
2.5 Variance decomposition and innovation

accounting

Consider the VAR(p) model

©(L)yt = 6t,

where

©(L) = Im −©1L−©2L2 − · · ·−©pLp

is the lag polynomial of order p with m ×m
coe±cient matrices ©i, i = 1, . . . p.

Provided that the stationarity condition holds

we may obtain a vector MA representation of

yt by left multiplication with ©−1(L) as

yt = ©−1(L)6t =ª(L)6t

where

©−1(L) = ª(L) = Im+ª1L+ª2L
2 + · · · .
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The m × m coe±cient matrices ª1,ª2, . . .

may be obtained from the identity

©(L)ª(L) = (Im−
p3
i=1

©iL
i)(Im+

∞3
i=1

ªiL
i) = Im

as

ªj =
j3
i=1

ªj−i©i

with ª0 = Im and ©j = 0 when i > p, by

multiplying out and setting the resulting co-

e±cient matrix for each power of L equal to

zero. For example, start with L11 = L1:

−©1L1 +ª1L1 = (ª1 −©1)L1 ≡ 0

⇒ ª1 = ©1 = ª0©1 =
13
i=1

ª1−i©i

Consider next L21:

ª2L
2
1 −ª1©1L

2
1 −©2L21 ≡ 0

⇒ ª2 = ª1©1 +©2 =
23
i=1

ª2−i©i

The result generalizes to any power L
j
1, which

yields the transformation formula given above.
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Now, since

yt+s =ª(L)6t+s = 6t+s+
∞3
i=1

ªi6t+s−i

we have that the e®ect of a unit change in

6t on yt+s is

∂yt+s
∂6t

=ªs.

Now the 6t's represent shocks in the sys-

tem. Therefore the ªi matrices represent

the model's response to a unit shock (or in-

novation) at time point t in each of the vari-

ables i periods ahead. Economists call such

parameters dynamic multipliers.

The response of yi to a unit shock in yj is

therefore given by the sequence below, known

as the impulse response function,

ψij,1,ψij,2,ψij,3, . . . ,

where ψij,k is the ijth element of the matrix

ªk (i, j = 1, . . . ,m).
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For example if we were told that the ¯rst el-

ement in 6t changes by δ1 at the same time

that the second element changed by δ2, . . . ,

and the mth element by δm, then the com-

bined e®ect of these changes on the value of

the vector yt+s would be given by

¢yt+s =
∂yt+s
∂61t

δ1 + · · ·+ ∂yt+s
∂6mt

δm =ªsδ,

where δI = (δ1, . . . , δm).

Generally an impulse response function traces

the e®ect of a one-time shock to one of the

innovations on current and future values of

the endogenous variables.
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Example: Exogeneity in MA representation

Suppose we have a bivariate VAR system

such that xt does not Granger cause yt. Then

we can writeX
yt
xt

~
=

⎛⎝ φ
(1)
11 0

φ
(1)
21 φ

(1)
22

⎞⎠X yt−1
xt−1

~
+ · · ·

+

⎛⎝ φ
(p)
11 0

φ
(p)
21 φ

(p)
22

⎞⎠X yt−p
xt−p

~
+

X
61,t
62,t

~
.

Then the coe±cient matrices ªj =
�j
i=1ªj−i©i

in the corresponding MA representation are

lower triangular as well (exercise):X
yt
xt

~
=

X
61,t
62,t

~
+
∞3
i=1

⎛⎝ψ(i)11 0

ψ
(i)
21 ψ

(i)
22

⎞⎠X61,t−i
62,t−i

~

Hence, we see that variable y does not react

to a shock in x.
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Ambiguity of impulse response functions

Consider a bivariate VAR model in vector MA

representation, that is,

yt =ª(L)6t with E(6t6
I
t) = §6,

where ª(L) gives the response of yt = (yt1, yt2)
I

to both elements of 6t, that is, 6t1 and 6t2.

Just as well we might be interested in evalu-

ating responses of yt to linear combinations

of 6t1 and 6t2, for example to unit move-

ments in 6t1 and 6t2 + 0.56t1. This may be

done by de¯ning new shocks νt1 = 6t1 and

νt2 = 6t2 + 0.56t1, or in matrix notation

νt = Q6t with Q=

X
1 0
0.5 1

~
.
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The vector MA representation of our VAR in

terms of the new chocks becomes then

yt =ª(L)6t =ª(L)Q−1Q6t =: ª∗(L)νt
with

ª∗(L) = ª(L)Q−1.

Note that both representations are observa-

tionally equivalent (they produce the same

yt), but yield di®erent impulse response func-

tions. In particular,

ψ∗0 = ψ0 ·Q−1 = I ·Q−1 = Q−1,

which implies that single component shocks

may now have contemporaneous e®ects on

more than one component of yt. Also the co-

variance matrix of residuals will change, since

E(νtν
I
t) = E(Q6t6

I
tQ
I) W= §6 unless Q= I.

But the fact that both representations are

observationally equivalent implies that it is

our own choice which linear combination of

the 6ti's we ¯nd most useful to look at in the

response analysis!
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Orthogonalized impulse response functions

Usually the components of 6t are contem-

poraneously correlated. For example in our

VAR(2) model of the equity-bond data the

contemporaneous residual correlations are

=================================
FTA DIV R20 TBILL

---------------------------------
FTA 1
DIV 0.123 1
R20 -0.247 -0.013 1
TBILL -0.133 0.081 0.456 1
=================================

If the correlations are high, it doesn't make

much sense to ask "what if 6t1 has a unit im-

pulse" with no change in 6t2 since both come

usually at the same time. For impulse re-

sponse analysis, it is therefore desirable to ex-

press the VAR in such a way that the shocks

become orthogonal, (that is, the 6ti's are un-

correlated). Additionally it is convenient to

rescale the shocks so that they have a unit

variance.
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So we want to pick a Q such that E(νtν
I
t) = I.

This may be accomplished by coosing Q such

that Q−1Q−1I = §6, since then

E(νtν
I
t) = E(Q6t6

I
tQ
I) = E(Q§6Q

I) = I.

Unfortunately there are many di®erent Q's,

whose inverse S= Q−1 act as "square roots"
for §6, that is, SSI = §6.

This may be seen as follows. Choose any

orthogonal matrix R (that is, RRI = I) and

set S∗ = SR. We have then

S∗S∗I = SRRISI = SSI = §6.

Which of the many possible S's, respectively

Q's, should we choose?
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Before turning to a clever choice of Q (resp. S),

let us brie°y restate our results obtained so

far in terms of S= Q−1.

If we ¯nd a matrix S such that SSI = §6, and

transform our VAR residuals such that

νt = S−16t,

then we obtain an observationally equivalent

VAR where the shocks are orthogonal (i.e.

uncorrelated with a unit variance), that is,

E(νtν
I
t) = S−1E(6t6It)SI

−1
= S−1§6S

I−1 = I.

The new vector MA representation becomes

yt =ª∗(L)νt =
∞3
i=0

ψ∗i νt−i,

where ψ∗i = ψiS (m × m matrices) so that

ψ∗0 = S W= Im. The impulse response function

of yi to a unit shock in yj is then given by

the othogonalised impulse response function

ψ∗ij,0,ψ∗ij,1,ψ∗ij,2, . . . .
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Choleski Decomposition and Ordering of Variables

Note that every orthogonalization of corre-

lated shocks in the original VAR leads to con-

temporaneous e®ects of single component

shocks νti to more than one component of

yt, since ψ0 = S will not be diagonal unless

§6 was diagonal already.

One generally used method in choosing S

is to use Cholesky decomposition which re-

sults in a lower triangular matrix with positive

main diagonal elements for ª∗0, e.g.X
y1,t
y2,t

~
=

⎛⎝ψ∗(0)11 0

ψ
∗(0)
21 ψ

∗(0)
22

⎞⎠Xν1,t
ν2,t

~
+ª∗(1)νt−1+. . .

Hence Cholesky decomposition of §6 implies

that the second shock ν2,t does not a®ect

the ¯rst variable y1,t contemporaneously, but

both shocks can have a contemporaneous ef-

fect on y2,t (and all following variables, if we

had choosen an example with more than two

components). Hence the ordering of vari-

ables is important!
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It is recommended to try various orderings

to see whether the resulting interpretations

are consistent. The principle is that the ¯rst

variable should be selected such that it is the

only one with potential immediate impact on

all other variables. The second variable may

have an immediate impact on the last m− 2
components of yt, but not on y1t, the ¯rst

component, and so on. Of course this is

usually a di±cult task in practice.

Variance decomposition

The uncorrelatedness of the νt's allows to

decompose the error variance of the s step-

ahead forecast of yit into components ac-

counted for by these shocks, or innovations

(this is why this technique is usually called

innovation accounting). Because the inno-

vations have unit variances (besides the un-

correlatedness), the components of this error

variance accounted for by innovations to yj

is given by
�s−1
l=0 ψ

∗(l)
ij

2
, as we shall see below.
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Consider an orthogonalized VAR withm com-

ponents in vector MA representation,

yt =
∞3
l=0

ψ∗(l)νt−l.

The s step-ahead forecast for yt is then

Et(yt+s) =
∞3
l=s

ψ∗(l)νt+s−l.

De¯ning the s step-ahead forecast error as

et+s = yt+s −Et(yt+s)
we get

et+s =
s−13
l=0

ψ∗(l)νt+s−l.

It's i'th component is given by

ei,t+s =
s−13
l=0

m3
j=1

ψ
∗(l)
ij νj,t+s−l =

m3
j=1

s−13
l=0

ψ
∗(l)
ij νj,t+s−l.
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Now, because the shocks are both serially
and contemporaneously uncorrelated, we get
for the error variance

V(ei,t+s) =
m3
j=1

s−13
l=0

V(ψ∗(l)ij νj,t+s−l)

=
m3
j=1

s−13
l=0

ψ
∗(l)
ij

2
V(νj,t+s−l).

Now, recalling that all shock components have
unit variance, this implies that

V(ei,t+s) =
m3
j=1

⎛⎝s−13
l=0

ψ
∗(l)
ij

2
⎞⎠ ,

where
�s−1
l=0 ψ

∗(l)
ij

2
accounts for the error vari-

ance generatd by innovations to yj, as claimed.

Comparing this to the sum of innovation re-
sponses we get a relative measure how im-
portant variable js innovations are in the ex-
plaining the variation in variable i at di®erent
step-ahead forecasts, i.e.,

R2ij,l = 100

�s−1
l=0 ψ

∗(l)
ij

2

�m
k=1

�s−1
l=0 ψ

∗(l)
ik

2
.
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Thus, while impulse response functions traces

the e®ects of a shock to one endogenous

variable on to the other variables in the VAR,

variance decomposition separates the varia-

tion in an endogenous variable into the com-

ponent shocks to the VAR.

Example. Let us choose in our example two

orderings. One according to the feedback

analysis

[(I: FTA, DIV, R20, TBILL)],

and an ordering based upon the relative tim-

ing of the trading hours of the markets

[(II: TBILL, R20, DIV, FTA)].

In EViews the order is simply de¯ned in the

Cholesky ordering option. Below are results

in graphs with I: FTA, DIV, R20, TBILL;

II: R20, TBILL DIV, FTA, and III: General

impulse response function.
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Impulse responses:
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Impulse responses continue:
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The general impulse response function are

de¯ned as‡‡

GI(j, δi,Ft−1) = E[yt+j|6it = δi,Ft−1]−E[yt+j|Ft−1].
That is di®erence of conditional expectation

given an one time shock occurs in series j.

These coincide with the orthogonalized im-

pulse responses if the residual covariance ma-

trix § is diagonal.
‡‡Pesaran, M. Hashem and Yongcheol Shin (1998).
Impulse Response Analysis in Linear Multivariate
Models, Economics Letters, 58, 17-29.
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Variance decomposition graphs of the equity-

bond data
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On estimation of the impulse response coe±cients

Consider the VAR(p) model

©(L)yt = 6t,

with ©(L) = Im −©1L −©2L2 − · · · −©pLp.
Then under stationarity the vector MA rep-

resentation is

y = 6+ª16t−1 +ª26t−2 + · · ·
When we have estimates of the AR-matrices

©i denoted by ©̂i, i = 1, . . . , p; the next prob-

lem is to construct estimates ª̂j for the MA

matrices ªj. Recall that

ªj =
j3
i=1

ªj−i©i

with ª0 = Im, and ©j = 0 when i > p. The

estimates ª̂j can be obtained by replacing

the ©i's by their corresponding estimates ©̂i.
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Next we have to obtain the orthogonalized

impulse response coe±cients. This can be

done easily, for letting S be the Cholesky de-

composition of §6 such that

§6 = SSI,

we can write

yt =
�∞
i=0ªi6t−i

=
�∞
i=0ªiSS

−16t−i
=
�∞
i=0ª

∗
i νt−i,

where

ª∗i =ªiS

and νt = S−16t. Then

Cov(νt) = S−1§6S
I−1 = I.

The estimates for ª∗i are obtained by re-

placing ªt with their estimates ª̂t and using

Cholesky decomposition of §̂6.
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