2. Multivariate Time Series

2.1 Background

Example. Consider the following monthly ob-
servations on FTA All Share index, the asso-
ciated dividend index and the series of 20 year
UK gilts and 91 day Treasury bills from Jan-
uary 1965 to December 1995 (372 months)

FTA All Sheres, FTA Dividends, 20 Year UK Gilts,
91 Days UK Treasury Bill Rates

FTA

Div

Log Index

Gilts
TBill

2

—————————

Month
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Potentially interesting questions:

1. Do some markets have a tendency to lead
others?

2. Are there feedbacks between the mar-
kets?

3. How about contemporaneous movements?

4. How do impulses (shocks, innovations)
transfer from one market to another?

5. How about common factors (disturbances,
trend, yield component, risk)?
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Most of these questions can be empirically
investigated using tools developed in multi-
variate time series analysis.

Time series models

AR(p)-model

Yt = P+ O1Yy—1 T P2Y—2 + -+ PpYt—p 1 €
o(L)y: = p+e
where ¢ ~ WN(0,02) (White Noise), i.e.

E(€t> — 07
2 : —
o ift==s
E = ¢
(<tés) { 0 otherwise,
and ¢(L) =1 —¢1L — ¢poL? — --- — ¢ppLP is the

lag polynomial of order p with

Ly =y 4,
being the Lag operator (LOy; = y;).
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The so called (weak) stationarity condition
requires that the roots of the (characteristic)
polynomial

¢(L) =0

should lie outside the unit circle, or equiva-
lently the roots of

Zp_¢1zp—1_..._¢p_1z_¢p:o

are less than one in absolute value.

Note. Usually the series are centralized such
that u = 0.

MA(q)-model

pte+ 01614 ...+ Oqet—q

= p+ H(L)Gt,
where (L) = 1+ 61L + 0o5L? + --- + 04L9 is
again a polynomial in L, this time, of order
g, and e ~ WN(0,02).

Yt
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Note. An MA-process is always stationary.
But the so called invertibility condition re-
quires that the roots of the characteristic
polynomial (L) = O lie outside the unit cir-
cle.

ARMA(p, g)-process

Compiling the two above together vields an
ARMA(p, q)-process

¢(L)yr = p+ 0(L)et.

ARIMA(p, d, g)-process

A series is called integrated of order d, de-
noted as y; ~ I(d), if it becomes stationary
after differencing d times. Furthermore, if

(1 — L)%y; ~ ARMA(p, q)

we say that yy ~ ARIMA(p,d, q), where p de-

notes the order of the AR-lags, q the order

of MA-lags, and d the order of differencing.
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Example. Univariate time series models for
the above (log) series look as follows. All the
series prove to be I(1).

Sample: 1965:01 1995:12
Included observations: 372

FTA
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
N i N Inalaioialel 1 0.992 0.992 368.98 0.000
[ iR | 2 0.983 -0.041 732.51 0.000
N sttt | | 3 0.975 0.021 1090.9 0.000
N it | | 4 0.966 -0.025 1444.0 0.000
N ettt | | 5 0.957 -0.024 1791.5 0.000
N et iR | 6 0.949 0.008 2133.6 0.000
N it iR | 7 0.940 0.005 2470.5 0.000
[ | | 8 0.931 -0.007 2802.1 0.000
N st | | 9 0.923 0.023 3128.8 0.000
N et | | 10 0.915 -0.011 3450.6 0.000
Dividends
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
N ol N il 1 0.994 0.994 370.59 0.000
Il Richobotuiid . | 2 0.988 -0.003 737.78 0.000
Bl Richobotuiid | | 3 0.982 0.002 1101.6 0.000
N iaiaiioboid | | 4 0.976 -0.004 1462.1 0.000
N it | | 5 0.971 -0.008 1819.2 0.000
N ikt - | 6 0.965 -0.006 21729 0.000
N it - | 7 0.959 -0.007 2523.1 0.000
et | | 8 0.953 -0.004 2869.9 0.000
[ | | 9 0.947 -0.006 3213.3 0.000
o | | 10 0.940 -0.006 3553.2 0.000
T-Bill
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
e s 1 0980 0.980 360.26 0.000
**. | 2 0.949 -0.301 698.79 0.000
. | 3 0.916 0.020 1014.9 0.000
iR | 4 0.883 -0.005 1309.5 0.000
. . | 5 0.849 -0.041 1583.0 0.000
[ *l. | 6 0.811 -0.141 1833.1 0.000
[ | | 7 0.770 -0.018 2059.2 0.000
R - | 8 0.730 0.019 2263.1 0.000
e ) 1o 9 0694 0058 2447.6 0.000
Nl | | 10 0.660 -0.013 2615.0 0.000
Gilts
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
R [ 1 0984 0984 36291 0.000
[ . | 2 0.962 -0.182 710.80 0.000
| | | 3 0.941 0.050 1044.6 0.000
[ | | 4 0.921 0.015 1365.5 0.000
[ | | 5 0.903 0.031 1674.8 0.000
L[| . | 6 0.885 -0.038 1972.4 0.000
|| . | 7 0.866 -0.001 2258.4 0.000
N ittt | | 8 0.848 0.019 2533.6 0.000
R | | 9 0.832 0.005 2798.6 0.000
N il | | 10 0.815 -0.014 3053.6 0.000
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Formally, as is seen below, the Dickey-Fuller
(DF) unit root tests indicate that the series
indeed all are I(1). The test is based on the
augmented DF-regression

4
Ayt =py—1+a+dt+ > ¢Dy; + e,
i=1

and the hypothesis to be tested is

Hog:p=0vs Hy:p<O.
Test results:

Series ) t-Stat
FTA -0.030 -2.583
DIV -0.013 -2.602
R20 -0.013 -1.750
T-BILL -0.023 -2.403
AFTA -0.938 -8.773
ADIV -0.732 -7.300
AR20 -0.786  -8.129

AT-BILL -0.622 -7.095
ADF critical values

Level No trend Trend
1% -3.4502 -3.9869
5% -2.8696 -3.4237

10% -2.5711 -3.1345
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Provided that the series are not cointegrated
an appropriate modeling approach is VAR for
the differences.

2.2 Vector Autoregression (VAR)

Suppose we have m time series y;;, 1t = 1,...,m,
andt=1,...,T (common length of the time
series). Then a vector autoregression model

is defined as
b ¢>§18 ¢>§? ¢§2 Y11
M2 1) 1) 1) Y2.t—1
: + T am . +
)ubm ¢(1) ¢(1) .. _- 7(7%121 Ymt—1

Y1t
Yot
Ymit
ml

() (» . (p)
Y O ('y)
o P

y27t_p

ymat_p

on o o)
€1t
4+ :€2t .
()

In matrix notations

Vit = p+ Prys—1 + -+ Ppyt—p 1+ €,
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which can be further simplified by adopting
the matric form of a lag polynomial

P(L)=1—P1L—...—PyLP.
Thus finally we get
P(L)y: = €.

Note that each y;; does not only depend on
its own history but also on the other series’
history (cross dependencies). This gives us
several additional tools for analyzing causal
as well as feedback effects as we shall see
after a while.

A basic assumption in the above model is
that the residual vector follow a multivariate
white noise, i.e.

E(e,) = O
> ift==s
/ _ €
Eeres) = {0 if s
which allows for estimation by OLS, because
each individual residual series is assumed to
be serially uncorrelated with constant vari-

ance.
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The coefficient matrices must satisfy certain
constraints in order that the VAR-model is
stationary. They are just analogies with the
univariate case, but in matrix terms. It is
required that the roots of

|I—<D1z—<1>2z2—---—¢pzp|=O

lie outside the unit circle. Estimation can be
carried out by single equation least squares.

Example. Let us estimate a VAR model for

the equity-bond data. First, however, test
whether the series are cointegrated. As is
seen below, there is no empirical evidence of

cointegration (EViews results)

Sample (adjusted): 1965:06 1995:12

Included observations: 367 after adjusting end points
Trend assumption: Linear deterministic trend

Series: LFTA LDIV LR20 LTBILL

Lags interval (in first differences): 1 to 4

Unrestricted Cointegration Rank Test

Hypothesized Trace 5 Percent 1 Percent
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value

None 0.047131 46.02621 47.21 54.46
At most 1 0.042280 28.30808 29.68 35.65
At most 2 0.032521 12.45356 15.41 20.04
At most 3 0.000872 0.320012 3.76 6.65

*x(**) denotes rejection of the hypothesis at the 5%(1%) level
Trace test indicates no cointegration at both 5% and 17 levels
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VAR(2) Estimates:

Sample(adjusted): 1965:04 1995:12
Included observations: 369 after adjusting end points
Standard errors in ( ) & t-statistics in [ ]

DFTA(-1)

DFTA(-2)

DDIV(-1)

DDIV(-2)

DR20(-1)

DR20(-2)

DTBILL(-1)

DTBILL(-2)

.102018
.05407)

.170209
.05564)
.05895]
.113741
.22212)
.51208]
.065178
.22282)
.29252]
.359070
.11469)
.130841]
.051323
.11295)

.068239
.06014)
.13472]
.050220
.05902)
.85082]
.892389
.38128)
.340491]

-0.005389 -0.
(0.01280) (0.
.88670] [-0.42107] [-4.
0.012231 0.
(0.01317) (0.
[0.92869] [O.
0.035924 0.
(0.05257) (0.
.69804]
0.103395 0.
(0.05274) (0.
[1.96055] [O.
-0.003130 0.
(0.02714) (oO.
[-0.11530] [4.
-0.012058 -0.
(0.02673) (0.
.45437] [-0.45102] [-2.
0.005752 -0.
(0.01423) (0.
.06672]

[0.68333] [1

[0.40412] [-1

0.023590 0.
(0.01397) (0.
[1.68858] [1.
0.587148 -0.
(0.09024) (0.
[6.50626] [-O.

140021
02838)
93432]
014714
02920)
50389]
197934
11657)

057329
11693)
490261
282760
06019)
69797]
131182
05928)
21300]
033665
03156)

034734
03098)
12132]

(0.
[1.

0.
(0.
[1.

0.
(0.
(0.

0.
(0.

[3

-0.
(0.
[-0.
0.
(0.
[3.
-0.
(0.
[-0.

.085696
.05338)
.60541]
.057226
05493)
04180]
280619
21927)
279781
165089
21996)
75053]
373164
11322)
.29596]
071333
11151)
63972]
232456
05937)
91561]
015863
05827)
27224]

033749 -0.317976

20010)

(0

.37640)

16867] [-0.84479]
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Continues ...

R-squared 0.057426  0.028885 0.156741 0.153126
Adj. R-squared 0.036480 0.007305 0.138002 0.134306
Sum sq. resids 13032.44  730.0689 35689.278 12700.62
S.E. equation 6.016746  1.424068 3.157565 5.939655

F-statistic 2.741619 1.338486 8.364390 8.136583
Log likelihood -1181.220 -649.4805 -943.3092 -1176.462
Akaike AIC 6.451058  3.569000 5.161567 6.425267
Schwarz SC 6.546443  3.664385 5.256953 6.520652

Mean dependent 0.788687 0.688433 0.052983 -0.013968
S.D. dependent 6.129588 1.429298 3.400942 6.383798

Determinant Residual Covariance 18711.41
Log Likelihood (d.f. adjusted) -3909.259
Akaike Information Criteria 21.38352
Schwarz Criteria 21.76506

As is seen the number of estimated parame-
ters grows rapidly very large.

Defining the order of a VAR-model

In the first step it is assumed that all the se-

ries in the VAR model have equal lag lengths.

To determine the number of lags that should

be included, multivariate extensions of crite-

rion functions like SC and AIC can be utilized

in the same manner as in the univariate case.
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The likelihood ratio (LR) test can also be
used in determining the order of a VAR. The
test is generally of the form

LR = T'(log |Z| — log [Zm])

where >, denotes the maximum likelihood
estimate of the residual covariance matrix
of VAR(k) and X>,, the estimate of VAR(m)
(m > k) residual covariance matrix. If VAR(k)
(the shorter model) is the true one, then

LR ~ x3r,

where the degrees of freedom, df, equals the
difference of in the number of estimated pa-
rameters between the two models.

In a p variate VAR(k)-model each series has
m — k lags less than those in VAR(m). Thus
the difference in each equation is p(m — k),
so that in total df = p?(m — k).

Note that often, when 7" small a modified LR

LR* = (T' — pm)(log || — log [-m])

IS used to correct for small sample bias.
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Example Let m = 12 then in the equity-bond

data different VAR models yield the following
results. Below are EViews results.

VAR Lag Order Selection Criteria

Endogenous variables: DFTA DDIV DR20 DTBILL
Exogenous variables: C

Sample: 1965:01 1995:12

Included observations: 359

* indicates lag order selected by the criterion
LR: sequential modified LR test statistic
(each test at 5% level)
FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

Criterion function minima are all at VAR(1)
(SC or BIC just borderline). LR-tests sug-
gest VAR(8) based upon the first significant
LR(m,m—1) statistics starting from m = 12.
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Model Diagnhostics

Even though the information criteria were
seen to favour VAR(1), we decided to fit
a VAR(2) model to the data, because the
VAR(1) residuals do not pass the white noise
test, as we shall see below.

To investigate whether the VAR residuals are
white noise, the hypothesis to be tested is

HO:leﬂ':Th:O,

where T = (v;;(k)) denotes the matrix of
the k'th cross autocovariances of the residu-
als series ¢; and e;:

Yij (k) = E(€ 41—k €jt),

whose diagonal elements reduce to the usual
autocovariances v,. Note, however, that cross-
autocovariances, unlike univariate autocovari-
ances, are not symmetricin k, that is v; ;(k) %=
v;,;(—k), because the covariance between resid-
ual series ¢ and residual series 5 k steps ahead
IS in general not the same as the covariance
between residual series ¢ and the residual se-
ries 7 k steps before. Stationarity ensures,
however, that T, = T, (exercise).
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In order to test Hop: T = -.- =Ty = 0, we
may use the (Portmanteau) Q-statistics'T

h

Qn=T)> tr(T, 75T, TohH
k=1

where

) A o 1 L
Tr = (3 (k) with %;;(k) = — D Eikifty
—k

are the estimated (residual)cross autocovari-
ances and YT the contemporaneous covari-
ances of the residuals. Alternatively (espe-
cially in small samples) a modified statistic is
used

h
Q=T (T —k) r(T,To1T,T5hH).
k=1
The statistics are asymptotically X2 distrib-
uted with p?(h—k) degrees of freedom. Note
that in computer printouts h is running from
1,2,...h* with h* specified by the user.

fiSee e.g. Liitkepohl, Helmut (1993). Introduction to
Multiple Time Series, 2nd Ed., Ch. 4.4
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The table below contains the -statistics of
the VAR(1) residuals fitted to financial mar-
ket data from January 1965 to December
1995.

VAR(1) Residual Portmanteau Tests for Autocorrelations
HO: no residual autocorrelations up to lag h
Sample: 1966:02 1995:12

Included observations: 359
Lags Q-Stat Prob Adj Q-Stat Prob. df
1 1.847020  NA=* 1.852179  NAx* NA*
2 27.66930 0.0346  27.81912 0.0332 16
3 44.05285 0.0761  44.34073 0.0721 32
4 53.46222 0.2725 53.85613 0.2603 48
5 72.35623 0.2215 73.01700 0.2059 64
6 96.87555 0.0964 97.95308 0.0843 80
7 110.2442 0.1518 111.5876 0.1320 96
8 137.0931 0.0538 139.0485 0.0424 112
9 1562.9130 0.0659  155.2751  0.0507 128
10 168.4887 0.0797  171.2972 0.0599 144
11 179.3347 0.1407 182.4860 0.1076 160
12 189.0256  0.2379  192.5120 0.1869 176
*The test is valid only for lags larger than the

VAR lag order. df is degrees of freedom for
(approximate) chi-square distribution

There is still left some autocorrelation in the
VAR(1) residuals. Let us next check the
residuals of the VAR(2) model.
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VAR Residual Portmanteau Tests for Autocorrelations
HO: no residual autocorrelations up to lag h
Sample: 1965:01 1995:12

Included observations: 369

Lags Q-Stat Prob. Adj Q-Stat Prob. df
1 0.438464 NAx* 0.439655 NA* NA*
2 1.623778 NA* 1.631428 NAx* NAx*
3 17.13353 0.3770 17.26832 0.3684 16
4 27.07272 0.7143 27.31642 0.7027 32
5 44.01332 0.6369 44.48973 0.6175 48
6 66.24485 0.3994 67.08872 0.3717 64
7 80.51861 0.4627 81.63849 0.4281 80
8 104.3903 0.2622 106.0392 0.2271 96
9 121.8202 0.2476 123.9049 0.2081 112
10 136.8909 0.2794 139.3953 0.2316 128
11 147.3028 0.4081 150.1271 0.3463 144
12 157.4354 0.5425 160.6003 0.4718 160

*The test is valid only
the VAR lag order.

df is degrees of freedom for (approximate)
chi-square distribution

for lags larger than

Now the residuals pass the white noise test.
On the basis of these residual analyses we can
select VAR(2) as the specification for further
analysis. Mills (1999) finds VAR(6) as the
most appropriate one. Note that there ordi-
nary differences (opposed to log-differences)
are analyzed. Here, however, log transforma-
tions are preferred.
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Vector ARMA (VARMA)

Similarly as is done in the univariate case
one can extend the VAR model to the vector
ARMA model

D q
yi=p+ Y Py ite+ ) Ojej
i=1 j=1

or

P(L)y: = p+ O(L)e,

where y;, n, and ¢ are m x 1 vectors, and
®;'s and ©;’s are m x m matrices, and

P(L) = I— DL —...— DyLP
o(L) I+ ©1L+...+ O4L4.

Provided that ©(L) is invertible, we always
can write the VARMA(p, g)-model as a VAR(o0)
model with N(L) = &~ 1(L)®(L). The pres-
ence of a vector MA component, however,
implies that we can no longer find parameter
estimates by ordinary least squares. We do
not pursue our analysis to this direction.
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