
4. Statistical Inference

4.1 Sampling Distributions of the OLS Esti-

mators

Regression model

yi = β0 + β1xi1 + · · ·+ βkxik + ui.(1)

To the assumptions 1–5 we add

Assumption 6: The error component u is independent
of x1, . . . xk and

u ∼ N(0, σ2
u).(2)
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Remark 4.1: Assumption 6 implies

E[u|x1, . . . .xk] = E[u] = 0 (Assumption 4) and

Var[u|x1, . . . , xk] = Var[u] = σ2
u (Assumption 5).

Remark 4.2: Assumption 2, i.e., Cov[ui, uj] = 0 to-

gether with Assumption 6 implies that u1, . . . , un are

independent.

Remark 4.3: Under assumptions 1–6 the OLS esti-

mators β̂1, . . . , β̂k are Minimum Variance Unbiased Es-

timators (MVUE). That is they are best among all

unbiased estimators (not only linear).

Remark 4.4:

(1) y|x ∼ N(β0 + β1x1 + · · ·+ βkxk, σ
2
u),

where x = (x1, . . . , xk)′ and y|x means ”conditional on

x”.
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Theorem 4.1: Under the assumptions 1–6, conditional
on the sample values of the explanatory variables

β̂j ∼ N(βj, σ
2
β̂j
)(4)

and therefore

β̂j − βj

σβ̂j

∼ N(0,1),(5)

where σ2
β̂j

= Var[β̂j] and σβ̂j
=

√
Var[β̂j].
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4.2 Testing for single population coefficients,

the t-test

Theorem 4.2: Under the assumptions 1–6

β̂j − βj

sβ̂j

∼ tn−k−1,(6)

(the t-distribution with n− k − 1 degrees of freedom)

where sβ̂j
= se(β̂j) and k + 1 is the number of esti-

mated regression coefficients.

Remark 4.5: The only difference between (5) and (6)

is that in the latter the standard deviation parameter

σβ̂j
is replaced by its estimator sβ̂j

.
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In most applications the interest lies in test-
ing the null hypothesis:

H0 : βj = 0.(7)

The t-test statistic is

tβ̂j
=

β̂j

sβ̂j

,(8)

which is t-distributed with n− k − 1 degrees
of freedom if the null hypothesis is true.

These ”t-ratios” are printed in standard com-
puter output in regression applications.

Example 4.1: Wage example computer output.

Dependent Variable: LOG(WAGE)
Method: Least Squares
Sample: 1 526
Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.583773 0.097336 5.997510 0.0000
EDUC 0.082744 0.007567 10.93534 0.0000

R-squared 0.185806     Mean dependent var 1.623268
Adjusted R-squared 0.184253     S.D. dependent var 0.531538
S.E. of regression 0.480079     Akaike info criterion 1.374061
Sum squared resid 120.7691     Schwarz criterion 1.390279
Log likelihood -359.3781     F-statistic 119.5816
Durbin-Watson stat 1.801328     Prob(F-statistic) 0.000000
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Remark 4.6: Hypothesis tests are always about popu-

lation parameters. It never makes sense to state null

hypothesis like ”H0 : β̂ = 0”!
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Testing Against One-Sided Alternatives

One-sided alternatives

H1 : βj > 0(9)

or

H1 : βj < 0.(10)

In the former the rejection rule is to reject
the null hypothesis at the chosen significance
level, α

tβ̂j
> cα,(11)

where cα is the 1− α fractile (or percentile)
from the t-distribution with n− k − 1 degrees
of freedom, such that P (tβ̂j

> cα|H0 is true) = α.
α is called the significance level of the test.
Typically α is 0.05 or 0.01, i.e., 5% or 1%.

In the case of (10) the H0 is rejected if

tβ̂j
< −cα.(12)

These tests are one-tailed test.
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Example 4.2: In the wage example, test

H0 : βexper = 0

against

H1 : βexper > 0.

β̂exper = 0.004121, sβ̂exper
= 0.001723. Thus

tβ̂exper
=
β̂exper

sβ̂exper

=
0.004121

0.001723
≈ 2.391.

Looking up in a table, we would find that

c0.01 ≈ 2.33 and c0.005 ≈ 2.58. We may thus

reject H0 : βexper = 0 against H1 : βexper > 0

at a significance level of 1% but not at 0.5%,

since 2.33 < 2.39 < 2.58.

8



Two-Sided Alternatives

If the null hypothesis is H0 : βj = 0, the two-

sided alternative is

(13) H1 : βj 6= 0.

The null hypothesis is rejected at the signif-

icance level α if

(14) |tβ̂j | > cα/2.

Example 4.2: (continued) Looking up in a

table, we find c0.02/2 = 2.326 and c0.01/2 =

2.576. We may thus reject H0 : βexper = 0

against H1 : βexper 6= 0 at least at a signif-

icance level of 2% (but not, as in the one-

sided test, at α = 1%).
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Other Hypotheses About βj

Generally the null hypothesis can be also

H0 : βj = β∗j ,(15)

where β∗j is some given value (for example

β∗j = 1, so H0 : βj = 1).

The test statistic is again a t-statistic

t =
β̂j − β∗j

sβ̂j

.(16)

Under the null hypothesis (15) the test statis-

tic (16) is again t-distributed with n− k − 1

degrees of freedom.
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Remark 4.7: The computer print outs always
give the t-ratios, i.e., test against zero. Con-
sequently, they cannot be used to test the
more general hypothesis (15). You can, how-
ever, use the standard errors and compute
the test statistics of the form (16).

Example 4.2 (continued): Test

H0 : βexper = 0.005

against

H1 : βexper 6= 0.005.

β̂exper = 0.004121, sβ̂exper
= 0.001723. Thus

t =
β̂exper−β∗exper

sβ̂exper

=
0.004121−0.005

0.001723
≈ −0.51.

Looking up in a table, we would find that
c0.2/2 ≈ 1.28 > | − 0.51| . We are thus un-
able to reject H0 : βexper = 0.005 against
H1 : βexper 6= 0.005 even at a significance
level of 20%. So there is no evidence against
the hypothesis, that an extra year working ex-
perience yields 0.5% more salary (everything
else being equal).
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Example 4.3: Housing prices and air pollution.

A sample of 506 communities in Boston area.
Variables:
price (y) = median housing price
nox (x1) = nitrogen oxide, parts per 100 mill.
dist (x2) = weighted dist. to 5 employ centers
rooms (x3) = avg number of rooms per house
stratio (x4) = average student-teacher ratio of schools
in community

Specified model

log(y) = β0 + β1 log(x1) + β2 log(x2) + β3x3 + β4x4 + u(17)

β1 is the price elasticity of nox. We wish to test

H0 : β1 = −1

against

H1 : β1 6= −1.
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Estimation results:

Dependent Variable: LOG(PRICE)
Method: Least Squares
Sample: 1 506
Included observations: 506

Variable Coefficient Std. Error t-Statistic Prob.  

C 11.08386 0.318111 34.84271 0.0000
LOG(NOX) -0.953539 0.116742 -8.167932 0.0000
LOG(DIST) -0.134339 0.043103 -3.116693 0.0019

ROOMS 0.254527 0.018530 13.73570 0.0000
STRATIO -0.052451 0.005897 -8.894399 0.0000

R-squared 0.584032     Mean dependent var 9.941057
Adjusted R-squared 0.580711     S.D. dependent var 0.409255
S.E. of regression 0.265003     Akaike info criterion 0.191679
Sum squared resid 35.18346     Schwarz criterion 0.233444
Log likelihood -43.49487     F-statistic 175.8552
Durbin-Watson stat 0.681595     Prob(F-statistic) 0.000000

t =
−0.953539− (−1)

0.116742
=
−0.953539 + 1

0.116742
≈ 0.393.

t501(0.025) ≈ z(0.025) = 1.96, which is far higher than

the test statistic. Thus we do not reject the null

hypothesis and conclude that there is not empirical

evidence that the elasticity would differ from -1.
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p-values

The p-value is defined as the smallest sig-

nificance level at which the null-hypothesis

could be rejected.

Thus we can base our inference on the p-

value instead of finding from the tables the

critical values. The decision rule simply is

that if the p-value is smaller than the selected

significance level α we reject the null hypoth-

esis.
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Technically the p-value is calculated as the
probability

p =





P (T > tobs|H0), if the alternative hypothesis is H1 : β > β∗

P (T < tobs|H0), if the alternative hypothesis is H1 : β < β∗

P (|T | > tobs|H0), if the alternative hypothesis is H1 : β 6= β∗

(18)

where T is a t-distributed random variable

and tobs is the value of t-statistic calculated

form the sample (observed t-statistic).

Remark 4.8: The computer output contains p-values

for the null hypothesis that the coefficient is zero and

the alternative hypothesis is that it differs form zero

(two-sided).
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Example 4.4: In the previous example the p-values in-
dicate that all the coefficient estimates differ (highly)
statistically significantly from zero.

For the null hypothesis H0 : β1 = −1 with the alter-
native hypothesis H1 : β1 6= −1 p-value is obtained by
using the standardized normal distribution as

2(1−Φ(0.398)) ≈ 0.69,

where Φ(z) is the cumulative distribution function of

the standardized normal distribution.
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4.3 Confidence Intervals for the Coefficients

From the fact that

β̂j − βj

sβ̂j

∼ tn−k−1(19)

we get for example a 95% confidence interval

for the unknown parameter βj as

β̂j ± c1
2α

sβ̂j
,(20)

where cα/2 is again the 1− α/2 fractile of the

appropriate t-distribution.

Interpretation!

17



Example 4.5: The 95% confidence interval for βnox = β1

is

β̂nox ± c.025sβ̂nox
= −0.953539± 1.96× 0.116742

= −0.953539± 0.22881432
(21)

or

(−1.182,−0.725).(22)

We observe that −1 ∈ (−1.182,−0.725).
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The F -test

Hypotheses H0 : βj = 0 test whether a single

coefficient is zero, i.e. whether variable xj

has marginal impact on y.

Hypothesis

H0 : β1 = β2 = · · · = βk = 0(23)

tests whether none of the x-variables affect

y. I.e., whether the model is

y = β0 + u

instead of

y = β0 + β1x1 + · · ·+ βkxk + u.

The alternative hypothesis is

H1 : at least one βj 6= 0.(24)
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Null hypothesis (23) is tested by the F -statistic,

called the F -statistic for overall significance

of a regression

(25)

F =
SSE/k

SSR/(n− k − 1)
=

R2/k

(1 −R2)/(n− k − 1)
,

which under the null hypothesis is F -distributed

with k and n− k − 1 degrees of freedom.

This is again printed in the standard com-

puter output of regression analysis.

Example 4.6 In the house price example F = 175.8552

with p-value 0.0000, which is highly significant as

would be expected.
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The principle of the F -test can be used to

test more general (linear) hypotheses.

For example to test whether the last q vari-

ables contribute y, the null hypothesis is

H0 : βk−q+1 = βk−q+2 = · · · = βk = 0.(26)

The restricted model satisfying the null hy-

pothesis is

y = β0 + β1x1 + · · ·+ βk−qxk−q + u(27)

with k − q explanatory variables, and the un-

restricted model is

y = β0 + β1x1 + · · ·+ βkxk + u(28)

with k explanatory variables. Thus the re-

stricted model is a special case of the unre-

stricted one.
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The F -statistic is

F =
(SSRr − SSRur)/q

SSRur/(n− k − 1)
,(29)

where SSRr is the residual sum of squares

from the restricted model (27) and SSRu

is the residual sum of squares for the unre-

stricted model (28).

Under the null hypothesis the test statistic

(29) is again F -distributed with q = dfr − dfur

and n− k − 1 degrees of freedom, where dfr

is the degrees of freedom of SSRr and dfur is

the degrees of freedom of SSRur.
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Remark 4.9: Testing for single regression parameters

is a special case of (26), and it can be shown that in

such a case the F -statistic from (29) equals t2
β̂j

with

identical p-values for the F - and the t-test.

Remark 4.10: It can be easily shown that

(30) F =
(R2

ur −R2
r)/q

(1−R2
ur)/(n− k − 1)

,

where R2
ur and R

2
r are the R-squares of the unrestricted

and restricted models, respectively.
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Testing General Linear Restrictions

The principle used in constructing the F -test

in (29) can be extended for testing general

linear restrictions between the parameters.

As an example, consider the regression model

(31) y = β0 + β1x1 + β2x2 + β3x3 + u.

If the hypothesis is

(32) H0 : β1 + β2 + β3 = 1,

we can set, for example β3 = 1− β1 − β2, such

that in the restricted model under H0:

(33)

y =β0 + β1x1 + β2x2 + (1−β1−β2)x3 + u

=β0 + β1(x1−x3) + β2(x2−x3) + x3 + u.
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In the restricted model, we can estimate β1
and β2 from

(34)

y − x3︸ ︷︷ ︸
ỹ

= β0 + β1 (x1 − x3)︸ ︷︷ ︸
x̃1

+β2 (x2 − x3)︸ ︷︷ ︸
x̃2

+u

and calculate the residual sum of squares for

the restricted model,

(35) RSSr =
n∑
i=1

(yi − ỹi)
2

from the estimates β̃1 and β̃2, which we then

compare by using the F -statistic (29) with

the residual sum of squares for the unre-

stricted model (31).

In the restricted model one parameter less

is estimated than in the unrestricted case.

Thus the degrees of freedom in the F -statistic

are 1 and n− k − 1
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4.3 On Reporting the Regression Results

(1) Estimated coefficients and interpret them

(2) Standard errors (or if t-ratios or p-values)

(3) R-squared and number of observations

(4) Optionally, standard error of regression
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