
5 Further Topics In Linear Regression

5.1 Large Sample Properties of OLS Estima-
tors

Consistency

Theorem 5.1: Under the classical assump-
tions 1–5 the OLS estimators are consistent.
That is

(1) β̂j
P→ βj as n→∞,

where ”
P→” means that for increasing sample

size n and for any ε > 0:

(2) lim
n→∞P (|β̂j − βj| > ε)→ 0

β̂j
P→ βj is denoted usually as

(3) plim β̂j = βj

”plim ” standing for ”probability limit”.

Consistency of and estimator is an important
and desirable property.
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Example:

The Law of Large Numbers (LLN):

Let x1, . . . , xn be independent random vari-

ables with E[xi] = µ and Var[xi] = σ2 <∞, then

(4) x̄n =
1

n

n∑
i=1

xi
P→ µ,

where ”
P→” means that for any ε > 0:

lim
n→∞P (|x̄n − µ| > ε)→ 0.

Remark 5.1: Correlation of the error term u

with any of the explanatory variables x1, . . . , xk
in regression

y = β0 + β1x1 + · · ·+ βkxk + u

implies that OLS estimators β̂i are both biased

and inconsistent!
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Asymptotic Normality and Large Sample In-

ference

If the error terms u1, . . . , un in the regression

are not normal, i.e., Assumption 6 does not

hold, then the distribution of β̂j is not any

more (exactly) normal. This implies that the

normal theory inference is not any more ex-

actly valid.

However, because the OLS estimators are

weighted sums of random variables, the CLT

applies and we have the important result that

the OLS estimators are in any case

asymptotically normal (if assumptions 1–5 are

in effect).
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Central Limit Theorem (CLT): Let x1, . . . , xn

be independent and identically distributed (iid)

random variables with

E[xi] = µ and Var[xi] = σ2 <∞. Then

(5) zn =
(x̄n − µ)

σ/
√
n

a∼ N(0,1)

as n→∞, where ”
a∼” means that the dis-

tribution of zn approaches to the standard

normal distribution.

The notation
a∼ stands for the phrase ”the

asymptotic distribution of zn is N(0,1)”.
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As a result

β̂j − βj

σβ̂j

a∼ N(0,1)(6)

and

β̂j − βj

sβ̂j

a∼ tn−k−1.(7)

In the same manner the F -test discussed in

Chapter 4 are also asymptotic.

Test statistics relying on asymptotic distribu-

tion results are commonly called asymptotic

or large sample test statistics.
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Other Large Sample Tests: The Lagrange

Multiplier Test

In statistics there are three kinds of all pur-

pose large sample statistics: The Likelihood

Ratio (LR), the Wald (W), and the Lagrange

Multiplier (LM) test statistics. These can be

used in testing complicated restrictions on

parameters.

Under the null hypothesis the asymptotic dis-

tribution for each statistic is χ2
q with q de-

grees of freedom, where q equals the number

of imposed restrictions.

Asymptotically all these test lead to the same

result, but in finite samples they may differ.

Modern econometric packages have these statis-

tics available.
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5.2 Effects of Data scaling on OLS Statistics

We have earlier discussed scaling and adding

a constant to y and x variable in the simple

regression.

The same rules apply here too. Here we dis-

cuss only standardization of variables.
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Beta Coefficients

Sometimes it is desirable to standardize all

the variables, such that

y∗i =
yi − ȳ

sy
(8)

and

x∗ij =
xij − x̄j

sj
,(9)

where sy and sj are the standard deviations

of y and xj, respectively, j = 1, . . . , k.

Then

ŷ∗i = β̂∗1x∗i1 + · · ·+ β̂∗kx∗ik,(10)

where

β̂∗j =
sj

sy
β̂j.(11)
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β∗js are called standardized coefficients

or beta coefficients.

Remark 5.2: t-statistics R-squares etc do not change

in standardization.

The interpretation of the standardized co-

efficients is that β∗j indicates the change in

standardized value of y as xj changes by one

standard deviation, ceteris paribus.
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5.3 Prediction

Confidence Interval on Estimated Mean

We shall now find a confidence band for the
mean value of the response variable Y for a
specific set of values c1, . . . , ck of the predic-
tor variables, which have not necessarily been
used in developing the regression equation.
Let

µY |x : = E(Y |X1 = c1, X2 = c2, . . . , Xk = ck)

= β0 + β1c1 + β2c2 + · · ·+ βkck(12)

= x′1×(k+1)β(k+1)×1, where

x′ = (1, c1, c2, . . . , ck), β = (β0, β1, . . . , βk)′.

An unbiased estimator for µY |x is

(13) µ̂Y |x = b0+b1c1+b2c2+· · ·+bkck = x′b.

The variance of µ̂Y |x is

Var (µ̂Y |x) = Var (x′b) = x′Var (b)x(14)

= x′σ2
u(X′X)−1x = σ2

ux
′(X′X)−1x,

such that

(15) µ̂Y |x ∼ N(x′β, σ2
ux
′(X′X)−1x).
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Standardizing and replacing the unknown σ2
u

by its estimator σ̂2
u = 1

n−k−1
∑n
i=1 û

2
i = SSR

n−k−1
yields

(16) t =
µ̂Y |x − µY |x√
σ̂2
ux
′(X′X)−1x

∼ t(n−k−1).

A (1− α) confidence interval on µY |x is thus

(17)
[
µ̂Y |x ± tα2(n−k−1)

√
σ̂2
ux
′(X′X)−1x

]
.

Recalling, that the student distribution ap-

proaches the normal distribution for df →∞,

we may also write for n� k:

(18)
[
µ̂Y |x ± zα2

√
σ̂2
ux
′(X′X)−1x

]
,

where zα
2

denotes the α
2 fractile of the stan-

dard normal distribution.
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Prediction Interval on Single Response

Consider next predicting a single response

Y |x = µY |x + u. The scalar product x′b is

also an unbiased estimator of Y |x since

(19) E(Y |x) = E(µY |x) + E(u) = x′β.

But the variance of Ŷ |x is larger than the

variance of µ̂Y |x due to the additional varia-

tion in u. More specifically:

Var (Ŷ |x) = Var (µ̂Y |x) + Var (u)

= σ2
ux
′(X′X)−1x + σ2

u.(20)

That is,

(21) Ŷ |x ∼ N(x′β, σ2
ux
′(X′X)−1x + σ2

u).
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A similiar argument as for the confidence

interval on the estimated mean yields as a

(1 − α) prediction interval for an individual

response:

(22)[
Ŷ |x± tα

2
(n−k−1)

√
σ̂2
ux
′(X′X)−1x + σ̂2

u

]
.

Again, since the student distribution approaches

the normal distribution for df → ∞, we may

also write for n� k:

(23)
[
µ̂Y |x ± zα2

√
σ̂2
ux
′(X′X)−1x + σ̂2

u

]
,

where zα
2

denotes the α
2 fractile of the stan-

dard normal distribution.

Note that the prediction interval for an indi-

vidual response is wider than the confidence

interval for the corresponding mean.
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If you wish to avoid the matrix algebra in-
volved in calculating the standard errors for
the confidence bands, you may use the fol-
lowing trick. Write β0 = µY |x−β1c1−. . .−βkck
and plug this into the equation

y = β0 + β1x1 + . . .+ βkxk + u

to obtain
(24)
y = µY |x + β1(x1− c1) + . . .+ βk(xk− ck) + u.

In other words, subtract cj from each obser-
vation xj and run the gegression of

yi on (xi1 − c1), . . . , (xik − ck), i = 1, . . . , n.

The parameter estimate of the intercept will
be µ̂Y |x and, more important, its standard
error

(25) SE(µ̂Y |x) =
√
σ̂2
ux
′(X′X)−1x

needed in the construction of the confidence
band for µY |x. Augment this with σ̂2

u from
the regression output to obtain

(26) SE(Ŷ |x) =
√
σ̂2
ux
′(X′X)−1x + σ̂2

u

for prediction intervals of individual responses.
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Predicting y from log(y) specification

Consider the model

log(y) = β0 + β1x1 + · · ·+ βkxk + u.(27)

Estimated model

̂log(y) = β̂0 + β̂1x1 + · · ·+ β̂kxk.(28)

A natural prediction for y would be

ŷ = e
̂log(y).

This, however, systematically underestimates

the expected value of y.
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This is because, if u ∼ N(0, σ2
u), E[eu] = e

1
2σ2

u.

Then given x-values this implies

E[y|x] = E[elog(y)|x] = ex′bE[eu|x] = e
1

2
σ2

uex′b,(29)

where b = (β0, β1, . . . , βk)
′ and

x = (1, x1, . . . , xk)
′.

Thus an appropriate predictor for y is

ŷ = eσ̂2
u/2e

̂log(y).(30)
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If the normality of u does not hold then let

E[eu] = α0 and (29) becomes

E[y|x] = α0elog(y) = α0ex′b,(31)

where α0 is an unknown parameter.

It turns out that a consistent estimator of α0

is found as follows:

(1) Obtain the fitted value of ̂log(y)i

(2) For each observation i, create m̂i = e
̂log(y)i

(3) Regress y on m̂i without an intercept, and

use the estimated regression coefficient as an

estimate of α0.

17



Example 5.1: Consider the wage example. The model
to be estimated is

log(wage) = β0 + β1educ + β2exper + β3tenure + u.

Estimating the parameters, generating the m̂i series,
and estimating regression

wage = α0m̂+ v,

where v is an error term, produces α̂0 = 1.1227. Note

that eσ̂
2
u/2 = e(0.440862)2/2 ≈ 1.10206, which differs from

the α0-estimate, indicating that the residuals are not

normally distributed.

Note. It can be shown that α0 must be always

larger than 1. If nonetheless you get an esti-

mate which is smaller than one, then it is an

indication that assumption 3 about indepen-

dence of the error term and the explanatory

variables does not hold.
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5.4. Functional Form of Regression

In economic applications most nonlinear rela-

tionships between explained explanatory vari-

ables are are worked out by taking logarithms

or containing quadratics of exlanatory vari-

ables in the model.

Using logarithmic transformations

Consider the model of an earlier example

log(price) = β0 + β1 log(nox) + β2rooms + u.

(32)

Coefficient β1 is the elasticity of price with

respect to pollution nox), while 100× β2 is

approximately the percentage change in price

when the rooms increases by one.
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Example 5.2: Using Wooldridge’s data set hprice2.xls
we get the follwoing estimates for (32)

Dependent Variable: LOG(PRICE)
Method: Least Squares
Date: 10/10/06   Time: 00:15
Sample: 1 506
Included observations: 506

Variable Coefficient Std. Error t-Statistic Prob.  

C 9.233738 0.187741 49.18350 0.0000
LOG(NOX) -0.717673 0.066340 -10.81816 0.0000

ROOMS 0.305918 0.019017 16.08626 0.0000

R-squared 0.513717     Mean dependent var 9.941057
Adjusted R-squared 0.511784     S.D. dependent var 0.409255
S.E. of regression 0.285956     Akaike info criterion 0.339957
Sum squared resid 41.13085     Schwarz criterion 0.365015
Log likelihood -83.00902     F-statistic 265.6890
Durbin-Watson stat 0.603290     Prob(F-statistic) 0.000000

Thus the estimate model is

̂log(price) = 9.234 − 0.718 log(nox) + 0.306 rooms
(0.188) (0.066) (0.019)

R2 = 0.514
n = 506,

where standard errors are in parnetheses

When nox increases by 1%, price falls by 0.718%

(holding rooms fixed). When number of rooms in-

creases by one, price increases by approximately 100×
0.306 = 30.6%.
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Remark 5.3: Approximation %∆y ≈ 100 × ∆ log y be-
comes inaccurate when the change in log y becomes
large. Generally if we have an estimated model

(33) ̂log y = β̂0 + β̂1 log(x1) + β̂2x2,

fixing x1, we have ∆ ̂log y = β̂2∆x2, from which we get
the exact percentage change as

(34) %̂∆y = 100 ×
(
exp(β̂2∆x2) − 1

)
.
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Example 5.3: (Continued) In the previous example we

have ∆x2 = 1 and β̂2 = 0.305918. Thus we get

%̂∆y = 100× (exp(0.305918)− 1) ≈ 35.8%,

which is notably larger than the approximate change

30.6%.
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Advantages of using log transformations:

• interpretation (elasticity, perentage change)

• changing scale does not change slope co-

efficients

• if y > 0 log-transformation usually make

variables closer to normality

Usually log-transformations are quite routinely

taken for series that are positive monetary

values (wages, salaries, firm sales, firm mar-

ket values, stock indices, etc.) also logs are

often taken from variables measuring popu-

lation, total number of employees, etc that

are usually large integers.

Variables measured in years (education, ex-

perience, tenure, age, etc) are usually used

in their original form.

Remark 5.4: log-transformations cannot be used if a

variable takes zero or negative values!

23



Quadratic Terms

Consider model

y = β0 + β1x + β2x2 + u,(35)

where x2 is the quadratic term.

The interpretation of the model changes. β1

does not any more measure the change in y

when x changes by one unit (i.e., β1 is not

any more the slope coefficient).

To see this, write the estimated model

ŷ = β̂0 + β̂1x + β̂2x2,(36)

then approximately

∆ŷ ≈ (β̂1 + 2β̂2x)∆x,(37)

so that the slope is

∆ŷ

∆x
≈ β̂1 + 2β̂2x.(38)
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Example 5.5: Consider the wage example and esti-
mate the model (data: wage1.xls)

log(wage) = β0 + β1 exper + β2 exper2 + u.

Estimating with EViews, we obtain:

Dependent Variable: LOG(WAGE)
Method: Least Squares
Sample: 1 526
Included observations: 526
===============================================================
Variable Coefficient Std. Error t-Stat Prob.
---------------------------------------------------------------
C 1.295291 0.049481 26.17746 0.0000
EXPER 0.045534 0.005859 7.771027 0.0000
EXPER^2 -0.000944 0.000129 -7.312008 0.0000
===============================================================
R-squared 0.104001 Mean dependent var 1.623268
Adjusted R-squared 0.100574 S.D. dependent var 0.531538
S.E. of regression 0.504101 Akaike info criterion 1.473605
Sum squared resid 132.9034 Schwarz criterion 1.497932
Log likelihood -384.5581 F-statistic 30.35285
Durbin-Watson stat 1.795529 Prob(F-statistic) 0.000000
===============================================================
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Thus, the estimated equation is

̂log(wage) = 1.30 + 0.046exper − 0.000944exper2

(0.049) (0.0059) (0.000129)

R2 = 0.104
n = 526

Experience (exper) has a diminishing effect on wage.
The first year increases wage about by 4.6%, the sen-
cond year [using (38)] by .045534−2×(.000944)×1 =
0.043646 ≈ 4.4%. Going from 10 to 11 years of expe-
rience, wage is predicted to change by .045534 − 2×
(.000944)× 10 ≈ 2.7%.

The predicted maximum wage is achieved at experi-
ence of

exper = − β̂1

2β̂2
= − .045534

2(−0.000944)
≈ 24years.

Note that we have omitted other important factors

(education, etc.) from this example.
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Interaction terms

Consider a model with two explanatory vari-

ables such that

y = β0 + β1x1 + β2x2 + β12x1x2 + u.(39)

The cross-product term x1x2 is called the

interaction effect of x1 and x2. Usually it

comes in a natural way to the model.

For example, consider the simple consump-

tion function

C = β0 + β1Y + u,(40)

where C denotes consumption and Y income.
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Suppose, the marginal propensity to consume

(mpc), β1 depends on the level of wealth A

such that

β1 = βy + βayA.(41)

This implies the interaction term A · Y to the

model (40), as

C = β0 + β1Y + u

= β0 + (βy + βayA)Y + u

= β0 + βyY + βayAY + u.

(42)
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