
3. Multiple Regression Analysis

The general linear regression with k explana-

tory variables is just an extension of the sim-

ple regression as follows

(1) yi = β0 + β1xi1 + · · ·+ βkxik + ui.

Because

(2)
∂yi
∂xij

= βj

j = 1, . . . , k, coefficient βj indicates the marginal

effect of variable xj, and indicates the amount

y is expected to change as xj changes by

one unit and other variables are kept con-

stant (ceteris paribus).

The multiple regression opens up several ad-

ditional options to enrich analysis and make

modeling more realistic compared to the sim-

ple regression.
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Example 3.1: Consider the hourly wage example. En-
hance the model as

(3) log(w) = β0 + β1x1 + β2x2 + β3x3,

where w = average hourly earnings, x1 = years of ed-

ucation (educ), x2 = years of labor market experience

(exper), and x3 = years with the current employer

(tenure).

Dependent Variable: LOG(WAGE)
Method: Least Squares
Date: 08/21/12   Time: 09:16
Sample: 1 526
Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.284360 0.104190 2.729230 0.0066
EDUC 0.092029 0.007330 12.55525 0.0000

EXPER 0.004121 0.001723 2.391437 0.0171
TENURE 0.022067 0.003094 7.133070 0.0000

R-squared 0.316013    Mean dependent var 1.623268
Adjusted R-squared 0.312082    S.D. dependent var 0.531538
S.E. of regression 0.440862    Akaike info criterion 1.207406
Sum squared resid 101.4556    Schwarz criterion 1.239842
Log likelihood -313.5478    Hannan-Quinn criter. 1.220106
F-statistic 80.39092    Durbin-Watson stat 1.768805
Prob(F-statistic) 0.000000

For example the coefficient 0.092 means that, hold-

ing exper and tenure fixed, another year of education

is predicted to increase wage by approximately 9.2%.

Staying another year at the same firm (educ fixed,

∆exper=∆tenure=1) is expected to result in a salary

increase by approximately 0.4% + 2.2% = 2.6%.
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Example 3.2: Consider the consumption function
C = f(Y ), where Y is income. Suppose the assump-
tion is that as incomes grow the marginal propensity
to consume decreases.

In simple regression we could try to fit a level-log
model or log-log model.

One possibility also could be

β1 = β1l + β1qY ,

where according to our hypothesis β1q < 0. Thus the
consumption function becomes

C = β0 + (β1l + β1qY )Y + u

= β0 + β1lY + β1qY 2 + u

This is a multiple regression model with x1 = Y and
x2 = Y 2.

This simple example demonstrates that we can mean-
ingfully enrich simple regression analysis (even though
we have essentially only two variables, C and Y ) and
at the same time get a meaningful interpretation to
the above polynomial model.

The response of C to a one unit change in Y is now

∂ C

∂ Y
= β1l + 2β1qY .
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Estimation

In order to estimate the model we replace the
classical assumption 3 as

3. None of the independent variables is con-
stant, and no observation vector of any in-
dependent variable can be written as a lin-
ear combination of the observation vectors
of any other independent variables.

The estimation method again is the OLS,
which produces estimates β̂0, β̂1, . . . , β̂k by min-
imizing

(4)
n∑
i=1

(yi − β0 − β1xi1 − · · · − βkxik)2

with respect to the parameters.

Again the first order solution is to set the
(k + 1) partial derivatives equal to zero.

The solution is straightforward although the
explicit form of the estimators become com-
plicated.
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Matrix form

Using matrix algebra simplifies considerably

the notations in multiple regression.

Denote the observation vector on y as

(5) y = (y1, . . . , yn)′,

where the prime denotes transposition.

In the same manner denote the data matrix

on x-variables enhanced with ones in the first

column as an n× (k + 1) matrix

(6) X =


1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
... ... ... ...
1 xn1 xn2 · · · xnk

,
where k < n (the number of observations, n,

is larger than the number of x-variables, k).
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Then we can present the whole set of regres-

sion equations for the sample

(7)

y1 = β0 + β1x11 + · · ·+ βkx1k + u1
y2 = β0 + β1x21 + · · ·+ βkx2k + u2

...
yn = β0 + β1xn1 + · · ·+ βkxnk + un

in the matrix form as
(8)

y1

y2
...
yn

 =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
... ... ... ...
1 xn1 xn2 · · · xnk




β0

β1

β2
...
βk

 +


u1

u2
...
un


or shortly

(9) y = Xb + u,

where

b = (β0, β1, . . . , βk)′

is the parameter vector and

u = (u1, u2, . . . , un)′

is the error vector.
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The normal equations for the first order con-

ditions of the minimization of (4) in matrix

form are simply

(10) X′Xb̂ = X′y

which gives the explicit solution for the OLS

estimator of b as

(11) b̂ = (X′X)−1X′y,

where b̂ = (β̂0, β̂1, . . . , β̂k)′ and existence of

(X′X)−1 is granted by assumption 3.

The fitted model is

(12) ŷi = β̂0 + β̂1xi1 + · · ·+ β̂kxik,

i = 1, . . . , n.
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Remark 3.1:

Single and multiple regression do in general

not produce the same parameter estimates

on the same independent variables. For ex-

ample, if you fit the simple regression

ỹ = β̃0 + β̃1x1, where β̃0 and β̃1 are the OLS

estimators, and fit a multiple regression

ŷ = β̂0 + β̂1x1 + β̂2x2 then it turns out that

β̃1 = β̂1 + β̂2δ̃1, where δ1 is the slope coeffi-

cient from regressing x2 on x1. This implies

that β̃1 6= β̂1 unless β̂2 = 0, or x1 and x2 are

uncorrelated.
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Goodness-of-Fit

Again in the same manner as with the simple
regression we have

(13)
n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(ŷi − ȳ)2 +
n∑
i=1

(yi − ŷi)2

or

(14) SST = SSE + SSR,

where

(15) ŷi = β̂0 + β̂1xi1 + · · ·+ β̂kxik.
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R-square:

R-square denotes again the sample variation

in the fitted ŷi’s as a proportion of the sam-

ple variation in the original yi’s:

(16) R2 =
SSE

SST
= 1−

SSR

SST
.

Again as in the case of the simple regression,

R2 can be shown to be the squared correla-

tion coefficient between the actual yi and fit-

ted ŷi. This correlation is called the multiple

correlation

(17) R =

∑
(yi − ȳ)(ŷi − ¯̂y)√∑

(yi − ȳ)2
√∑

(ŷi − ¯̂y)2
.

Remark 3.2: ¯̂y = ȳ.

Remark 3.3: R2 never decreases when an explanatory

variable is added to the model.
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Adjusted R-square:

(18) R̄2 = 1−
s2
u

s2
y

= 1−
n− 1

n− k − 1
(1−R2),

where

(19)

s2
u =

1

n− k − 1

n∑
i=1

(yi − ŷi)2 =
1

n− k − 1

n∑
i=1

û2
i

is an estimator of the error variance σ2
u = Var[ui].

The square root of (19) is the so called

standard error of the regression.
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3.3 Expected values of the OLS estimators

Given observation tuples (xi1, xi1, . . . , xik, yi),
i = 1, . . . , n the classical assumptions read now:

Assumptions (classical assumptions):

1. y = β0 +
∑k
i=1 βix+ u in the population.

2. {(xi1, xi1, . . . , xik, yi)} is a random sample
of the model above, implying uncorrelated
residuals: Cov(ui, uj) = 0 for all i 6= j.

3. All independent variables including the vec-
tor of constants are linearly independent,
implying that (X′X)−1 exists.

4. E[u|x1, . . . , xk] = 0 implying E[u] = 0
and Cov(u, x1) = . . . = Cov(u, xk) = 0 .

5. Var[u|x1, . . . , xk] = σ2 implying Var[u] = σ2.

Under these assumptions we can show that
the estimators of the regression coefficients
are unbiased. That is

Theorem 3.1: Given observations on the x-variables

(20) E[β̂j] = βj
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Using matrix notations, the proof of Theo-

rem 3.1 is pretty straightforward. To do this

write

(21)

b̂ = (X′X)−1X′y

= (X′X)−1X′(Xb + u)

= (X′X)−1X′Xb + (X′X)−1X′u

= b + (X′X)−1X′u.

Given X, the expected value of b̂ is

(22)
E[b̂] = b + (X′X)−1X′E[u]

= b

because by Assumption 4 E[u] = 0. Thus the

OLS estimators of the regression coefficients

are unbiased.

Remark 3.4: If z = (z1, . . . , zk)′ is a random vector,

then E[z] = (E[z1], . . . ,E[zn])′. That is the expected

value of a vector is a vector whose components are

the individual expected values.
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Irrelevant variables in a regression

Suppose the correct model is

(23) y = β0 + β1x1 + u

but we estimate the model as

(24) y = β0 + β1x1 + β2x2 + u.

Thus, β2 = 0 in reality. The OLS estimation

results yield

(25) ŷ = β̂0 + β̂1x1 + β̂2x2

By Theorem 3.1 E[β̂j] = βj, thus in particu-

lar E[β̂2] = β2 = 0, implying that inclusion of

extra variables to a regression does not bias

the results.

However, as will be seen later, they decrease

accuracy of estimation by increasing variance

of the OLS estimates.
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Omitted variable bias

Suppose now as an example that the correct

model is

(26) y = β0 + β1x1 + β2x2 + u,

but we misspecify the model as

(27) y = β0 + β1x1 + v,

where the omitted variable is embedded into

the residual term v = β2x2 + u.

OLS estimator for β1 for specification (27)is

(28) β̃1 =

∑
(xi1 − x̄1)yi∑
(xi1 − x̄1)2

.

From Equation (2.37) we have

(29) β̃1 = β1 +
n∑
i=1

aivi,

where

(30) ai =
(xi1 − x̄1)∑
(xi1 − x̄1)2

.
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Thus because E[vi] = E[β2xi2 + ui] = β2xi2

(31)

E[β̃1] = β1 +
∑
aiE[vi]

= β1 +
∑
aiβ2xi2

= β1 + β2

∑
(xi1 − x̄1)xi2∑
(xi1 − x̄1)2︸ ︷︷ ︸

δ̃1

i.e.,

(32) E[β̃1] = β1 + β2δ̃1,

where δ̃1 is the slope coefficient of regressing

x2 upon x1, implying that β̃1 is biased for β1

unless x1and x2 are uncorrelated (or β2 = 0).

This is called the omitted variable bias.

The direction of the omitted variable bias is

as follows:

Corr(x1, x2) > 0 Corr(x1, x2) < 0
β2 > 0 positive bias negative bias
β2 < 0 negative bias positive bias
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3.4 The variance of OLS estimators

Write the regression model

(33) yi = β0 + β1xi1 + · · ·+ βkxik + ui

i = 1, . . . , n in the matrix form

(34) y = Xb + u.

Then we can write the OLS estimators com-

pactly as

(35) b̂ = (X′X)−1X′y.
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Under the classical assumption 1–5, and as-

suming X fixed we can show that the variance-

covariance matrix b is

(36) Cov[b̂] = (X′X)−1σ2
u.

Variances of the individual coefficients are

obtained form the main diagonal of the ma-

trix, and can be shown to be of the form

(37) Var[β̂j] =
σ2
u

(1−R2
j )

∑n
i=1(xij − x̄j)2

,

j = 1, . . . , k, where R2
j is the R-square when

regressing xj on the other explanatory vari-

ables and the constant term.
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Multicollinearity

In terms of linear algebra, we say that vectors

x1,x2, . . . ,xk

are linearly independent if

a1x1 + · · ·+ akxk = 0

holds only if

a1 = · · · = ak = 0.

Otherwise x1, . . . ,xk are linearly dependent.
In such a case some a` 6= 0 and we can write

x` = c1x1 + · · ·+ c`−1x`−1 + c`+1x`+1 + · · ·+ ckxk,

where cj = −aj/a` that is x` can be repre-

sented as a linear combination of the other

variables.
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In statistics the multiple correlation measures

the degree of linear dependence. If the vari-

ables are perfectly linearly dependent. That

is, if for example, xj is a linear combination

of other variables, the multiple correlation

Rj = 1.

A perfect linear dependence is rare between

random variables. However, particularly be-

tween macro economic variables dependen-

cies are often high.
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From the variance equation (37)

Var[β̂j] =
σ2
u

(1−R2
j )

∑n
i=1(xij − x̄j)2

,

we see that Var[β̂j]→∞ as R2
j → 1. That

is, the more the explanatory variables are lin-

early dependent the larger the variance be-

comes. This implies that the coefficient es-

timates become increasingly instable.

High (but not perfect) correlation between

two or more explanatory variables is called

multicollinearity.
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Symptoms of multicollinearity:

(1) High correlations between explanatory vari-

ables.

(2) R2 is relatively high, but the coefficient

estimates tend to be insignificant (see the

section of hypothesis testing)

(3) Some of the coefficients are of wrong

sign and some coefficients are at the same

time unreasonably large.

(4) Coefficient estimates change much from

one model alternative to another.
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Example 3.3: Variable Et denotes cost expenditures
in a sample of Toyota Mark II cars at time point t, Mt

denotes the milage and At age.

Consider model alternatives:

Model A: Et = α0 + α1At + u1t

Model B: Et = β0 + β1Mt + u2t

Model C: Et = γ0 + γ1Mt + γ2At + u3t
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Estimation results: (t-values in parentheses)

Variable Malli A Malli B Malli C

Constant -626.24 -796.07 7.29
(-5.98) (-5.91) (0.06)

Age 7.35 27.58
(22.16) (9.58)

Miles 53.45 -151.15
(18.27) (-7.06)

df 55 55 54
R̄2 0.897 0.856 0.946
σ̂ 368.6 437.0 268.3

Findings:

Apriori, coefficients α1, β1, γ1, and γ2 should be pos-

itive. However, γ̂2 = −151.15 (!!?), but β̂1 = 53.45.

Correlation rM,E = 0.996!
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Remedies:

In the collinearity problem the question is the

there is not enough information to reliably

identify each variables contribution as an ex-

planatory variable in the model. Thus in or-

der to alleviate the problem:

(1) Use non-sample information if available

to impose restrictions between coefficients.

(2) Increase the sample size if possible.

(3) Drop the most collinear (on the base of

R2
j ) variables.

(4) If a linear combination (usually a sum)

of the most collinear variables is meaningful,

replace the collinear variables by the linear

combination.
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Variances of misspecified models

Consider again as in (26) the regression model

(38) y = β0 + β1x1 + β2x2 + u.

Suppose the following models are estimated

by OLS

(39) ŷ = β̂0 + β̂1x1 + β̂2x2

and

(40) ỹ = β̃0 + β̃1x1.

Then by (37)

(41) Var[β̂1] =
σ2
u

(1− r2
12)

∑
(xi1 − x̄1)2

and in analogy to (2.40)

(42)

Var[β̃1] =
Var[β2x2 + u]∑

(xi1 − x̄1)2
=

σ2
u∑

(xi1 − x̄1)2
,

where r12 is the sample correlation between

x1 and x2.
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Thus Var[β̃1] ≤ Var[β̂1], and the inequality is

strict if r12 6= 0.

In summary (assuming r12 6= 0):

(1) If β2 6= 0, then β̃1 is biased, β̂1 is unbi-

ased, and Var[β̃1] < Var[β̂1]

(2) If β2 = 0, then both β̃1 and β̂1 are unbi-

ased, but Var[β̃1] < Var[β̂1]
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Estimating error variance σ2
u

An unbiased estimator of the error variance

Var[u] = σ2
u is

(43) σ̂2
u =

1

n− k − 1

n∑
i=1

û2
i ,

where

(44) ûi = yi − β̂0 − β̂1xi1 − · · · − β̂kuik.

The term n− k − 1 in (42) is the

degrees of freedom (df).

It can be shown that

(45) E[σ̂2
u] = σ2

u,

i.e., σ̂2
u is unbiased estimator of σ2

u.

σ̂u is called the standard error of the regres-

sion.
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Standard errors of β̂k

Standard deviation of β̂j is the square root
of (37), i.e.

(46) σβ̂j =
√

Var[βj] =
σu√

(1−R2
j )

∑
(xij − x̄j)2

Substituting σu by its estimate σ̂u =
√
σ̂2
u gives

the standard error of β̂j

(47) se(β̂j) =
σ̂u√

(1−R2
j )

∑
(xij − x̄j)2

.
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3.5 The Gauss-Markov Theorem

Theorem 3.2: Under the classical assumptions 1–5

β̂0, β̂1, . . . β̂k are best linear unbiased estimators (BLUEs)

of β0, β1, . . . βk, respectively.

BLUE:

Best: The variance of the OLS estimator is

smallest among all linear unbiased estimators

of βj

Linear: β̂j =
∑n
i=1wijyi.

Unbiased: E[β̂j] = βj.
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