4. Statistical Inference

4.1 Sampling Distributions of the OLS Esti-
mators

Regression model

(1) vy =080+ Bizi1 + - + Brrik + u;.

To the assumptions 1-5 we add

Assumption 6: The error component u is independent
of x1,...x; and

(2) u ~ N(0,02).




Remark 4.1: Assumption 6 implies
El[u|z1,....2x] = E[lu] = 0 (Assumption 4) and

Var[u|z1,...,zr] = Var[u] = o2 (Assumption 5).

Remark 4.2: Assumption 2, i.e., Cov[u;,u;] =0 to-
gether with Assumption 6 implies that ui,...,u, are

independent.

Remark 4.3: Under assumptions 1-6 the OLS esti-
mators B, ..., B are Minimum Variance Unbiased Es-
timators (MVUE). That is they are best among all

unbiased estimators (not only linear).

Remark 4.4:
(1) y|XNN(BO+le1++Bk$k7O-12L)7

where x = (x1,...,x;) and y|x means " conditional on

X .



Theorem 4.1: Under the assumptions 1-6, conditional
on the sample values of the explanatory variables

(4) Bj ~ N(Bj,0%)

and therefore

—~

(5) 5= B n(o,1),

9B,

where a%j = Var[3;] and o5 = /Var[j)].




4.2 Testing for single population coefficients,
the t-test

Theorem 4.2: Under the assumptions 1—6

(6) 578 s,

5B,
(the t-distribution with n — k — 1 degrees of freedom)
where s3 =se(B;) and k+ 1 is the number of esti-

mated regression coefficients.

Remark 4.5: The only difference between (5) and (6)
is that in the latter the standard deviation parameter

op, IS replaced by its estimator S3,-



In most applications the interest lies in test-
ing the null hypothesis:

(7) HO : Bj = 0.
T he t-test statistic is

(8) 5

tg, = -
J
which is t-distributed with n — k — 1 degrees

of freedom if the null hypothesis is true.

These "t-ratios” are printed in standard com-
puter output in regression applications.

Example 4.1: Wage example computer output.

Dependent Variable: LOG(WAGE)
Method: Least Squares
Sample: 1 526
Included observations: 526
Variable Coefficient Std. Error t-Statistic Prob.
C 0.583773 0.097336 5.997510 0.0000

EDUC 0.082744 0.007567 10.93534 0.0000
R-squared 0.185806 Mean dependent var 1.623268
Adjusted R-squared 0.184253 S.D. dependent var 0.531538
S.E. of regression 0.480079 Akaike info criterion 1.374061
Sum squared resid 120.7691 Schwarz criterion 1.390279
Log likelihood -359.3781  F-statistic 119.5816
Durbin-Watson stat 1.801328 Prob(F-statistic) 0.000000




Remark 4.6: Hypothesis tests are always about popu-

lation parameters. It never makes sense to state null
hypothesis like " Hp : 3 = 0!



Testing Against One-Sided Alternatives

One-sided alternatives

(9) Hy:8;>0
or
(10) Hq : ﬁj < 0.

In the former the rejection rule is to reject
the null hypothesis at the chosen significance
level, «

(11) tB] > Cas

where ¢, is the 1 — o fractile (or percentile)
from the t-distribution with n — k£ — 1 degrees
of freedom, such that P(tA > cq|Hg is true) = a.
o IS called the S|gn|f|cance level of the test.
Typically o is 0.05 or 0.01, i.e., 5% or 1%.

In the case of (10) the Hg is rejected if

T hese tests are one-tailed test.




Example 4.2: In the wage example, test

Hg : Bexper = 0
against
Hq : Bexper > 0.
Bexper = 0.004121, s5 = 0.001723. Thus

5expe
3 .004121
¢ _ Pexper _ 0.00 ~ 2.391.
Bexper 55 0.001723
exper

Looking up in a table, we would find that
coo1 =~ 2.33 and cgoos =~ 2.58. We may thus
reject Hg @ Bexper = 0 against Hq : Bexper > 0
at a significance level of 1% but not at 0.5%,
since 2.33 < 2.39 <€ 2.58.



Two-Sided Alternatives

If the null hypothesis is Hqg : 5; = O, the two-
sided alternative is

(13) Hy:Bj # 0.

The null hypothesis is rejected at the signif-
icance level « if

Example 4.2: (continued) Looking up in a
table, we find cggp/p = 2.326 and ¢gg1/p =
2.576. We may thus reject Hg : Bexper = 0O
against Hq : Bexper &= 0 at least at a signif-
icance level of 2% (but not, as in the one-
sided test, at o = 1%).




Other Hypotheses About g,

Generally the null hypothesis can be also

where B;-‘ is some given value (for example
ﬁ;‘zl, so Hp: 3, =1).

T he test statistic is again a t-statistic

5 .
(16) (=i

SBj
Under the null hypothesis (15) the test statis-
tic (16) is again t-distributed with n — k — 1
degrees of freedom.
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Remark 4.7: The computer print outs always
give the t-ratios, i.e., test against zero. Con-
sequently, they cannot be used to test the
more general hypothesis (15). You can, how-
ever, use the standard errors and compute
the test statistics of the form (16).

Example 4.2 (continued): Test

HO . Bexper = 0.005

against

Hq . ﬁexper 77é 0.005.

Bexper = 0.004121, S Bexper — 0.001723. Thus

_ Bexper—fBéxper _ 0.004121—-0.005 _ 051
— _ 0.001723 o

t

SBexper

Looking up in a table, we would find that
co.o/2 & 1.28 > | — 0.51] . We are thus un-
able to reject Hg : Bexper = 0.005 against
Hq : Bexper # 0.005 even at a significance
level of 20%. So there is no evidence against
the hypothesis, that an extra year working ex-
perience yields 0.5% more salary (everything
else being equal).
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Example 4.3: Housing prices and air pollution.

A sample of 506 communities in Boston area.
Variables:
price (y) = median housing price

nox (x1) = nitrogen oxide, parts per 100 mill.

dist (z2) = weighted dist. to 5 employ centers
rooms (x3) = avg number of rooms per house
stratio (z4) = average student-teacher ratio of schools
in community

Specified model

(17) log(y) = Bo + Brlog(x1) + B2109(x2) + B33 + Baxsa + u

B1 is the price elasticity of nox. We wish to test
Ho:p1=-1

against

Hliﬁl#—l.
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Estimation results:

Dependent Variable: LOG(PRICE)
Method: Least Squares
Sample: 1 506
Included observations: 506
Variable Coefficient Std. Error t-Statistic Prob.
C 11.08386 0.318111 34.84271 0.0000
LOG(NOX) -0.953539 0.116742 -8.167932 0.0000
LOG(DIST) -0.134339 0.043103 -3.116693 0.0019
ROOMS 0.254527 0.018530 13.73570 0.0000
STRATIO -0.052451 0.005897  -8.894399 0.0000
R-squared 0.584032 Mean dependent var 9.941057
Adjusted R-squared 0.580711 S.D. dependent var 0.409255
S.E. of regression 0.265003 Akaike info criterion 0.191679
Sum squared resid 35.18346 Schwarz criterion 0.233444
Log likelihood -43.49487  F-statistic 175.8552
Durbin-Watson stat 0.681595 Prob(F-statistic) 0.000000

,_ —0953539 - (-1) _ 0953539 +1 . .
0.116742 0.116742

t501(0.025) =~ 2(0.025) = 1.96, which is far higher than
the test statistic. Thus we do not reject the null
hypothesis and conclude that there is not empirical

evidence that the elasticity would differ from -1.
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p-values

The p-value is defined as the smallest sig-
nificance level at which the null-hypothesis
could be rejected.

Thus we can base our inference on the p-
value instead of finding from the tables the
critical values. The decision rule simply is
that if the p-value is smaller than the selected
significance level a we reject the null hypoth-
esis.
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Technically the p-value is calculated as the
probability

P(T > tops|Ho), if the alternative hypothesis is Hy : 8 > 3*
p = P(T < tops|Ho), if the alternative hypothesis is Hy : g < *

P(|T| > tops|Ho), if the alternative hypothesis is H; : 8 #= (*
(18)

where T is a t-distributed random variable
and typs IS the value of t-statistic calculated
form the sample (observed t-statistic).

Remark 4.8: The computer output contains p-values

for the null hypothesis that the coefficient is zero and
the alternative hypothesis is that it differs form zero
(two-sided).
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Example 4.4: In the previous example the p-values in-
dicate that all the coefficient estimates differ (highly)
statistically significantly from zero.

For the null hypothesis Hg : 1 = —1 with the alter-
native hypothesis H; : 1 = —1 p-value is obtained by
using the standardized normal distribution as

2(1 — ¢(0.398)) ~ 0.69,

where ®(z) is the cumulative distribution function of

the standardized normal distribution.
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4.3 Confidence Intervals for the Coefficients

From the fact that
Bj—B;
°Bj
we get for example a 95% confidence interval

for the unknown parameter [5’]- as

(19) ~ by k-1

(20) BJ + cl 058,

where ¢, 5 is again the 1 — «/2 fractile of the
appropriate t-distribution.

Interpretation!
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Example 4.5: The 95% confidence interval for Bnox = (1
is

(21) Brox £ cozss5, = —0.953539+1.96 x 0.116742
—0.953539 =+ 0.22881432

or

(22) (—1.182,—-0.725).

We observe that —1 € (—1.182,—-0.725).
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The F-test

Hypotheses Hy : Bj — O test whether a single
coefficient is zero, i.e. whether variable T
has marginal impact on y.

Hypothesis

(23) Ho:B1=02="-=08,=0

tests whether none of the xz-variables affect
y. L.e., whether the model is

y=pPo+u

instead of

y = Po + frz1 + - + By + u.

The alternative hypothesis is

(24) Hq : at least one 3; # 0.
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Null hypothesis (23) is tested by the F-statistic,
called the F'-statistic for overall significance
of a regression

(25)

B SSE/k B R?/k
 SSR/(n—k—-1) (1 -R2/(n—k-1)
which under the null hypothesis is F-distributed
with £ and n — k — 1 degrees of freedom.

This is again printed in the standard com-
puter output of regression analysis.

Example 4.6 In the house price example FF = 175.8552

with p-value 0.0000, which is highly significant as

would be expected.
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The principle of the F-test can be used to
test more general (linear) hypotheses.

For example to test whether the last ¢ vari-
ables contribute y, the null hypothesis is

(26Ho : Bp—g+1 = Br—g+2="""=PB = 0.

The restricted model satisfying the null hy-
pothesis is

(27) y = Bo + P11 + - + Br—gTh—q T u

with k£ — g explanatory variables, and the un-
restricted model is

(28) y=po+ Bix1+ -+ Brxp + u

with k& explanatory variables. Thus the re-
stricted model is a special case of the unre-
stricted one.
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The F-statistic is

7 — (SSRr—SSRur)/q

where SSR, is the residual sum of squares
from the restricted model (27) and SSRy

IS the residual sum of squares for the unre-
stricted model (28).

(29)

Under the null hypothesis the test statistic
(29) is again F-distributed with ¢ = df, — dfur
and n — k£ — 1 degrees of freedom, where df,
is the degrees of freedom of SSR, and dfy, is
the degrees of freedom of SSRy,.
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Remark 4.9: Testing for single regression parameters

is a special case of (26), and it can be shown that in
such a case the F-statistic from (29) equals t%_ with
identical p-values for the F- and the t-test.

Remark 4.10: It can be easily shown that
_ (R:, — R?)/q
- (1-R2)/(n—k—1)

where R2_and R2 are the R-squares of the unrestricted

(30)

and restricted models, respectively.

23



Testing General Linear Restrictions

The principle used in constructing the F-test
in (29) can be extended for testing general
linear restrictions between the parameters.

As an example, consider the regression model

(31) y= B0+ Pix1 + Poxo + B3xr3 + u.
If the hypothesis is

(32) Hgo:p1+ B2+ B3 =1,

we can set, for example g3 = 1 — 51 — (82, such
that in the restricted model under Hp:

(33)

y =po + B1x1 + Boxo + (1—-F1—F2)z3 + u
=00 + B1(x1—x3) + Po(zo—23) + 23 + u.
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In the restricted model, we can estimate 34
and B> from

(34)
w — BO + 61 \(wl ; 373)J—|—52 £$2 ; :U:g)/—l—u
y Tl To

and calculate the residual sum of squares for
the restricted model,

n
(35) RSS; = Y (yi — §i)°

i=1
from the estimates 31 and (3>, which we then
compare by using the F-statistic (29) with
the residual sum of squares for the unre-
stricted model (31).

In the restricted model one parameter less
is estimated than in the unrestricted case.
T hus the degrees of freedom in the F-statistic
arel and n—k—1
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4.3 On Reporting the Regression Results

(1) Estimated coefficients and interpret them
(2) Standard errors (or if t-ratios or p-values)
(3) R-squared and number of observations

(4) Optionally, standard error of regression
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