
5. Probability Calculus

So far we have concentrated on descriptive
statistics (deskriptiivinen eli kuvaileva tilas-
totiede), that is methods for organizing and
summarizing data. As was already indicated
in our discussion of sample versus population
variance, another important aspect of statis-
tics is to draw conclusions about a population
based upon only a subset of the population,
called a sample (otos). This branch of sta-
tistics is called inferential statistics (tilastolli-
nen pÄaÄattely eli inferenssi). Knowing some
probability calculus (todennÄakÄoisyyslaskenta)
will allow us to evaluate and control the like-
lihood that our statistical inference is correct
and provide the mathematical basis for infer-
ential statistics.

5.1. Combinatorics

When considering probabilities one is often
concerned with calculating the number of
events that might possibly occur in a cer-
tain situation. The branch of mathematics
concerned with this is called combinatorics
(kombinatoriikka).
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The Addition Principle

(Yhteenlaskuperiaate)

Consider an experiment with n groups of

exclusionary outcomes (in the sense that if

event i occurs, then a di®erent event j W= i

cannot occur), such that

group 1 contains k1 outcomes,

group 2 contains k2 outcomes,
...

group n contains kn outcomes.

Then:

The experiment has all in all k1+k2+ . . .+kn

possible outcomes.

We may restate the addition principle equi-

valently as: If an event P can happen in p

di®erent ways and a distinct event Q can hap-

pen in q di®erent ways, the either P or Q can

happen in p+ q di®erent ways.
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Example.

The number of roads leaving from Vaasa ei-

ther north or south are the number of roads

leading north plus the number of roads lead-

ing south.

Example.

There are 3 trains and 4 busses leaving from

A to B. Then there are all in all 3+4=7 pos-

sible ways of travelling from A to B.

Example.(football pool betting)

How many possibilities are there of betting

the results of exactly 12 out of 13 football

matches right?

We get exclusionary outcomes by consider-

ing the number of possibilities of betting the

remaining match wrong. There are two ways

of betting each of the 13 matches wrong.

Therefore there are

2 + 2+ . . .+2� ,� 1
13 times

= 26 ways

of betting exactly 12 out of 13 matches right

(= betting 1 match wrong).
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The Multiplication Principle

(Kertolasku-/ tuloperiaate)

Consider an experiment, that realizes in n

separate steps. Assume that there are

k1 possible outcomes of step 1,

k2 possible outcomes of step 2,
...

kn possible outcomes of step n,

which are independent of the outcomes in

the other steps. Then the total number of

possible outcomes is

k1 · k2 · . . . · kn.

Equivalently we may state the multiplication

principle as: If an event P can happen in p

di®erent ways and a distinct event can hap-

pen in q di®erent ways, then P and Q can

simultaneously happen in pq di®erent ways.
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Example.

If there are 3 ways from A to B and 4 ways

from B to C then there are all in all 3 ·4 = 12

ways from A to C.

Example.

How many 3-digit numbers can be formed

from the numbers 1 to 5 if each number may

appear

-not more than once? -more than once?
digit 1: 5 possibilities 5 possibilities
digit 2: 4 possibilities 5 possibilities
digit 3: 3 possibilities 5 possibilities

numbers: 5 · 4 · 3 = 60, 5 · 5 · 5 = 125.

Note:

In the special case k1 = k2 = . . . = kn =: k

the total number of possible outcomes is kn.

Example.

In a football pool betting with 13 games

there are 313 = 1594323 possible bets.
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Counting Permutations

A permutation (permutaatio) of a set is any

ordered selection of its elements.

Example:

The permutations of the set A = {a, b, c} are:
(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b, ), (c, b, a).

The important point about permutations is

the order of the elements. Two permutations

are identical only if they contain the same

elements and these appear in the same order.

It follows from the multiplication principle

that the number of permutations of a set

with n elements is given by the product

n! := n(n− 1)(n− 2) · · ·3 · 2 · 1.
This is called n factorial (luvun n kertoma).

Zero factorial (0!) is de¯ned to be 1.

Example. There are 6! = 6 ·5 ·4 ·3 ·2 ·1 = 720

permutations of the letters A,B,C,D,E,F.
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The multiplication principle may also be ap-

plied, when we use only 0 ≤ k ≤ n elements in
each arrangement, which is called variation

(variaatio) or permutation (k-permutaatio),

of a set of n items choose k, denoted by

\nPk", and given by:

nPk = n · (n− 1) · · · (n− (k − 1)) = n!

(n− k)!.

Example.

How many 2-letter words can be formed from

the word LAHTI?

5P2 =
5!

(5− 2)! =
5 · 4 · 3 · 2 · 1
3 · 2 · 1 = 5 · 4 = 20.
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Counting Combinations

Combinations (kombinaatio) of a set are se-

lections of its elements without taking their

order into account.

Example: (a, b, c) and (b, a, c) are identical com-

binations of set A = {a, b, c}.

Note that taking the variation nPk may be

thought of selecting k out of n elements and

then arranging them into order, which may

be done in k! possible ways. Therefore, dis-

regarding their order, there are nCk :=nPk/k!

combinations (kombinaatiot) of k out of n

elements. The expression

nCk =
pn
k

Q
:=

n!

k!(n− k)! =
n · (n− 1) · · · (n− k+1)

k · (k − 1) · · ·1 ,

read \n choose k" (n yli k), is called binomial

coe±cient (binomikerroin).
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Example.
The number of possibilities to draw 7 out
of 39 numbers (disregarding their order) in a
lottery game isp39
7

Q
=

39!

7!32!
=
39 · 38 · 37 · 36 · 35 · 34 · 33

7 · 6 · 5 · 4 · 3 · 2 · 1 = 15380937.

Note.

There are just as many ways of dividing a set

of n ordered elements into the categories of

k selected elements and n−k not selected el-
ements as there are ways to put the elements

back from their category \selected" or \not

selected" into their original order.

nCk denotes therefore also the number of

possibilities to arrange n elements, k of which

are of category 1 (\selected") and n − k of
which are of category 2 (\not selected") back

into order, if we disregard the order of ele-

ments of the same category. In other words,

nCk denotes also the number of permutations

of n objects, k of which are of kind 1 but oth-

erwise indistinguishable, and n−k are of kind
2 but otherwise indistinguishable.
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Permutations of Indistinguishable Objects

Suppose we have r sets with ni (i = 1, . . . , r)

indistuinguishable elements, such that n1 el-

ements are of type 1, n2 elements are of type

2, and so on. Suppose further that we wish

to select

k1 elements of type 1,

k2 elements of type 2,
...

kr elements of type r

with 0 ≤ ki ≤ ni. Then, applying the multi-
plication principle, this can be done inpn1

k1

Qpn2
k2

Q
. . .
pnr
kr

Q
ways.

Example. An association has 10 male and

15 female members of which 2 men and 3

women are to be elected for board member-

ship. This can be done inp10
2

Qp15
3

Q
=

10!

2! 8!
· 15!

3! 12!
= 20475 ways.
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Assume next that the elements are distin-

guishable and we want to select n1 elements

into the ¯rst bin, n2 elements into the second

bin, and so on, without taking the order of

the elements in any speci¯c bin into account.

Then:p n
n1

Qpn− n1
n2

Q
. . .
pn− n1 − . . .− nr−1

nr

Q
=

n!

n1!(n− n1)!
· (n− n1)!
n2!(n− n1 − n2)!

·

· · · (n− n1 − . . .− nr−1)!
nr!(n− n1 − . . .− nr−1 − nr)!

=
n!

n1!n2! · · ·nr!
=:
p n

n1, n2, . . . , nr

Q
.

This is the so called multinomial coe±cient

(multinomikerroin). It may be alternatively

interpreted as the number of distinct sequen-

ces of n elements that can be made from ni
elements of type i, where n1 + . . .+ nr = n.

Example. How many words can be build from

the letters of the word MISSISSIPPI?

Answer:
11!

1! 4! 4! 2!
= 34650 words.
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5.2. The De¯nition of Probability

In probability calculus, everything that is some-

how in°uenced by randomness, is called a

random experiment (sattunaiskoe) or random

event (sattunaisilmiÄo).

Notation:

− or S sample space/universal set=certain event

(perusjoukko = varma tapahtuma),
∅ empty set = impossible event

(tyhjÄa joukko = mahdoton tapahtuma),
A,B,C, . . . (sub-) sets (of −) = events

(−:n osajoukkoja = tapahtumat),
a, b, c, . . . elements = elementary events

(alkiota eli alkeistapaukset
= yksittÄaiset tulosmahdollisuudet),

A ∪B union of A and B = A, B, or both happen
(yhdiste = A tai B tai molemmat),

A ∩B intersection of A and B
= A and B happen simultaneously
(leikkaus = sekÄa A ettÄa B tapahtuvat),

AC complement = A does not happen
(A:n komplementti = A ei tapahdu),

A ∩B = ∅ A and B are disjoint = A and B
do not happen simultaneously
(A ja B ovat erillisiÄa = A ja B
eivÄat voi tapahtua yhtÄa aikaa).
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Classical Probability (Klassinen todennÄakÄoisyys)

One considers some random experiment or

random event with a limited number of out-

comes (for exampel throwing a coin, taking

balls out of an urn). One also assumes that

the possible outcomes are symmetrical (tu-

losmahdollosuudet ovat symmetrisiÄa) in the

sense that elementary events are equally likely.

If event A is made up of k of such equally

likely elementary events, then the probability

P(A) is de¯ned as:

P (A) :=
k

n
=

# elementary events leading to A

# all elementary events

Example. Casting a dice:

−= {1,2,3,4,5,6}, A= {2}, B = {1,3,5}.

⇒ P(A) =
1

6
, P (B) =

3

6
=
1

2
.

Note:

If the elementary outcomes of the experiment

cannot be considered equally likely, then the

symmetry principle cannot be applied.
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The Relative Frequency Approach
(Empiirinen eli tilastollinen todennÄakÄoisyys)

One assumes that the random experiment or
random event under investigation can be re-
peated arbitrary many times with uncertain
outcome. If the experiment is repeated n
times, of which fA times the event A occurs,
then A gets assigned the relative frequency
(suhteellinen frekvenssi):

pA := fA/n.

Repeating the experiment many times yields
then an approximation for the probability of
event A, that is:

pA
n→∞−→ P (A).

Example. Throwing a coin 100 times yields
51 times head up, such that

P (\head up") ≈ 51/100 = 0.51.
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Properties of Probabilities

Formally, probability is de¯ned as a set func-

tion obeying the following three axioms due

to Kolmogorov (1933):

1. 0 ≤ P(A) ≤ 1 for all A ⊆ −
2. A ∩B = ∅ ⇒ P(A ∪B) = P (A) + P(B)

(addition rule for disjoint events/

erillisten tapahtumien yhteenlaskusÄaÄantÄo)

3. P(−) = 1

The following additional properties are im-

plied by the axioms above:

4. P(A ∪B) = P(A) + P (B)− P (A ∩B)
(general addition rule/ yhteenlaskusÄaÄantÄo)

5. P(AC) = 1− P(A)
6. P(∅) = 0

7. A ⊆ B ⇒ P (A) ≤ P (B).
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Example:

Drawing one card from a deck of 52 cards.

What is the probability of drawing an ace or

a king?

A = {ace}, B = {king} ⇒ A ∩B = ∅.

Therefore:

P(A∪B) = P(A)+B(B) =
4

52
+
4

52
=

8

52
=

2

13
.

Example:(continued)

What is the probability of drawing an ace or

a spade?

C = {spade} ⇒ A ∩ C W= ∅.

Therefore:

P (A ∪ C) = P(A) + P(C)− P(A ∩ C)

=
4

52
+
13

52
− 1

52
=
16

52
=

4

13
.
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Example: (Coin-Tossing) What is the prob-

ability of getting tail up at least once when

cossing a fair coin three times?

Hint: Expressions like \at least" or \at most"

usually indicate that it pays to take a look at

the complement of the event under investi-

gation.

Let A ={at least one tail up}.
⇒ AC ={no tail up}={all head up}.
There are 23 = 8 elementary outcomes.

⇒ P (AC) =
1

8
⇒ P(A) = 1−1

8
=
7

8
.

Example: (football pool betting continued.)

The probability of betting at least 12 out of

13 matches right is:

P (12 or 13 matches right)

=P (12 m. right) + P(13 m. right)

=
26

313
+

1

313

=0.000016953.
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Geometrical Probability

Consider a closed sample space −, such as a

line in IR, an area in IR2 or a volume in IR3,
and let A be a subset of − (A ⊂ −).

Then we may consider A as an event with

geometrical probability (geometrinen toden-

nÄakÄoisyys)

P(A) =
m(A)

m(−)
,

where m denotes the length, area, or volume

of the corresponding set.

Note that this approach is no longer covered

by the concept of classical probability, be-

cause there is an in¯nite number of possible

outcomes, but the axioms by Kolmogorov do

still apply.

Example. What is the probability of randomly throw-
ing a dart such that it hits within the red area with
a radius of r = 3cm, given that the dart will always
land within the boundary of the target with a radius
of R = 15cm?

P =
πr2

πR2
=

9

225
= 0.04.
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5.3. Conditional Probability and Independence

In probability calculus statistical dependence

(tilastollinen riippuvuus) between two events

becomes visible by their probabilities depend-

ing upon whether the other event has hap-

pened or not. This leads to the concept

of conditional probability (ehdollinen toden-

nÄakÄoisyys).

Example. Consider two cosses of a fair coin,

such that −= {(H,H), (H,T), (T,H), (T, T)}.
Let:

A={identical tosses}={(H,H),(T,T)},
B={at least one head}={(H,H),(H,T),(T,H)}.
⇒ P(A) =

1

2
, P(B) =

3

4
.

The probability of A given that event B oc-

cured is 13, because (T,T) is no longer in the

sample space, such that the favourable event

has changed from A to A ∩ B =(H,H). This

may be generalized as follows.
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The conditional probability of A given B

(A:n todennÄakÄoisyys ehdolla B) is de¯ned as:

P (A|B) := P (A ∩B)
P(B)

, P(B) > 0.

This may be equivalently formulated as the

so called general multiplication rules:

P (A ∩B) = P (B)P (A|B)
or:

P(A ∩B) = P (A)P (B|A).

Example: What is the probability of ¯rst draw-

ing an ace and then a red king from a deck

of 52 cards?

Let A={1st card ace}, B={2nd card red king}.

P(A ∩B) = P (A)P (B|A) = 4

52
· 2
51

=
2

663
.
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Example. Two dice tosses, consider the events

A = {(i, j)|i+j = 9} and B = {(i, j)|i ≥ j+1}.
What is P(A|B)?

0 1 2 3 4 5 6
0

1

2

3

4

5

6

i

j

P(B) =
15

36
, P(A ∩B) = 2

36

⇒ P(A|B) = P(A ∩B)
P(B)

=
2/36

15/36
=

2

15
.

153



Example: Consider again two coin tosses. Let

A={1. toss head up} and B={2. toss tail up}.
Then:

P (B|A) = P(A ∩B)
P (A)

=
1/4

1/2
=
1

2
= P (B).

In this case, the occurence of the ¯rst event

has no impact upon the probability of the

second event.

Events A and B are called (statistically) in-

dependent (tilastollisesti riippumaton), if

P (A|B) = P (A) or P (B|A) = P (B).

This may be equivalently written as:

P(A ∩B) = P(A)P(B),

also known as the multiplication rule (kerto-

laskusÄaÄantÄo) for independent events.
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Example. The Guests A, B, and C arrive in-

dependently of each other with probabilities

0.8, 0.6 and 0.9.

The probability that everybody arrives is:

P(A∩B∩C) = P(A)P (B)P(C) = 0.8·0.6·0.9 = 0.432.

The probability that nobody arrives is:

P(AC ∩BC ∩ CC) = P (AC)P(BC)P(CC)

= 0.2 · 0.4 · 0.1 = 0.008.
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5.4. Total Probability and Bayes' Rule

The Law of Total Probability

Let B1, B2, . . . , Bn form a partition (ositus) of

the sample space, that is:

B1 ∪B2 ∪ . . . ∪Bn = −
and

Bi ∩Bj = ∅ for all i W= j.

Then: P(A) =
n3
i=1

P (A ∩Bi).

Inserting P (A∩Bi) = P(A|Bi)P(Bi) from the

de¯nition of the conditional probability we

get the law of total probability (kokonais-

todennÄakÄoisyys):

P(A) =
n3
i=1

P (A|Bi)P (Bi).

The conditional probabilities P (A|Bi) are some-
times referred to as transition probabilities

(siirtymÄatodennÄakÄoisyyksiÄa) from state Bi to

state A.
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Example.

Concern drawing a ball from di®erent urns

depending upon the result of tossing a dice:

Dice no. urn white balls black balls

1,2,3 1 1 2
4 2 2 1
5,6 3 3 3

Then, using the law of total probability,

P(A) =
n3
i=1

P (A|Bi)P (Bi),

with the events A =drawing a white ball,

and Bi=drawing from urn i, the probability

of drawing a white ball becomes:

P(A) =
1

3
· 3
6
+
2

3
· 1
6
+
3

6
· 2
6
=
4

9
.

157



Bayes' Rule

Bayes' Rule (Bayesin Kaava) allows us to re-

verse the conditionality of events, that is,

we can obtain P (B|A) from P (A|B). Recall
for that purpose the de¯nition of conditional

probability:

P(B|A) = P(A ∩B)
P (A)

,

which could be equivalently formulated as:

P(A ∩B) = P (A|B)P(B).

Inserting the latter equation into the former

yields Bayes' Rule (Bayesin Kaava):

P (B|A) = P (A|B)P(B)
P (A)

.

158



Example. (continued)

Dice no. urn white balls black balls

1,2,3 1 1 2
4 2 2 1
5,6 3 3 3

Given that we drew a white ball, the proba-

bility that it was taken from urn 3 is using

Bayes rule:

P (B3|A) =
P(A|B3)P (B3)

P (A)
=

3
6 · 26
4
9

=
3

8
,

where we have used our earlier result that the

unconditional probability of drawing a white

ball is P(A) =
�3
i=1P(A|Bi)P(Bi) = 4

9.

This result may be generalized to an alterna-

tive formulation of Bayes rule.
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Bayes' Rule (extended)

Let B1, B2, . . . , Bn form a partition of −. Then:

P (Bi|A) =
P (A|Bi)P(Bi)�n
j=1P(A|Bj)P(Bj)

, i = 1 . . . n.

Example.

Consider testing for a rare illness occuring

with a probability of only P(I) = 0.1%, so the

unconditional probability of being healthy is

P(H) = 99.9%. The test, when administered

to an ill person, reports a positive test result

with probability P(+|I) = 92%. However, if

administered to a person who is not ill, it will

erroneously report a positive test result with

probability P(+|H) = 4%. The probability of

being ill, given a positive test result, is then:

P(I|+) = P (+|I)P(I)
P (+|I)P(I) + P (+|H)P(H)

=
0.92 · 0.001

0.92 · 0.001+ 0.04 · 0.999 = 2.25%.
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