
3. Univariate Time Series Models

3.1 Stationary Processes and Mean Reversion

Definition 3.1: A time series yt, t = 1, . . . , T
is called (covariance) stationary if

(1)

E[yt] = µ, for all t

Cov[yt, yt−k] = γk, for all t

Var[yt] = γ0 (<∞), for all t

Any series that are not stationary are said to
be nonstationary.

Stationary time series are mean-reverting, be-
cause the finite variance guarantees that the
process can never drift too far from its mean.

The practical relevance for a trader is that as-
sets with stationary price series may be prof-
itably traded by short selling when its price is
above the mean and buying back when the
price is below the mean. This is known as
range trading. Unfortunately, by far the most
price series must be considered nonstation-
ary.
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When deriving properties of time series pro-
cesses, we shall frequently exploit the follow-
ing calculation rules, where small and capi-
tal letters denote constants and random vari-
ables, respectively.

Expected Value:

E(aX + b) = aE(X) + b(2)

E(X + Y ) = E(X) + E(Y )(3)

E(XY ) = E(X)E(Y ) for X,Y indep.(4)

Variance:

V (X) = E(X2)− E(X)2(5)

V (aX + b) = a2V (X)(6)
(7) V (X+Y ) = V (X)+V (Y )+2Cov(X,Y )

Covariance:

(8) Cov(X,Y ) = E(XY )− E(X)E(Y )

⇒ Cov(X,Y ) = Cov(Y,X), Cov(X,X) = V (X)
and for independent X,Y : Cov(X,Y ) = 0

(9) Cov(aX + b, cY + d) = acCov(X,Y )

(10) Cov(X+Y, Z) = Cov(X,Z)+Cov(Y, Z)
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Stationarity implies that the covariance and

correlation of observations taken k periods

apart are only a function of the lag k, but

not of the time point t.

Autocovariance Function

(11)

γk = Cov[yt, yt−k] = E[(yt − µ)(yt−k − µ)]

k = 0,1,2, . . ..

Variance: γ0 = Var[yt].

Autocorrelation function

(12) ρk =
γk
γ0
.

Autocovariances and autocorrelations of co-

variance stationary processes are symmetric.

That is, γk = γ−k and ρk = ρ−k (exercise).
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The Wold Theorem, to which we return later,

assures that all covariance stationary proces-

ses can be built using using white noise as

building blocks. This is defined as follows.

Definition 3.2:

The time series ut is a white noise process if

(13)

E[ut] = µ, for all t

Cov[ut, us] = 0, for all t 6= s

Var[ut] = σ2
u <∞, for all t.

We denote ut ∼ WN(µ, σ2
u).

Remark 3.2: Usually it is assumed in (13) that µ = 0.

Remark 3.3: A WN-process is obviously stationary.
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As an example consider the so called first

order autoregressive model, defined below:

AR(1)-process:

(14) yt = φ0 + φ1yt−1 + ut

with ut ∼ WN(0, σ2) and |φ1| < 1.

Note that the AR(1) process reduces to white

noise in the special case that φ1 = 0.

We shall later demonstrate how the AR(1)

process may be written as a linear combina-

tion of white noise for arbitrary |φ1| < 1 and

show that this condition is necessary and suf-

ficient for the process to be stationary.

For now we assume that the process is sta-

tionary, such that among others

E(yt) = E(yt−1) and V (yt) = V (yt−1)

and use this to derive the expectation and

variance of the process together with its first

order autocorrelation coefficient.
5



Taking unconditional expectation and vari-

ance of (14) yields

(15) E(yt) =
φ0

1− φ1
, V (yt) =

σ2

1− φ2
1
.

In deriving the first order autocorrelation co-

efficient ρ1, note first that we may assume

without loss of generality that φ0 = 0, since

shifting the series by a constant has no im-

pact upon variances and covariances. Then

E(yt) = E(yt−1) = 0, such that by indepen-

dence of ut and yt−1:

γ1 = Cov(yt, yt−1) = E[(φ1yt−1 + ut) · yt−1]

= φ1E(y2
t−1) + E(ut) · E(yt−1)

= φ1V (yt−1) = φ1γ0.

Hence

(16) ρ1 = γ1/γ0 = φ1.

That is, the first order autocorrelation ρ1 is

given by the lag coefficient φ1.
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As the following slide demonstrates, mean

reversion is the faster the lower the autoco-

variances are.

The fastest reverting process of all is the

white noise process, which may be interpreted

as an AR(1) process with φ1 = 0.

The larger the the autocovariance becomes,

the longer it takes to revert to the mean

and the further drifts the series away from

its mean despite identical innovations ut.

In the limit when φ1 = 1, the series is no

longer stationary and there is no mean re-

version.
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The AR(1) process may be generalized to

a pth order autoregressive model by adding

further lags as follows.

AR(p)-process:

(17)

yt = φ0 + φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + ut

where ut is again white noise with µ = 0.

The AR(p)-process is stationary if the roots

of the characteristic equation

(18) mp − φ1m
p−1 − . . .− φp = 0

are inside the unit circle (have modulus less

than one).

Example: The characteristic equation for the

AR(1)-process is m− φ1 = 0 with root m = φ1,

such that the unit root condition |m| < 1 is

identical to the earlier stated stationarity con-

dition |φ1| < 1 for AR(1)-processes.
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The moving average model of order q is

MA(q)-process:

(19) yt = c+θ1ut−1+θ2ut−2+. . .+θqut−q+ut

where again ut ∼WN(0, σ2).

Its first and second moments are

E(yt) = c(20)

V (yt) = (1 + θ2
1 + θ2

2 + . . .+ θ2
q )σ2(21)

γk = (θk + θk+1θ1 + . . .+ θqθq−k)σ2(22)

for k ≤ q and 0 otherwise.

This implies that in contrast to AR(p) mod-

els, MA(q) models are always covariance sta-

tionary without any restrictions on their pa-

rameters.
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Autoregressive Moving Average (ARMA) model

A covariance stationary process is an ARMA(p,q)

process of autoregressive order p and moving

average order q if it can be written as

(23)
yt = φ0 + φ1yt−1 + · · ·+ φpyt−p

+ut + θ1ut−1 + · · ·+ θqut−q

For this process to be stationary the number

of moving average coefficients q must be fi-

nite and the roots of the same characteristic

equation as for the AR(p) process,

mp − φ1m
p−1 − . . .− φp = 0

must all lie inside the unit circle.

EViews displays the roots of the characteris-

tic equation in the ’ARMA Diagnostics View’,

which is available from the output of any re-

gression including AR or MA terms by select-

ing ’ARMA Structure’ under ’Views’.
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Example: (Alexander, PFE, Example II.5.1)

Is the ARMA(2,1) process below stationary?

(24) yt = 0.03 + 0.75yt−1 − 0.25yt−2 + ut + 0.5ut−1

The characteristic equation is

m2 − 0.75m+ 0.25 = 0

with roots

m =
0.75±

√
0.752 − 4 · 0.25

2

=
0.75± i

√
0.4375

2
= 0.375± 0.3307i,

where i =
√
−1 (the imaginary number).

The modulus of both these roots is√
0.3752 + 0.33072 = 0.5,

which is less than one in absolute value.

The process is therefore stationary.
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Inversion and the Lag Operator

ARMA models may be succinctly expressed

using the lag operator L:

Lyt = yt−1, L
2yt = yt−2, . . . , L

pyt = yt−p

In terms of lag-polynomials

(25) φ(L) = 1− φ1L− φ2L
2 − · · · − φpLp

(26) θ(L) = 1 + θ1L+ θ2L
2 + · · ·+ θqL

q

the ARMA(p,q) in (23) can be written shortly

as

(27) φ(L)yt = φ0 + θ(L)ut

or

(28) yt = µ+
θ(L)

φ(L)
ut,

where

(29) µ = E[yt] =
φ0

1− φ1 − · · · − φp
.
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It turns out that the stationarity condition for

an ARMA process, that all roots of the char-

acteristic equation be inside the unit circle,

may be equivalently rephrased as the require-

ment that all roots of the polynomial

(30) φ(L) = 0

are outside the unit circle (have modulus larger

than one).

Example: (continued).

The roots of the lag polynomial

Φ(L) = 1− 0.75L+ 0.25L2 = 0

are

L =
3±

√
32 − 4 · 4
2

= 1.5±
√

7

2
i

with modulus√
1.52 + 1.75 = 2 > 1.

Hence the process is stationary.
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Wold Decomposition

Theorem 3.1: (Wold) Any covariance sta-

tionary process yt, t = . . . ,−2,−1,0,1,2, . . .

can be written as an infinite order MA-process

(31)

yt = µ+ ut + a1ut−1 + . . . = µ+
∞∑
h=0

ahut−h,

where a0 = 1, ut ∼ WN(0, σ2
u), and

∑∞
h=0 a

2
h <∞.

In terms of the lag polynomial

a(L) = a0 + a1L+ a2L
2 + · · ·

equation (31) can be written in short as

(32) yt = µ+ a(L)ut.
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For example, a stationary AR(p) process

(33) φ(L)yt = φ0 + ut

can be equivalently represented as an infinite
order MA process of the form

(34) yt = φ(L)−1(φ0 + ut),

where φ(L)−1 is an inifinite series in L.

Example: Inversion of an AR(1)-process
The lag polynomial of the AR(1)-process is
φ(L) = 1− φ1L with inverse

(35) φ(L)−1 =
∞∑
i=0

φi1L
i for |φ1| < 1.

Hence,

yt =
∞∑
i=0

φi1L
i(φ0 + ut)(36)

=
φ0

1− φ1
+
∞∑
i=0

φi1ut−i.

As a byproduct we have now proven that
the AR(1) process is indeed stationary for
|φ1| < 1, because then it may be represented
as an MA process, which is always stationary.
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Similiarly, a moving average process

(37) yt = c+ θ(L)ut

may be written as an AR process of infinite
order

(38) θ(L)−1yt = θ(L)−1c+ ut,

provided that the roots of θ(L) = 0 lie out-
side the unit circle, which is equivalent to the
roots of the characteristiq equation

mq + θ1m
q−1 + . . .+ θq = 0

being inside the unit circle. In that case the
MA-process is called invertible. The same
condition applies for invertibility of arbitrary
ARMA(p,q) processes.

Example: (II.5.1 continued) The process (24)

yt = 0.03 + 0.75yt−1 − 0.25yt−2 + ut + 0.5ut−1

is invertible because

θ(L) = 1 + 0.5L = 0 when L = −2 < −1, and

m+ 0.5 = 0 when m = −0.5, such that |m| < 1.
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Second Moments of General ARMA Processes

We shall in the following derive a strategy to

find all autocorrelations for arbitrary ARMA

processes. Consider the general ARMA pro-

cess (23), where we assume without loss of

generality that φ0 = 0. Multiplying with yt−k
and taking expectations yields

(39)
E(yt−k, yt)

= φ1E(yt−k, yt−1) + · · ·+ φpE(yt−k, yt−p)

+E(yt−k, ut)+θ1E(yt−k, ut−1)+· · ·+θqE(yt−k, ut−q).

This implies for k > q:

(40) γk = φ1γk−1 + . . .+ φpγk−p.

Dividing by the variance yields the so called

Yule Walker equations, from which we may

recursively determine the autocorrelations of

any stationary ARMA process for k > q:

(41) ρk = φ1ρk−1 + . . .+ φpρk−p.
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Example: Autocorrelation function for AR(1)

We know from equation (16) that the first

order autocorrelation of the AR(1) process

yt = φ0 + φ1yt−1 + ut

is ρ1 = φ1.

Hence, by recursively applying the Yule Walker

equations with p = 1 we obtain

(42) ρk = φk1,

such that the autocorrelation function levels

off for increasing k, since |φ1| < 1.

For the general ARMA(p,q) process (23), we

obtain for k = 0,1, . . . , q from (39) a set of

q + 1 linear equations, which we may solve to

obtain γ0, γ1, . . . , γq, and the autocorrelations

ρ1, . . . , ρq from dividing those by the variance

γ0.
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Example: ACF for ARMA(1,1)

Consider the ARMA(1,1) model

(43) yt = φyt−1 + ut + θut−1.

The equations (39) read for k=0 and k=1:

γ0 = φγ1 + σ2 + θ(θ + φ)σ2,(44)

γ1 = φγ0 + θσ2.(45)

In matrix form:

(46)(
1 −φ
−φ 1

)(
γ0
γ1

)
=

(
(1 + θ(θ + φ))σ2

θσ2

)
,

such that

(47)(
γ0
γ1

)
=

1

1− φ2

(
1 φ
φ 1

)(
(1 + θ(θ + φ))σ2

θσ2

)
,

where we have used that

(48)

(
1 −φ
−φ 1

)−1

=
1

1− φ2

(
1 φ
φ 1

)
.
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The variance of the ARMA(1,1) process is

therefore

(49) γ0 =
1 + 2θφ+ θ2

1− φ2
σ2.

Its first order covariance is

(50) γ1 =
φ+ θ2φ+ θφ2 + θ

1− φ2
σ2,

and its first order autocorrelation is

(51) ρ1 =
(1 + φθ)(φ+ θ)

1 + 2θφ+ θ2
.

Higher order autocorrelations may be obtained

by applying the Yule Walker equations

ρk = φρk−1.

Note that these results hold also for ARMA(1,1)

processes with φ0 6= 0, since variance and co-

variances are unaffected by additive constants.
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Response to Shocks

When writing an ARMA(p,q)-process in MA(∞)

form, that is,

(52) yt = µ+ ψ(L)ut,

then the coefficients ψk of the lag polynomial

(53) ψ(L) = 1 + ψ1L+ ψ2L
2 + . . .

measure the impact of a unit shock at time t

on the process at time t+ k. The coefficient

ψk as a function of k = 1,2, . . . is therefore

called the impulse response function of the

process.
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In order to find its values, recall from (28)

that ψ(L) = θ(L)/φ(L), such that

1 + θ1L+ . . .+ θqL
q(54)

=(1− φ1L− . . .− φpLp)
× (1 + ψ1L+ ψ2L

2 + . . .)

Factoring out the right hand side yields

1 + θ1L+ . . .+ θqL
q(55)

=1 + (ψ1 − φ1)L+ (ψ2 − φ1ψ1 − φ2)L2

+ (ψ3 − φ1ψ2 − φ2ψ1 − φ3)L3 + . . .

such that by equating coefficients:

ψ1 =θ1 + φ1(56)

ψ2 =θ2 + φ1ψ1 + φ2

ψ3 =θ3 + φ1ψ2 + φ2ψ1 + φ3

. . .
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Example: (Alexander, PFE, Example II.5.2)

Consider again the stationary and invertible

ARMA(2,1) process (24)

yt = 0.03 + 0.75yt−1 − 0.25yt−2 + ut + 0.5ut−1.

The impulse response function is given by

ψ1 =0.5 + 0.75 = 1.25,

ψ2 =0.75 · 1.25− 0.25 = 0.6875

ψ3 =0.75 · 0.6875− 0.25 · 1.25 = 0.203125

ψ4 =0.75 · 0.203125− 0.25 · 0.6875 = −0.0195

. . .

EViews displays the impulse response func-

tion under View/ARMA Structure. . . /Impulse

Response.
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Forecasting with ARMA models

With estimated parameters µ̂, φ̂1, . . . , φ̂p and
θ̂1, . . . , θ̂q, the optimal s-step-ahead forecast
ŷT+s for an ARMA(p,q)-process at time T is

(57)

ŷT+s = µ̂+
p∑

i=1

φ̂i(ŷT+s−i− µ̂)+
q∑

j=1

θ̂juT+s−j,

where uT+s−j is set to zero for all future
innovations, that is, whenever s > j.

These are easiest generated iteratively:

ŷT+1 = µ̂+
p∑

i=1

φ̂i(yT+1−i−µ̂)+
q∑

j=1

θ̂juT+1−j,

ŷT+2 = µ̂+
p∑

i=1

φ̂i(ŷT+2−i−µ̂)+
q∑

j=2

θ̂juT+2−j,

and so on.

These are called conditional forecasts, be-
cause they depend upon the recent realiza-
tions of yt and ut, and are available from
EViews (together with confidence intervals)
from the ’Forecast’ button.
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Unconditional Forecasting

The unconditional (long-run) forecast for an

ARMA(p,q)-process is given by the estimated

mean

(58) µ̂ =
φ̂0

1− φ̂1 − · · · − φ̂p
.

yt is normally distributed with mean µ and

variance γ0, such that the usual confidence

intervals for normally distributed random vari-

ables apply. In particular, a 95% confidence

interval for yt is

(59) CI95% =
[
µ̂± 1.96 ·

√
γ̂0

]
.

This is of practical interest when the series

yt represents an asset which can be traded

and one wishes to identify moments of over-

or underpricing.
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Example.

Estimating an ARMA(1,1) model on the spread
in Figure II.5.3 of Alexanders book (PFE)
yields the output below:

Dependent Variable: SPREAD
Method: Least Squares
Date: 01/18/13   Time: 13:35
Sample (adjusted): 9/21/2005 6/08/2007
Included observations: 399 after adjustments
Convergence achieved after 9 iterations
MA Backcast: 9/20/2005

Variable Coefficient Std. Error t-Statistic Prob.  

C 65.34043 7.517512 8.691763 0.0000
AR(1) 0.867047 0.047842 18.12306 0.0000
MA(1) -0.599744 0.073494 -8.160486 0.0000

R-squared 0.207908    Mean dependent var 64.68170
Adjusted R-squared 0.203907    S.D. dependent var 55.58968
S.E. of regression 49.59935    Akaike info criterion 10.65332
Sum squared resid 974197.7    Schwarz criterion 10.68332
Log likelihood -2122.338    Hannan-Quinn criter. 10.66520
F-statistic 51.97092    Durbin-Watson stat 1.921155
Prob(F-statistic) 0.000000

Inverted AR Roots       .87
Inverted MA Roots       .60

µ̂ = 65.34 and applying the variance formula
for ARMA(1,1) processes (49) yields

γ̂0 =
1+2·0.867·(−0.6)+(−0.6)2

1− 0.8672
·49.5992

=3 168.2

⇒ CI95% = 65.34± 1.96 ·
√

3 168.2

= [−44.98; 175.66]
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Partial Autocorrelation

The partial autocorrelation function φkk of a

time series yt at lag k measures the correla-

tion of yt and yt−k adjusted for the effects of

yt−1, . . . , yt−k+1. It is given by the k’th or-

der autocorrelation function of the residuals

from regressing yt upon the first k−1 lags:

(60) φkk = Corr[yt − ŷt, yt−k − ŷt−k],

where (assuming here for simplicity φ0 = 0)

(61)

ŷt = φ̂k1yt−1 + φ̂k2yt−2 + · · ·+ φ̂k−1,k−1yt−k+1.

It may also be interpreted as the coefficient

φkk in the regression

(62)

yt = φk1yt−1 + φk2yt−2 + · · ·+ φkkyt−k + ut.

From this it follows immediately that in an

AR(p)-process φkk = 0 for k > p, which is a

help in discriminating AR-processes of differ-

ent orders with otherwise similiar autocorre-

lation functions.
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Estimation of acf

Autocorrelation (and partial autocorrelation)

functions are estimated by their empirical

counterparts

(63) γ̂k =
1

T − k

T∑
t=k+1

(yt − ȳ)(yt−k − ȳ),

where

ȳ =
1

T

T∑
t=1

yt

is the sample mean.

Similarly

(64) rk = ρ̂k =
γ̂k
γ̂0
.
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Statistical inference

If the model is well specified, the residuals
must be white noise, thas is in particular un-
correlated.

It can be shown that if ρk = 0, then E[rk] = 0
and asymptotically

(65) Var[rk] ≈
1

T
.

Similarly, if φkk = 0 then E[φ̂kk] = 0 and asymp-
totically

(66) Var[ρ̂kk] ≈
1

T
.

In both cases the asymptotic distribution is
normal.

Thus, testing

(67) H0 : ρk = 0,

can be tested with the test statistic

(68) z =
√
Trk,

which is asymptotically N(0,1) distributed
under the null hypothesis (67).
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The ’Portmanteau’ statistics to test the hy-

pothesis

(69) H0 : ρ1 = ρ2 = · · · = ρm = 0

is due to Box and Pierce (1970)

(70) Q∗(m) = T
m∑
k=1

r2
k ,

m = 1,2, . . ., which is (asymptotically) χ2
m-

distributed under the null-hypothesis that all

the first autocorrelations up to order m are

zero.

Mostly people use Ljung and Box (1978) mod-

ification that should follow more closely the

χ2
m distribution

(71) Q(m) = T (T + 2)
m∑
k=1

1

T − k
r2
k .

The latter is provided in EViews under ’View/

Residual Diagnostics/Correlogram–Q-statistics’

for residuals, and under ’View/ Correlogram’

for the series themselves.
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On the basis of autocovariance functions one

can preliminary infer the order of an ARMA-

process

Theoretically:

=======================================================
acf pacf

-------------------------------------------------------
AR(p) Tails off Cut off after p
MA(q) Cut off after q Tails off
ARMA(p,q) Tails off Tails off
=======================================================
acf = autocorrelation function
pacf = partial autocorrelation function

Example: (Figure II.5.3 continued)
Correlogram of Residuals

Date: 01/21/13   Time: 17:17
Sample: 9/20/2005 6/08/2007
Included observations: 400

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.401 0.401 64.783 0.000
2 0.299 0.165 100.93 0.000
3 0.222 0.068 120.83 0.000
4 0.190 0.059 135.41 0.000
5 0.235 0.131 157.81 0.000
6 0.103 -0.074 162.13 0.000
7 0.150 0.074 171.38 0.000
8 0.097 -0.011 175.26 0.000

The ACF and PACF of the series suggest an

ARMA(p, q) model with p no larger than two.
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Example: continued.

Neither a simple AR(1) model nor a simple MA(1)
model are appropriate, because they have still signif-
icant autocorrelation in the residuals left (not shown).

However, there is no autocorrelation left in the resid-
uals of an ARMA(1,1) model, and it provides a rea-
sonable fit of the ACF and PACF of yt (available in
EViews under View/ARMA Structure.../Correlogram):
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Example: continued.

Also the residuals or an AR(2) model are

white noise (not shown), but the fit to the

ACF and PACF of yt is considerably worse:
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Example: continued.

An ARMA(2,1) has a slightly improved fit

to the ACF and PACF of yt as compared to

an ARMA(1,1) model (not shown), but the

AR(2) term is deemed insignificant:

Dependent Variable: SPREAD
Method: Least Squares
Date: 01/21/13   Time: 18:00
Sample (adjusted): 9/22/2005 6/08/2007
Included observations: 398 after adjustments
Convergence achieved after 8 iterations
MA Backcast: 9/21/2005

Variable Coefficient Std. Error t-Statistic Prob.  

C 64.11695 8.201224 7.817974 0.0000
AR(1) 1.081246 0.104184 10.37822 0.0000
AR(2) -0.148846 0.076367 -1.949092 0.0520
MA(1) -0.779206 0.087759 -8.878954 0.0000

R-squared 0.215153     Mean dependent var 64.60553
Adjusted R-squared 0.209177     S.D. dependent var 55.63879
S.E. of regression 49.47860     Akaike info criterion 10.65096
Sum squared resid 964563.9     Schwarz criterion 10.69102
Log likelihood -2115.540     Hannan-Quinn criter. 10.66683
F-statistic 36.00285     Durbin-Watson stat 2.005595
Prob(F-statistic) 0.000000

Inverted AR Roots       .92           .16
Inverted MA Roots       .78

We conclude that an ARMA(1,1) model is

most appropriate for modelling the spread in

Figure II.5.3.
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Other popular tools for detecting the order

of the model are Akaike’s (1974) information

criterion (AIC)

(72) AIC(p, q) = log σ̂2
u + 2(p+ q)/T

or Schwarz’s (1978) Bayesian information cri-
terion (BIC)∗

(75) BIC(p, q) = log(σ̂2) + (p+ q) log(T )/T .

There are several other similar criteria, like

Hannan and Quinn (HQ).

The best fitting model in terms of the cho-

sen criterion is the one that minimizes the

criterion.

The criteria may end up with different orders

of the model!
∗More generally these criteria are of the form

(73) AIC(m) = −2`(θ̂m) + 2m

and

(74) BIC(m) = −2`(θ̂m) + log(T )m,

where θ̂m is the MLE of θm, a parameter with m
components, `(θ̂m) is the value of the log-likelihood
at θ̂m.
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Example: Figure II.5.3 continued.

============================
p q AIC BIC
----------------------------
0 0 10.87975 10.88972
1 0 10.70094 10.72093
0 1 10.75745 10.77740
2 0 10.67668 10.70673
1 1 10.65332 10.68332*
0 2 10.71069 10.74062
1 2 10.65248 10.69247
2 1 10.65096 10.69102
2 2 10.64279* 10.69287
============================
* = minimum

The Schwarz criterion suggests ARMA(1,1),
whereas AIC suggests ARMA(2,2) due to an
even better fit.

However, the AR(1) term in the ARMA(2,2)
model is deemed insignificant (not shown).
Reestimating the model without the AR(1)
term yields AIC=10.6454 and BIC=10.68547.

This is the best model if we prefer goodness
of fit over parsimony. ARMA(1,1) is the best
model if we prefer parsimony over goodness
of fit.
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3.2 Random Walks and Efficient Markets

According to the efficient market hypothe-

sis all public information currently available is

immediately incorporated into current prices.

This means that any new information arriving

tomorrow is independent of the price today.

A price process with this property is called a

random walk.

Formally we say that a process is a random

walk (RW) if it is of the form

(76) yt = µ+ yt−1 + ut,

where µ is the expected change of the process

(drift) and ut ∼ i.i.d.(0, σ2
u). (i.i.d. means

independent and identically distributed.)

Alternative forms of RW assume only that

the ut’s are independent (e.g. variances can

change) or just that the ut’s are uncorrelated

(autocorrelations are zero).
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Martingales

It can be shown that properly discounted prices
in arbitrage-free markets must be martingales,
which in turn are defined in terms of so called
conditional expectations

(77) Et(X) := E(X|It),
that is, expected values conditional upon the
information set It available at time t, which
contains the realisations of all random vari-
ables known by time t.

Et(X) is calculated like an ordinary expecta-
tion, however replacing all random variables,
the outcomes of which are known by time t,
with these outcomes. It may be interpreted
as the best forecast we can make for X using
all information available at time t.

Hence the ordinary (unconditional) expecta-
tion E(X) may be thought of as a conditional
expectation at time t = −∞:

(78) E(X) = E−∞(X).
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A stochastic process yt is called a martingale

if the best forecast of future realizations yt+s

is the the realization at time t, that is,

(79) Et(yt+s) = yt.

The random walk (76) is a special case of a

martingale if µ = 0 since then

Et(yt+s) = Et(yt+s−1 + ut+s)

= Et

yt +
t+s∑
k=1

ut+k


= yt + Et

 t+s∑
k=1

ut+k


= yt.

The last equality follows from the fact that

by independence of the innovations ut no in-

formation available before t+ k helps in fore-

casting ut+k, such that

Et(ut+k) = E(ut+k) = 0.
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The Law of Iterated Expectations

Calculations involving conditional expectations

make frequently use of the law of iterated

expectations, which states that optimal fore-

casts of random variables cannot be improved

upon by producing optimal forecasts of fu-

ture optimal forecasts, formally:

(80) Et(X) = EtEt+s(X) = Et+sEt(X),

where s ≥ 0, that is, the information set It+s

at time point t+s contains at least the in-

formation available at time point t (formally:

It ⊂ It+s). This implies in particular that

(81) E(X) = EEt(X) = EtE(X) for all t.

Repeated application of (80) yields

(82) EtEt+1Et+2 . . . = Et.

41



Example: Rational Expectation Hypothesis

Muth formulated in 1961 the rational expectation hy-

pothesis, which says that in the aggregate market par-

ticipants behave as if they knew the true probability

distribution of an assets next periods price and use all

available information at time t in order to price the

asset such that its current price St equals the best

available forecast of the price one period ahead,

St = Et(St+1),

which is just the defining property of a martingale.

The forecasting errors

εt+1 = St+1 − Et(St+1)
are serially uncorrelated with zero mean since by the
law of iterated expectations

E(εt+1) = EEt(εt+1) = E(Et(St+1)− Et(St+1)) = 0

and

Cov(εt+1, εt+s) = E(εt+1εt+s) = EEt+s−1(εt+1εt+s)

= E(εt+1Et+s−1εt+s) = E(εt+1 · 0) = 0.

Discounted price changes are then also uncorrelated

with zero mean since under rational expectations

St+1 − St = St+1 − Et(St+1) = εt+1.
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3.3 Integrated Processes and Stocastic Trends

A times series process is said to be integrated
of order 1 and denoted I(1) if it is not sta-
tionary itself, but becomes stationary after
applying the first difference operator

(83) ∆ := 1− L,
that is, ∆yt = yt − yt−1 is stationary:
(84)
yt ∼ I(1) ⇔ yt = µ+yt−1 +ut, ut ∼ I(0),

where I(0) denotes stationary series.

A random walk is I(1) with i.i.d. increments
is a special case, but more general I(1)-proces-
ses could have autocorrelated differences with
moving average components. If a process is
I(1), we call it a unit root process and say
that it has a stochastic trend.

A process is integrated of order d and de-
noted I(d) if it is not stationary and d is the
minimum number of times it must be dif-
ferenced to achieve stationarity. Integrated
processes of order d > 1 are rare.
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ARIMA-model

As an example consider the process

(85) ϕ(L)yt = θ(L)ut.

If, say d, of the roots of the polynomial ϕ(L)=0

are on the unit circle and the rest outside the

circle (the process has d unit roots), then

ϕ(L) is a nonstationary autoregressive oper-

ator.

We can write then

φ(L)(1− L)d = φ(L)∆d = ϕ(L)

where φ(L) is a stationary autoregressive op-

erator and

(86) φ(L)∆dyt = θ(L)ut

which is a stationary ARMA.

We say that yt follows and ARIMA(p,d,q)-

process.
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A symptom of integrated processes is that

the autocorrelations do not tend to die out.

Example 3.5: Autocorrelations of Google (log)

price series

Included observations: 285
===========================================================
Autocorrelation Partial AC AC PAC Q-Stat Prob
===========================================================

.|******* .|******* 1 0.972 0.972 272.32 0.000

.|******* .|. 2 0.944 -0.020 530.12 0.000

.|******* *|. 3 0.912 -0.098 771.35 0.000

.|****** .|. 4 0.880 -0.007 996.74 0.000

.|****** .|. 5 0.850 0.022 1207.7 0.000

.|****** .|. 6 0.819 -0.023 1404.4 0.000

.|****** .|. 7 0.790 0.005 1588.2 0.000

.|****** .|. 8 0.763 0.013 1760.0 0.000

.|***** .|. 9 0.737 0.010 1920.9 0.000

.|***** .|. 10 0.716 0.072 2073.4 0.000

.|***** .|. 11 0.698 0.040 2218.7 0.000

.|***** *|. 12 0.676 -0.088 2355.7 0.000
===========================================================

45



Deterministic Trends

The stochastic trend of I(1)-pocesses given
by (84) must be distinguished from a deter-
ministic trend, given by

(87) yt = α+ βt+ ut, ut ∼ i.i.d(0, σ2
u),

also called I(0)+trend process.

Neither (84) nor (87) is stationary, but the
methods to make them stationary differ:

I(1)-pocesses must be differenced to become
stationary, which is why they are also called
difference-stationary.

A I(0)+trend process becomes stationary by
taking the residuals from fitting a trend line
by OLS to the original series, which is why it
is also called trend-stationary.

Price series are generally difference-stationary,
which implies that the proper transformation
to render them stationary is taking first dif-
ferences.
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To see that taking deviations from a trend of

a I(1)-pocesses does not make it stationary,

iterate (84) to obtain

yt = y0 + µt+
t∑

i=1

ui.

The term
∑t
i=1 ui is clearly non-stationary

because its variance increases with t.

On the other hand, applying first differences

to the trend-stationary process (87) (which

should in fact be detrended by taking the

residuals of an OLS trend), introduces severe

negative autocorrelation:

yt−yt−1 = (α+βt+ut)−(α+β(t−1) + ut−1)

= β + ut − ut−1,

which is an MA(1) process with first-order

autocorrelation coefficient -0.5.
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Testing for unit roots

Consider the general model

(88) yt = α+ βt+ φyt−1 + ut,

where ut is stationary.

If |φ| < 1 then the (88) is trend stationary.

If φ = 1 then yt is a unit root process (i.e.,

I(1)) with trend (and drift).

Thus, testing whether yt is a unit root pro-

cess reduces to testing whether φ = 1.
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The ordinary OLS approach does not work!

One of the most popular tests is the Aug-

mented Dickey-Fuller (ADF). Other tests are

e.g. Phillips-Perron and KPSS-test.

Dickey-Fuller regression

(89) ∆yt = µ+ βt+ γyt−1 + ut,

where γ = φ− 1.

The null hypothesis is: ”yt ∼ I(1)”, i.e.,

(90) H0 : γ = 0.

This is tested with the usual t-ratio.

(91) t =
γ̂

s.e.(γ̂)
.
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However, under the null hypothesis (90) the

distribution is not the standard t-distribution.

Distributions fractiles are tabulated under var-

ious assumptions (whether the trend is present

(β 6= 0) and/or the drift (α) is present. For

example, including a constant but no trend:

n : α = 1% α = 5% α = 10%
25 -3.75 -3.00 -2.62
50 -3.58 -2.93 -2.60

100 -3.51 -2.89 -2.58
250 -3.46 -2.88 -2.57
500 -3.44 -2.87 -2.57
∞ -3.43 -2.86 -2.57

t-statistics which are more negative than the

critical values above lead to a rejection of a

unit root in favor of a stationary series.

In practice also AR-terms are added into the

regression to make the residual as white noise

as possible. Doing so yields critical values

different from the table above.
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Example: Google weekly log prices.
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Google weekly log price

The series does not appear to be mean-reverting,

so we expect it to contain a unit root.
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However, naively applying the unit-root test

with default-settings in EViews rejects the

unit root in favour of a stationary series:

Augmented Dickey-Fuller Unit Root Test on LPRICE

Null Hypothesis: LPRICE has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=15)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -3.316975  0.0150
Test critical values: 1% level -3.453153

5% level -2.871474
10% level -2.572135

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LPRICE)
Method: Least Squares
Date: 01/25/13   Time: 11:46
Sample (adjusted): 8/23/2004 2/01/2010
Included observations: 285 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

LPRICE(-1) -0.025118 0.007573 -3.316975 0.0010
C 0.155012 0.045151 3.433193 0.0007

R-squared 0.037423    Mean dependent var 0.005580
Adjusted R-squared 0.034021    S.D. dependent var 0.051665
S.E. of regression 0.050778    Akaike info criterion -3.115696
Sum squared resid 0.729702    Schwarz criterion -3.090064
Log likelihood 445.9867    Hannan-Quinn criter. -3.105421
F-statistic 11.00233    Durbin-Watson stat 2.087380
Prob(F-statistic) 0.001029

This is because the default settings in EViews

assume that the series contains no determin-

istic trend.
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However, there is a clear upward trend in the
series over the chosen time period. Allowing
for a deterministic trend accepts the null hy-
pothesis that there is at least one unit root:

Augmented Dickey-Fuller Unit Root Test on LPRICE

Null Hypothesis: LPRICE has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=15)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -2.734332  0.2236
Test critical values: 1% level -3.990585

5% level -3.425671
10% level -3.135994

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LPRICE)
Method: Least Squares
Date: 01/25/13   Time: 11:48
Sample (adjusted): 8/23/2004 2/01/2010
Included observations: 285 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

LPRICE(-1) -0.027529 0.010068 -2.734332 0.0066
C 0.166826 0.055654 2.997561 0.0030

@TREND(8/16/2004) 1.77E-05 4.86E-05 0.364141 0.7160

R-squared 0.037875    Mean dependent var 0.005580
Adjusted R-squared 0.031051    S.D. dependent var 0.051665
S.E. of regression 0.050856    Akaike info criterion -3.109148
Sum squared resid 0.729359    Schwarz criterion -3.070701
Log likelihood 446.0536    Hannan-Quinn criter. -3.093736
F-statistic 5.550601    Durbin-Watson stat 2.083327
Prob(F-statistic) 0.004322

Generally it is a good idea to run unit root
tests both with and without assuming a de-
terministic trend.
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Applying a unit root test on the differenced

series (that is, the log-returns), clearly rejects

the unit root in favour of stationarity:

Augmented Dickey-Fuller Unit Root Test on D(LPRICE)

Null Hypothesis: D(LPRICE) has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=15)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -17.32300  0.0000
Test critical values: 1% level -3.453234

5% level -2.871510
10% level -2.572154

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LPRICE,2)
Method: Least Squares
Date: 01/25/13   Time: 11:49
Sample (adjusted): 8/30/2004 2/01/2010
Included observations: 284 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

D(LPRICE(-1)) -1.030640 0.059495 -17.32300 0.0000
C 0.005842 0.003092 1.889515 0.0598

R-squared 0.515536    Mean dependent var 7.99E-05
Adjusted R-squared 0.513818    S.D. dependent var 0.074291
S.E. of regression 0.051801    Akaike info criterion -3.075807
Sum squared resid 0.756695    Schwarz criterion -3.050110
Log likelihood 438.7646    Hannan-Quinn criter. -3.065505
F-statistic 300.0864    Durbin-Watson stat 1.990551
Prob(F-statistic) 0.000000

This implies that the log price series is I(1).
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