 1

n2

, where

s2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
=
9 · 8.7432 + 10 · 5.9012

10+ 11− 2 ≈ 54.536

such that s =
√
54.536 = 7.385.

Therefore:

t =
5.000− (−0.273)
7.385

�
1
10 +

1
11

=
5.273

3.227
= 1.634.
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Example: (continued).

Now we are interested in demonstrating that

the treatment with calcium does actually have

a positive impact upon the reduction of blood

pressure as measured by X. That is we choose

to test H0 : μ1 = μ2 against H1 : μ1 > μ2 with

critical region

C = {t|t > tα(n1 + n2 − 2) = tα(19)}.
Now by looking up from a table or calling
TINV(2*α; 19) in excel we ¯nd that

(t0.1(19) = 1.328) < (t = 1.634) < (t0.05(19) = 1.729),

which means that we may reject H0 at 10%,

but not at a signi¯cance level of α= 5%.

Alternatively, we might have calculated the

p-value of the t-test as p = 0.059 by calling

TDIST(1.634;19;1) in excel, (1 is for one-

sided test, TDIST(1.634;19;2) would have

given the p-value for the two-sided test). So

the observed sign¯cance level (the highest α,

at which we do not declare t as signi¯cant)

is 5.9%, con¯rming our conclusion above.
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Example: (continued).

If the F-test had rejected the null hypothesis

of equal variances, we would have calculated

the t-statistics according to c) as

t =
¹x1 − ¹x25
s21
n1
+

s22
n2

=
5.000− (−0.273)5
8.7432

10 + 5.9012

11

= 1.604

with degrees of freedom df calculated from

df =

�
(s21/n1 + s22/n2)

2

(s21/n1)
2/(n1 − 1) + (s22/n2)

2/(n2 − 1)

b
.

Now

s21/n1 = 8.7432/10 = 7.609,

s22/n2 = 5.9012/11 = 3.166,

such that

df =

�
(7.609+ 3.166)2

7.6092/9+ 3.1662/10

b
= u15.6J= 15

with critical region for the one-sided test

C = {t|t > tα(15)}.
Now again by looking up from a table or call-
ing TINV(2*α; 15) in excel we ¯nd that

(t0.1(15) = 1.341) < (t = 1.604) < (t0.05(15) = 1.753),

which is again signi¯cant at α = 10%, but

not enough to reject H0 at α= 5%.
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3. Paired observation t test

(Kaksi toisistaan riippuvaa otosta)

We call measuring a statistical variable twice

on the same subject under di®erent circum-

stances paired observations or matched

samples (kaltaistetut otokset). For example,

suppose two di®erent °avours are rated by

the same people. Then the rating of each

°avour is a sample, but they are no longer

independent. Assuming that the di®erence

between the °avours is normally distributed,

that is D := X1 − X2 ∼ N(μD,σ
2
D), we may

apply the one sample t-test upon D. The null

hypothesis is

H0 : μD = 0 ⇔ μ1 = μ2

with test statistic:

T =
¹D

sD/
√
n
∼ t(n− 1) if H0 holds true,

where ¹D is the sample mean of the di®er-

ences, and sD is the standard deviation of

the di®erences. The critical regions are the

same as for the one sample t-test with μ re-

placed by μD, and μ0 replaced by 0.

253



8.2.3. Testing Population Proportions

(ProsenttilukutestejÄa)

1. One sample (Yksi ostos)

In the case of one sample one investigates

whether the sample proportion P̂ of elements

of type A supports the value of the popula-

tion proportion ¦ as stated in the null hy-

pothesis. The null hypothesis is of the form:

H0 : ¦ = ¦0.

The test statistic is:

Z =
P̂ −¦05
¦0(100−¦0)

n

∼ N(0,1) if H0 holds true.

The critical regions C are of the form:

H1 : ¦ > ¦0 ⇒ C = {Z|Z > zα}
H1 : ¦ < ¦0 ⇒ C = {Z|Z < −zα}
H1 : ¦ W= ¦0 ⇒ C = {Z||Z| > zα/2}
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Example.

The support for a political party in the previ-

ous elections was 18.4%. A random sample

of n = 1493 eligible voters yields a support

of P̂ = 22.7%. Did the support for the party

increase?

We test H0 : ¦ = 18.4 against H1 : ¦ > 18.4.

Choosing a signi¯cance level of α= 1% yields:

z0.01 = ©−1(0.99) = NORMSINV(0.99) ≈ 2.33

such that C = {Z|Z > 2.33}.
Now:

Z =
22.7− 18.45
18.4(100−18.4)

1493

≈ 4.3 ∈ C.

H0 is therefore rejected at a signi¯cance level

of 1%, and we regard the support for the

party as having increased.
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2. Two samples (Kaksi otosta)

In the case of two samples we compare the

sample proportions of type A elements P̂1
and P̂2 and attempt to clarify, whether the

population proportions ¦1 and ¦2 are of equal

size. The null hypothesis is of the form:

H0 : ¦1 = ¦2.

The test statistic is now

Z =
P̂1 − P̂25

P̂(100− P̂)
p
1
n1
+ 1

n2

Q ∼ N(0,1) under H0,

where P̂ =
n1P̂1 + n2P̂2
n1 + n2

denotes the com-

bined type A proportion of samples 1 and 2.

The critical regions are:

H1 : ¦1 > ¦2 ⇒ C = {Z|Z > zα}
H1 : ¦1 < ¦2 ⇒ C = {Z|Z < −zα}
H1 : ¦1 W= ¦2 ⇒ C = {Z||Z| > zα/2}
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Example.

80 out of 200 randomly selected female stu-

dents and 47 out of 100 randomly selected

male students smoke. Is there a di®erence in

the fraction of smokers? We test

H0 : ¦F = ¦m against H1 : ¦F W= ¦m.

Choosing a signi¯cance level of α= 5% yields:

z0.025 = ©−1(0.975) ≈ 1.96

such that C = {Z||Z| > 1.96}.
Now:

P̂ =
200 · 40+ 100 · 47

200+ 100
=
80+ 47

300
·100 ≈ 42.3

such that:

Z =
40− 475

42.3 · 57.7
p
1
200 +

1
100

Q ≈ −1.16 /∈ C.
We accept therefore H0 and regard the dif-

ference in smoking behaviour between female

and male students as nonsigni¯cant at 5%

level.
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8.2.4. Tests related to statistical dependence

1. χ2 independence test

Recall from our discussion of contingency ta-

bles that we could use Pearson's χ2 statistics

χ2 =
I3
i=1

J3
j=1

(fij − eij)2
eij

,

where fij and eij denoted the observed and

expected frequencies of cell (Gi,Ej), in order

to assess dependence between two statistical

variables x and y. It turns out that this may

be used as a test statistic for statistical inde-

pendence as long as the following conditions

are satis¯ed:

1. No more than 20% of the expected fre-

quencies eij are smaller than 5.

2. All expected frequencies satisfy eij > 1.
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The hypotheses of the χ2 independence test

are:

H0 : x and y are statistically independent

H1 : x and y are statistically dependent

The test statistic is

χ2 =

I3
i=1

J3
j=1

(fij − eij)2
eij

∼ χ2[(I − 1)(J − 1)] under H0,

where I denotes the number of rows and J

the number of columns in the contingency

table for x and y.

The critical region is:

C = {χ2|χ2 > χ2α[(I − 1)(J − 1)]}.

Note. In the special case of two way tables

(nelikentÄajÄa), that is I = J = 2, the test

statistic simpli¯es to

χ2 =
n(f11f22 − f12f21)2

f1•f2•f•1f•2
∼ χ2(1) under H0.
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Example: (study progress continued.)

In the section about contingency tables we

discussed dependence between working be-

sides studying and study progress. The con-

tingency table had I = 3 rows and J = 2

columns. The hypotheses to be tested are:

H0 : Working and Study Progress are

statistically independent,

H1 : Working and Study Progress are

statistically dependent.

Choosing a signi¯cance level of α = 5%, we

obtain for the critical region:

C = {χ2|χ2 > χ20.05(2) = CHIINV(0.05;2) = 5.99}.
Now we obtained earlier χ2 = 14.2 ∈ C, such
that we reject H0 and consider the variables

as statistically dependent. Alternatively, we

may calculate the p-value of the χ2-test as

p = 0.0008 by calling CHIDIST(14.2;2) in

excel, which shows that we may reject H0
even at much higher signi¯cance levels (e.g.

α= 0.1% would be feasable).
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2. Correlation test

Pearson's correlation coe±cient r may be used
to estimate the population correlation ρ be-
tween two statistical variables x and y, if both
are normally distributed. The null hypothesis

to be tested is

H0 : ρ = 0 (x, y are linearly independent)

The test statistic is:

T =
r
√
n− 2�
1− r2

∼ t(n− 2) under H0

with critical regions:

H1 : ρ > 0 ⇒ C = {T |T > tα(n− 2)}
H1 : ρ < 0 ⇒ C = {T |T < −tα(n− 2)}
H1 : ρ W= 0 ⇒ C = {T ||T | > tα/2(n− 2)}

Note:
When both r is small and n is large, the test statistic
above may be approximated by

Z = r
√
n ∼ N(0,1) under H0, with critical regions:

H1 : ρ > 0 ⇒ C = {Z|Z > zα}
H1 : ρ < 0 ⇒ C = {Z|Z < −zα}
H1 : ρ W= 0 ⇒ C = {Z||Z| > zα/2}
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Example: (softdrink campaign continued.)

In our earlier investigation of the correlation

between the number of adverts seen and bot-

tles of softdrinks bought we found a correla-

tion coe±cient of r = 0.68 based upon n = 8

subjects. In order to clarify, whether the ad-

vert has a positive impact upon sales we test

H0 : ρ = 0 against H1 : ρ > 0.

Choosing α = 5% yields the critical region:

C = {T |T > tα(n− 2) = t0.05(6) = 1.943}.

Now: t =
0.68

√
8− 2�

1− 0.682
= 2.27 ∈ C,

so we reject H0 and assume positive linear

dependence between adverts and sales.

Note. The t-statistic above may also applied

to Spearmans rank correlation coe±cient, pro-

vided that n is large. In that case we don't

need to assume normally distributed variables.

The null hypothesis is then:

H0 : ρS = 0 (x, y are monotonically independent)
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Testing Regression Coe±cients

When ¯tting a regression line in a scatterplot, one
often wants to know whether x does indeed have an
impact upon y. This concerns testing the slope coef-
¯cient of the regression, because it tells the average
impact of a change in x upon y. Now the sample
regression parameter b1 may be regarded as an esti-
mator of the population regression parameter β1. The
common null hypothesis is:

H0 : β1 = 0 (x, y are linearly independent)

When assuming normally distributed regression errors

ei = yi − ŷi, the test statistic is:

T =
b1
s(b1)

∼ t(n− 2) under H0,
where s(b1) denotes the standard error of the slope
coe±cient b1:

s(b1) =

��n
i=1 e

2
i /(n− 2)�n

i=1(xi − ¹x)2
=
sy

sx

�
1− r2
n− 2 ,

which is generally provided with the computer output
of any regression analysis software. Note that

T =
b1

s(b1)
=
sxy

s2x
· sx
sy

5
n− 2
1− r2 =

r
√
n− 20
1− r2

,

the same as the test statistic for testing for a sig-

ni¯cant correlation coe±cient r. That is, testing for

a signi¯cant correlation and testing for a signi¯cant

slope of the regresion line are equivalent.
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Example:(Flat size and price continued.)
We calculated earlier the variance of °at size
as s2x = 660.933 and the variance of °at

price as s2y = 10504.267. The correlation
between °at size and price was found to be
rxy = 0.9446. Below is some regression out-
put of the statistical software package SPSS:

The program reports the same regression co-
e±ents as we found earlier, b0 ≈ 145.1 and
b1 ≈ 3.77. We could have obtained the stan-
dard error of the slope coe±ent s(b1) ≈ 0.463
ourselves by calculating:

s(b1) =
sy

sx

�
1− r2
n− 2 =

5
10504.267

660.933
·
�
1− 0.94462
10− 2 ≈ 0.463.

The t-values are obtained by dividing the re-

gression coe±cients by their corresponding

standard errors, and Sig. stands for observed

signi¯cance levels, that is the p-values of the

t-statistics, e.g. for the slope coe±cient b1:

p=TDIST(8.138;8;2)≈0.00004. (in excel)
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8.2.5. χ2 Test for Goodness of Fit

Consider randomly sampled variables, which

are classi¯ed into k categories, the counts

of which we denote by f1, f2, . . . , fk. Now

the goal is to clarify, whether the observed

counts fi agree with some expected counts

ei(= npi). Usually the idea is to clarify, whether

the random variable X follows some known

probability distribution. The hypotheses to

be tested are:

H0 : X follows a given probability distribution,

H1 : X does not follow the given distribution.

The test statistic is

χ2 =
k3
i=1

(fi − ei)2
ei

∼ χ2(k − s− 1) under H0,

where k denotes the number of categories

and s the number of parameters to be esti-

mated from the data.

The critical region is:

C = {χ2|χ2 > χ2α(k − s− 1)}.
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Example. Consider the number of accidents

per day randomly sampled over 100 days:

# accidents 0 1 2 (or more)

days 50 30 20

Is the number of accidents Poisson-distributed?

Recall that X ∼Poi(λ) ⇒ E(X) = λ, so:

λ̂= ¹x =
50 · 0+ 30 · 1+ 20 · 2

100
= 0.7.

H0 : # accidents ∼ Poi(0.7),
H1 : # accidents not ∼ Poi(0.7).

Now k = 3 and s = 1, because we had

to calculate one distribution parameter (λ).

Choosing a signi¯cance level of α= 5% yields

then for the critical region:

C = {χ2|χ2 > χ2α(k−s−1) = χ20.05(1) = 3.84}.
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Now under the Poisson distribution:

pi = P(# accidents= i) =
λi

i!
e−λ = 0.7i

i!
e−0.7

such that

p0 = 0.4966, p1 = 0.3476,

p≥2 = 1− p0 − p1 = 0.1558,

and the expected frequencies ei = npi
become (n=100):

e0 = 49.66, e1 = 34.76, e≥2 = 15.58.

Therefore:

χ2 =
(50− 49.66)2

49.66
+
(30− 34.76)2

34.76
+
(20− 15.58)2

15.58

= 1.91 /∈ C (since 1.96 < 3.84).

So we accept H0 and regard the number of

accidents as Poisson-distributed.
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