ECONOMETRICS

Exercises 2:

- 1. Prove unbiasedness of $\hat{\beta}_0$ and formula (2.41) of the lecture notes. *Hint:* Apply formula (2.7) and the properties of expectations and variances.
- 2. (Wooldridge 3e, C3.6) Computer exercise: Use the dataset wage2 behind the link on the web page for this problem. Estimate the following regressions
 - a) Run the simple regression of IQ on educ to obtain estimate δ for the the slope coefficient δ of $IQ = \delta_0 + \delta educ + u$
 - b) Run the simple regression of $\log(wage) = \beta_0 + \beta_1 educ + v$ to obtain estimate $\tilde{\beta}_1$ for β_1 .
 - c) Run the multiple regression $\log(wage) = \beta_0 + \beta_1 educ + \beta_2 IQ + w$ to obtain estimates $\hat{\beta}_1$ and $\hat{\beta}_2$ for the slope coefficients.
 - d) Verify that $\tilde{\beta}_1 = \hat{\beta}_1 + \tilde{\delta}\hat{\beta}_2$.
- 3. (W 3e, 3.13) Consider the simple regression model $y = \beta_0 + \beta_1 x + u$ satisfying the classical assumptions 1–5 (Gauss-Markov assumptions). For some function g(x), for example $g(x) = x^2$ or $g(x) = \log(1 + x^2)$, define $z_i = g(x_i)$. Define the slope estimator

$$\tilde{\beta}_1 = \frac{\sum_{i=1}^n (z_i - \bar{z})(y_i - \bar{y})}{\sum_{i=1}^n (z_i - \bar{z})(x_i - \bar{x})} = \frac{\sum_{i=1}^n (z_i - \bar{z})y_i}{\sum_{i=1}^n (z_i - \bar{z})x_i}.$$

- a) Show that $\tilde{\beta}_1$ is linear and unbiased. (Remember, because E[u|x] = E[u] = 0 independent of x, you can consider $z_i = g(x_i)$ as non-random in your derivation.)
- b) Show that

$$\mathbb{V}\mathrm{ar}[\tilde{\beta}_{1}] = \sigma_{u}^{2} \frac{\sum_{i=1}^{n} (z_{i} - \bar{z})^{2}}{\left(\sum_{i=1}^{n} (z_{i} - \bar{z}) x_{i}\right)^{2}}$$

c) Show directly that under the classical assumptions.

$$\operatorname{Var}[\hat{\beta}_1] \leq \operatorname{Var}[\tilde{\beta}],$$

where $\hat{\beta}_1$ is the OLS estimator of β_1 .

Hint: Use the Cauchy-Schwarz inequality

$$\left|\sum_{i=1}^{n} (z_i - \bar{z})(x_i - \bar{x})\right| \le \sqrt{\sum_{i=1}^{n} (z_i - \bar{z})^2} \sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}.$$

4. (W 3e, C4.1) The following model is used to study whether campaign expenditures affect election outcomes (dataset: vote1):

 $vote_{A} = \beta_{0} + \beta_{1} \log(expend_{A}) + \beta_{2} \log(expend_{B}) + \beta_{3} prtystr_{A} + u,$

where $vote_A$ is the percent of the vote received by Candidate A, $expend_A$ and $expend_B$ are campaign expenditures by Candidates A and B, and $prtystr_A$ is a measure of party strength for Candidate A (the percent of recent presidential vote that went to A's party).

- a) What is the interpretation of β_1 ?
- b) In terms of parameters, state the null hypothesis that 1% increase in A's expenditures is offset by 1% increase in B's expenditures.
- c) Estimate the given model using the data in *vote1.xls*. Do A's expenditures affect the outcome? What about B's expenditures?
- d) Test the hypothesis in part b). What do you conclude?