
4.2. Scatter Diagrams and Correlation

Consider in the following two variables x and

y, which are measured at least on interval

scale. We may get an idea about the re-

lationship between those variables by taking

a look at their scatterplot (korrelaatiodia-

gramma/ pisteparvi/ sironta-/hajontakuvio),

which is just a plot of all observation pairs

(xi,yi) in a 2-dimensional coordinate system.

In particular, there may be a linear association

(lineaarinen/ suoraviivainen riippuvuus) be-

tween the variables. The better the points

in a scatter plot may be approximated by a

straight line, the stronger the linear relation-

ship is. The variables are positvely associated

(positiivinen lineaarinen riippuvuus) if an in-

crease in x correponds to an increase in y,

and they are negatively associated (negatii-

vinen lineaarinen riippuvuus) if an increase in

x correponds to a decrease in y.
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Example.

Positive linear association:

Negative linear association:

Nonlinear relationship:
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Example.

Consider the relationship between the latest

advertising campaign for a certain soft drink

and the number of bottles sold. Eight per-

sons have been asked, how often they saw

the advertising campaign (variable x) and how
many bottles they bought (variable y). The
following data has been obtained:

Person: 1 2 3 4 5 6 7 8

x: 5 10 4 0 2 7 3 6
y: 10 12 5 4 1 3 4 8

The scatter plot looks like this:
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The strength of the linear association be-

tween x and y may be assessed by plotting

the observations into a new coordinate sys-

tem with origin in (¹x, ¹y). For a positive lin-

ear relationship the observations are concen-

trated in the ¯rst and third quadrant of the

transformed coordinate system, for which

(xi − ¹x)(yi − ¹y) is positive:
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For negative linear relationships the obser-

vations are concentrated in the second and

fourth quadrant of the transformed coordi-

nate system, for which(xi− ¹x)(yi− ¹y) is neg-
ative:
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We may therefore assess linear association by

considering the sum

n3
i=1

(xi − ¹x)(yi − ¹y).
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The sum
�
(xi−¹x)(yi−¹y) is positive if x and y

are positively associated and negative if they

are negatively associated. Dividing that sum

by (n−1) yields the (sample) covariance (ko-
varianssi) sxy:

sxy =

n3
i=1

(xi − ¹x)(yi − ¹y)

n− 1

=
1

n− 1

⎡⎢⎢⎢⎣
n3
i=1

xiyi −
p�n

i=1 xi
Q p�n

i=1 yi
Q

n� ,� 1
n¹x¹y

⎤⎥⎥⎥⎦

The covariance has the disadvantage that it

depends on the measurement scale. In order

to get a measure of linear association that

is independent of measurement scale, Fran-

cis Galton introduced the so called linear cor-

relation coe±cient (Pearsonin (tulomoment-

ti) korrelaatiokerroin), often misattributed to

Karl Pearson, which divides the covariance

by both the standard deviation of x and the

standard deviation of y.
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Pearson's linear correlation coe±cient is:

rxy =
sxy

sxsy
=

n3
i=1

(xi − ¹x)(yi − ¹y)>��: n3
i=1

(xi − ¹x)2
n3
i=1

(yi − ¹y)2

=

n3
i=1

xiyi −
D�n

i=1 xi
i D�n

i=1 yi
i

n>��:^ n3
i=1

x2i −
D�n

i=1 xi
i2

n

�^
n3
i=1

y2i −
D�n

i=1 yi
i2

n

�
.

The value of the correlation coe±cient is al-

ways within [−1,1]. A positive correlation

coe±cient signals positive linear association

and a negative correlation coe±cient signals

negative linear association. The larger the

absolute value of the correlation coe±cient,

the stronger the linear relationship is. -1 sig-
nals complete negative association and +1

complete positive linear association. If there

is no linear relationship between the variables,

then the correlation coe±cient is 0. There

may however still be a nonlinear relationship

in that case.
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Example.(softdrink campaign continued)

Calculation of the correlation coe±cient be-

tween adverts seen and bottles bought:

The correlation coe±cient is:

rxy =

n3
i=1

xiyi −
D�n

i=1 xi
i D�n

i=1 yi
i

n>��:^ n3
i=1

x2i −
D�n

i=1 xi
i2

n

�^
n3
i=1

y2i −
D�n

i=1 yi
i2

n

�

=
273− 37·47

8�D
239− 372

8

i D
375− 472

8

i ≈ 0.68.
This indicates a positive linear relationship.
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The following points are important to keep

in mind when interpreting the correlation co-

e±cient:

1. A single observation may have a strong

in°uence upon the correlation coe±cient

if its x and/or y value deviates far from

the usual range. Such outliers (vieraat

havainnot) as well as nonlinear relation-

ships are easily detected by ¯rst inspect-

ing the scatterplot, before applying the

mathematical machinery of calculating a

correlation coe±cient. If there is a rea-

sonable explanation for the outlier (such

as measurement error, or the outlying ob-

servation originating from a di®erent pop-

ulation than the other statistical units),

then they should be deleted before calcu-

lating the correlation coe±cient.
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2. Combining observations into groups changes

the correlation coe±cient. In particu-

lar, a correlation based on averages over

many observations is usually higher than

the correlation between the same vari-

ables based on data for the individual ob-

servations.

3. Restricting the range of any of the two

variables, such that the data does no longer

contain all information about the full range

of both x and y, will in general lead to

a lower correlation coe±cient than if the

full range of both x and y had been taken
into account.

4. A large absolute value of the correlation

coe±cient is no guarantee for a causal

relationship between x and y. For exam-
ple, there might be a lurking variable z,
that a®ects both x and y. If that factor is
known, one may correct for its impact by

calculating partial correlation coe±cients

(osittaiskorrelaatioita, not discussed here).
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We brie°y summarize the main properties of

the linear correlation coe±cient:

It makes no di®erence which variable you call

x and which you call y in calculating the cor-

relation.

Correlation requires that both variables be

quantitative (it cannot be calculated for vari-

ables measured on nominal or ordinal scale).

rxy does not change when we change the

units of x, y, or both.

Correlation measures only the strength of lin-

ear relationships. It does not describe curved

relationships, no matter how strong they are.

rxy is always a number between -1 and 1 with

the sign of r indicating the sign of the linear

relationship. The strength of the relationship

increases as r moves away from 0 to either

-1 or +1.

Correlation is very sensitive to outliers.

118



4.3. Rank Correlation

The linear correlation correlation coe±cient

discussed above has two limitations: It is

only de¯ned for quantitative variables mea-

sured on interval scale and above, and it

measures only linear relationships. For vari-

ables measured at least on ordinal scale one

may instead use Spearman's rank correlation

(jÄarjestyskorrelaatio) rS.

Spearman's rank correlation coe±cient is Pear-

son's linear correlation coe±cient applied to

the ranks R(xi) of the observations. The

rank (jÄarjestysluku / sijaluku) R of an obser-

vation xi tells the position of xi when arranged

in ascending order. If several statistical units

share the same observation value, they are

said to have ties (sidos). These observations

get then assigned the arithmetic average of

the ranks, which would have been obtained

if they had slightly di®erent values.
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When no ties exist, the calculation of Spear-

man's rank correlation coe±cient may be sim-

pli¯ed as follows. For each pair of ranks

{R(xi), R(yi)} one calculates the di®erence in
ranks (jÄarjestyslukujen erotus):

di = R(xi)−R(yi).

Spearman's rank correlation rS is then deter-

mined from:

rS = 1−
6

n3
i=1

d2i

n3 − n .

In practice this formula may be still applied

to get approximate values for rS as long as

the number of ties is small as compared to

the number of observations n.
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Example. Consider Spearman's rank correla-

tion applied to points obtained in a test be-

fore (x) and after (y) school attendance:

Spearman's rank correlation coe±cient is ap-

proximately (due to ties between observa-

tions 1 and 5):

rS = 1−
6

n3
i=1

d2i

n3 − n = 1− 6 · 35.5
83 − 8 ≈ 0.5774.

The correct value from applying Pearson's

correlation coe±cient to the ranks would have

been 0.5749.
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Spearman's rank correlation, like Pearson's

linear correlation, is con¯ned to the range

[−1,1]. However, unlike Pearson's product-

moment correlation, which measures the lin-

ear association between two variables, it de-

scribes the relationship of arbitrary monotonic

functions of the data (monotoninen riippu-

vuus), that is the similiarity of their order.

rS is +1, if the order in x and y is exactly the

same, and it is -1 if their orders are just oppo-

site. It is 0 if there is no apparent relationship

between the orderings of both variables.

Example:

x

y

r
S
 = +1

x

y

r
S
 = −1

122



4.4. Regression

The idea of regression analysis (regressioana-

lyysi) is to illustrate a possible approximate

linear causal relationship (syy-seuraussuhde)

between the explanatory variable or regressor

(selittÄavÄa muuttuja) x and the dependent vari-

able or regressand (selitettÄavÄa muuttuja) y as

a straight line, called regression line (regres-

siosuroa), in the scatterplot of x and y.

Example: (softdrink campaign continued.)
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The regression line ŷ = b0+b1x is most com-

monly determined by the method of ordinary

least squares (OLS) (pienimmÄan neliÄosumman

menetelmÄa, PNS), that is by minimizing the

sum of all squared vertical distances between

the observations yi of the dependent variable

y and their predicted values ŷi = b0 + b1xi.

(This automatically ensures that the sum of

all vertical distances above the regression line

and the sum of all vertical distances below

the regression line average out to zero.)
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The vertical distances between the observa-

tions yi and their predicted values ŷi from the

regression line,

ei := yi − ŷi,
are called residuals (jÄaÄannÄos, residuaali). So

mathematically, the method of least squares

consists in solving the expression

min
n3
i=1

(yi − ŷi)2 = min
n3
i=1

e2i .

Doing this yields for the slope coe±cient (kul-

makerroin) b1 and the intercept (vakio) b0 of

the regression line ŷ = b0 + b1x:

b1 =
sxy

s2x
and b0 = ¹y − b1¹x.

To see this, we regard the sum of squared

residuals as a function of the yet unknown

regression coe±cients (regressiokertoimet)

b0 and b1:

n3
i=1

e2i =
n3
i=1

(yi − b0 − b1xi)2 = f(b0, b1).
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A global minimum of
�
e2i requires both

∂f
∂b0

and ∂f
∂b1

to be zero:

∂
D�

e2i
i

∂ b0
= −2

n3
i=1

(yi − b0 − b1xi) = 0, and

∂
D�

e2i
i

∂ b1
= −2

n3
i=1

xi(yi − b0 − b1xi) = 0.

This yields the so called normal equations (normaaliyhtÄalÄot):

n3
i=1

yi = nb0 + b1

n3
i=1

xi,

n3
i=1

xiyi = b0

n3
i=1

xi+ b1

n3
i=1

x2i .

Dividing the ¯rst equation by n yields for the intercept:

¹y = b0 + b1¹x ⇔ b0 = ¹y − b1¹x,
which states that each regression line must pass through
(¹x, ¹y), but doesn't tell anything about its direction yet.
Inserting b0 into the second equation yields

n3
i=1

xiyi =

w�n
i=1 yi

n
− b1
�n

i=1 xi

n

W n3
i=1

xi+ b1

n3
i=1

x2i

which after solving for b1 yields for the slope:

b1 =

�
xiyi − (

�
xi)(
�

yi)

n�
x2i −

(
�

xi)2

n

=
sxy

s2x
.

That (b0, b1) indeed minimizes
�
e2i follows from the

fact that it is the only solution of ( ∂f
∂b0
, ∂f
∂b1
) = (0,0) and

that
�
e2i →∞ for b0, b1 → ±∞.
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Example. Below is some data upon the in°u-

ence of °at size in m2 upon price in units of

1000 good old ¯nnish markka:

Let's ¯nd the regression line and correlation
coe±cient between °at size x and price y.
For that we need to ¯gure out

¹x =
1

n

n3
i=1

xi, s2x =
1

n− 1

X
n3
i=1

x2i −
D�n

i=1 xi
i2

n

~
,

¹y =
1

n

n3
i=1

yi, s2y =
1

n− 1

X
n3
i=1

y2i −
D�n

i=1 yi
i2

n

~∗
,

and sxy =
1

n− 1

^
n3
i=1

xiyi −
D�n

i=1 xi
i D�n

i=1 yi
i

n

�
.

∗ only calculated for lated reference.
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Now:

¹x =
644

10
= 64.4, s2x =

1

9

w
47422− 644

2

10

W
≈ 660.933,

¹y =
3876

10
= 387.6, s2y =

1

9

w
1596876− 3876

2

10

W
≈ 10504.267,

and sxy =
1

9

w
272014− 644 · 3876

10

W
≈ 2488.844.

Therefore:

b1 =
sxy

s2x
=
2488.844

660.933
= 3.76565 . . . ≈ 3.77

and

b0 = ¹y − b1¹x= 387.6− 3.76565 · 64.4 ≈ 145.1.
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So the regression line is ŷ = 145.1+ 3.77x:

When there is indeed a causal relationship

between x and y, the regression line may be

used to generate forecasts (enustetta) ŷ.

Example. If the size of a °at is 50m2, its esti-

mated price ŷ may be obtained from inserting

50m2 for x in the regression line:

ŷ = 145.1+ 3.77 · 50 = 333.5(×1000mk.)
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The linear correlation coe±cient rxy in our

example is:

rxy =
sxy

sxsy
=

2488.844√
660.933

√
10504.267

≈ 0.9446.

The squared correlation coe±cient R2 := r2xy
is called coe±cient of determination (selitys-

kerroin, selitysaste). It measures the ¯t (yh-

teensopivuus) of the regression line in the

sense that it tells how large a fraction of the

variation in y is due to the variation in ŷ as

predicted by the regression equation, that is:

R2 =
variance of predicted values ŷ

variance of observed values y
=
s2ŷ

s2y
.

This may be seen as follows:
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In order to see that the squared correlation

coe±cient equals indeed the variance ratio of

the ¯tted and observed y-values, recall from

our discussion of the variance that:

ŷ = b0 + b1x ⇒ s2ŷ = b21s
2
x.

Now, recalling that b1 =
sxy
s2x
:

s2ŷ =

X
sxy

s2x

~2
· s2x =

s2xy

(s2x)
2
s2x =

s2xy

s2x
.

Therefore:

s2ŷ

s2y
=

s2xy

s2xs
2
y
=

X
sxy

sxsy

~2
= r2xy =: R

2.

Example: (°at prices continued.)

R2 = 0.94462 ≈ 0.89,
meaning that about 89% of the variation in

°at prices may be explained by their size.
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Note: The slope coe±cient b1 of the regres-

sion line ŷ = b0 + b1x may also be calculated

from the correlation coe±cient rxy and the

standard deviations sx and sy as b1 = rxy · sy
sx
,

because

rxy · sy
sx
=

sxy

sxsy
· sy
sx
=
sxy

s2x
= b1.

Interpretation: A change of one standard de-

viation in x corresponds to a change of rxy

standard deviations in y. (b1 · sx = rxy · sy)

Example:(Flat size and price continued.)

We calculated earlier the variance of °at size

as s2x = 660.933 and the variance of °at

price as s2y = 10504.267. The correlation

between °at size and price was found to be

rxy = 0.9446. The slope coe±cient of the

regression of °at price upon °at size is then:

b1 = rxy · sy
sx
= 0.9446 ·

�
10504.267

660.933
= 3.77,

the same value as we found earlier.
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